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0. Introduction

Recent years have seen a growing interest in questions of shape preserving
approximation. In particular there has been extensive activity in questions
of estimating the degree of approximation of monotone and convex functions
f € Ly|a,b] by means of polynomials p, € II,, the space of algebraic poly-
nomials of degree not exceeding n, and splines of degree k and n equidistant
knots, which preserve the monotonicity and the convexity, respectively. Here
and in the sequel, we mean by L|a, ], the space C|a, b]. Also, in the sequel
we will use for [a, b], the generic interval [0, 1]. These approximation processes
are linear in the sense that the approximants for each fixed n are taken from
a fixed linear set of elements. The degree of such constrained approximation
is in general worse than the degree of nonconstrained approximation of the
same functions. This phenomenon is well illustrated in that while for any
f € C'[0,1] we have

Bu(f)oo < B a(F)e

where E,(f)o denotes the degree of approximation by polynomials of degree
not exceeding n, a recent result of Shevchuk [5] shows that there exists an
absolute constant C' > 0 such that for any n > 1, a nondecreasing f = f, €
C'[0,1] exists such that

inf {|f = Pnlloo > CEn1(f")oo -

Pn€lln

pn/
Nevertheless the degree of constrained approximation can be estimated by
Jackson-type estimates, namely, involving the moduli of smoothness of the
function, but unlike the nonconstrained approximation by polynomials and
such splines, the estimates of monotone and convex approximation involve
only moduli of smoothness of very restricted orders, w, and ws, respectively
(for details see [2] and [1]).

It is well-known that for nonconstrained approximation, nonlinear meth-
ods usually achieve a given degree of approximation for a much wider class
of functions than linear methods do (see discussion in the book by Petrushev
and Popov [4] and especially Chapter 7 therein). Naturally, one would like to
know whether the same phenomenon occurs for constrained approximation,
and indeed we prove that this is so for the approximation by splines with



free knots. Maybe this is to be expected since splines with free knots seem
to be most amenable to shape preservation requirements. It would be in-
teresting to see whether constrained rational approximation can provide the
same degree of approximation as the nonconstrained does. This seems to be
a very difficult question and the only result we are aware of in this direction
is a (non-optimal) estimate of convex rational approximation to a convex
continuously differentiable function (see [3]). The striking conclusion of this
work is that the constrained approximation by splines with free knots is in
a sense as good as the nonconstrained approximation, unlike the situation
described above for the approximation by polynomials and splines with fixed
knots. (We refer the reader to [4] where the various classes of functions with
a given degree of approximation by splines with free knots are characterized
as Besov spaces.) We will show that if we allow the number of knots to be
some constant multiple of the original one, then we preserve monotonicity
and convexity while guaranteeing the same degree of approximation as in the
nonconstrained case. We first prove these assertions in §1 and §2 for splines
with free knots without any continuity assumptions at the knots. Then in
§3 we show that the same holds for such splines with maximal smoothness
at the knots. At the same time we show in §4 that if one wishes to preserve
the monotonicity or convexity with some smaller constant multiple of the
original number of knots, even without any continuity assumptions at the
knots, then one cannot obtain the same degree of approximation.

We denote by S(N, k), the collection of splines of degree k with at most
N — 1 knots, i.e., with at most N polynomial pieces, where we do not
assume any smoothness at the knots. We further denote by S(N,k), the
sub-collection of those splines with maximum continuity, i.e., which are in
C*-1[0,1]. Now we let M™ = M"[0,1] be the space of all functions f de-
fined on [0, 1] for which the rth forward difference is nonnegative in [0,1]. In
particular M! is the space of monotone functions in [0,1], M? is the space
of convex functions in [0, 1] and in general we call f € M"™ an r-monotone
function. Finally, we set M} = M7[0,1] := Lp[0,1] N M"[0,1], 0 < p < oo.
(Recall that by Lo [0, 1] we mean the space C|[0,1].)

For f € M}, we denote the degree of approximation by splines in S(N, k),
by Sni(f)p, and the degree of approximation by r-monotone splines in

S(N,k), by S](\;,)k(f)p. Similarly, we denote by Sg,)k(f)p, the degree of ap-

proximation by r-monotone splines in S (N, k).



1. Monotone spline approximation

Our result on monotone approximation is the following.

Theorem 1. For any k € N there ezists a constant A = A(k) such that
for every f € M2[0,1], 0 < p < oo, and each N € N we have

S k(o < Swa(f)p -

Theorem 1 is an immediate consequence of the following.

Proposition 1. For any k € N there ezists a constant A = A(k) such
that for every f € My, 0 <p < oo, N € N, and s € S(N, k), there exists a
spline o such that

o € S(AN, k) n M*[0, 1],

and

f(z) — o(2)| < [f(z) — s(=)|, Vze[0,1].

The proof of Proposition 1 follows from
Lemma 1. For any k € N there exists a constant A = A(k) such that
for every f € M*, and p € Il, there exists a spline ® such that
7 € S(A,k)n M'[0,1],

|f(z) — m(2)| < [f(z) —p(z)], Veel0,1],
and

F(0) <= (0), (1) < f(1).

Proof of Proposition 1. We apply Lemma 1 to each polynomial piece
of the spline s € S(N, k).

Finally, in order to prove Lemma 1 we divide it into two parts, Lemmas
la and 1b, from which Lemma 1 readily follows.



Lemma la. Let f € M*'[0,1] and p € Tl be given. Then there exists g,
such that
g € M[0,1], (4)

the difference g(z) — p(z) changes its sign at most k times in [0,1], (B)
g(z) is equal to either f(z) or p(z) Yz € [0, 1] so that
9(z) — p(z)| < |f(z) —p(z)], Ve el0,1], (©)

and

f(0) =g(0), g(1) = f(1). (D)

Lemma 1b. Let g € M*' and p € Il be such that the difference g(z) —
p(z) changes its sign at most k times. Then there ezists a spline ™ such that

7w € M'[0,1], (a)
m € S(A k), A= A(k), (b)
9(z) — m(2)| < |g(z) —p(z)|, Vzel0,1], (c)
and
g9(0) <=(0), =(1) <g(1). (d)

Proof of Lemma 1la. Divide the interval [0,1] into ! subintervals of
monotonicity of the given polynomial p, i.e.,

0,1] = UL L, L = [zi, 2iy4],

where ; = 0, ;37 = 1, and the other z; are exactly the points at which
the derivative p' changes its sign. We denote I; by I;" and I; if on I;, the
polynomial p is increasing and decreasing, respectively.

First, on I, the graph of the decreasing polynomial p intersects the graph
of the nondecreasing function f at most once, i.e., the difference f(z) — p(z)
changes sign at most once. We set

g(z) = f(z), =ze€l;.



On I, the graphs of the two non-decreasing functions p and f may
intersect at any number of points, even an infinite numbers of points {t,}. If
the number of intersections is < 1, then we still set g(z) = f(z). Otherwise,
we put

;= iI&fta, d; := sup tg,

and set
{ p(z), =€ (%, b);

f(z), otherwise.

By construction, the difference g(z) — p(z) changes its sign on I} at most
once.
We are ready to verify the properties of g.

(A). The function g is equal to f € M*' on [8;,7it1], and to a non-
decreasing part of p on (v;,d;). At the points of v; we have

g(vi—) = f(vi—) < f(vt) = p(vi+) = g(vnt),

and similarly at the points §;. Hence g € M*.

(B). The difference g(z) — p(z) has at most one change of sign on each
of the intervals I; of monotonicity of p € Ili, and the total number [/ of such
intervals does not exceed k.

(C). The inequality holds since g(z) is equal either to f(z) or to p(z).

(D). The function g coincides with f at the endpoints of all intervals [,
in particular 0 and 1.
This completes the proof of Lemma 1la.

Proof of Lemma 1b. Let {y;}} be the points where the difference
g(z) — p(z) changes its sign. We set

Yo = 07 Yi+1 = 17 J’L = [y'i—lay’i]a

and denote J; by J;" and J;, if the sign of p(z) — g(z) on J; is non-negative
and non-positive, respectively.

We obtain the spline m on [0,1] by constructing its parts m; on each of
the intervals J; with the following properties

;€ Ml[Ji], (al)
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™ € S(Az,k), (bl)
where A; = A;(k),

l9(z) — mi(z)| < |g(2) — p(2)|, Ve c i, (c1)

and
9(Wi-1) < milyi1),  mi(y:) < g(wi)- (d1)

Then, the monotonicity of =, i.e., (a), follows by (al) and (d1).
Further, (b) follows by (b1) with

A=Y A

Now (c) follows trivially from (cl), and (d) is trivially implied by (d1)
since 0 = yo and 1 = y;44.

We first define the spline m; on J. Recall that z € J;' implies p(z) >
g(z).
Denote by {fj}f’zl the points of local minima of the polynomial p inside

_I_ . . . _ _
J;", in increasing order, and set & = y;_1, &k, 41 = Yi-

Then for z = y; = &, 41 let

mi(yi) = 9(ys) < p(ys).

We continue by induction defining for z € [§;-1,¢&;),
ri(e) = min (p(e), 7i(&5)), 3= kit 1.1

Then for J;", we readily have,

(al). The monotonicity follows from the fact that 7; is equal either to a
non-decreasing part of p or to a constant which are so defined that mono-
tonicity is preserved.

(b1). Each subinterval [€;_1,€&;] of J;, consists of two intervals (one of
which may be empty) with 7; being p € Il in the left one and a constant in
the right one. The number of these subintervals i1s equal to k; +1 < k + 1.
Hence,

A; < 2(k; + 1).



(c1). Our construction yields,
o(e) < mi(z) < pla), Ve e JF-

Hence the required inequality.

(dl). We have
9(Yi-1) < mi(yi-1), mi(y:) = 9(vi)-

We proceed in a similar way to define the spline 7; on J;”, where we recall
that z € J; implies p(z) < g(z). This time m; is defined moving from the
left to the right, and taking maxima instead of minima. Namely, we denote
by {77]-}?":1 the points of local maxima of the polynomial p which are inside
J; and we set 9o = yj_1, ;41 = Yi-

Then for = no = y;_; we let
mi(z) := g(yi-1) > p(yi-1),
and for @ € (£, £511] we let
ri(2) 1= max(mi(€; 1), p(2)), G =1,..., k.

This completes the proof of Lemma 1b but we would like to get an estimate

of A(k). To this end we see that

k+1 k+1

A=> A =2) (ki+1)=2k+1)+2> k.

But by definition k; is the number of either local minima or local maxima
of the polynomial p € Il in the interval J;. Thus } k; does not exceed the
total number of the local extrema of p € I, which is < k& — 1. Hence,

A=A <4k

In fact closer analysis shows that actually A < 2k.

Remark. The definition of m; on J; is equivalent to the following:
mi(z) := sup g(z),
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where supremum is taken over all functions ¢ such that

ge M'JF], q(t) <p(t),Vte JF, q(y:) = g(yi)-

Similarly for J; (of course taking infimum on ¢ > p, instead of supremum).
We have chosen to give the more constructive proof for the monotone case
and we use the other approach later for the convex case where it significantly
simplifies part of the proof of Lemma 2b.

2. Convex spline approximation

In this section we obtain estimates for convex approximation. We prove

Theorem 2. For any k € N there ezists a constant A = A(k) such that
for every f € M2[0,1], 0 < p < oo, and any N € N we have

SE (P < Snalf)y -

Theorem 2 is an immediate consequence of the following.

Proposition 2. For any k € N there ezists a constant A = A(k) such
that for every f € Mg, 0<p<oo, NeN, and s € S(N,k), there ezists a
spline o such that

o € S(AN,k)n M?[0,1],
/(@) — o(z)| < |f(z) — s(z)], Vaecl0,1].

The proof of Proposition 2 follows from

Lemma 2. For any k € N there exists a constant A = A(k) such that
for every f € M?, and p € Il, there exists a spline © such that

7 € S(A, k)N M?[0,1],



and

F1(04) < ='(0+4), ='(1-) < f(1-).

Proof of Proposition 2. We apply Lemma 2 to each polynomial part
of the spline s € S(N, k).

Finally as before, in order to prove Lemma 2 we divide it into two parts,
Lemmas 2a and 2b from which Lemma 2 readily follows.

Lemma 2a. Let f € M?[0,1] and p € I, be given. Then there exists g,
such that

g€ M, (E)

the difference g(z) — p(z) changes its sign at most 2k times in [0,1], (F)

g(z) is equal to either f(z) or p(z) Yz € [0, 1] so that

l9(z) — p(z)| < |f(z) — p(z)|, Vze[0,1], (G)
f(0) =g(0), g(1) = f(1), (H)

and
f0+) <g'(0+), ¢(1-) < f(1-). (K)

Lemma 2b. Let g € M?[0,1] and p € II; be such that the difference
g(z) — p(z) changes its sign at most 2k times. Then there exists a spline ™
such that

€ M?[0,1], (e)
me S(Ak), A= Ak), ()
lg(z) — n(z)| < |g(z) — p(=)], Ve e€l0,1], (9)
9(0) = =(0), =(1) =g(1), (h)
and
g'(04+) <#'(0+), ='(1-)<g'(1-). (k)

10



Proof of Lemma 2a. Divide the interval [0,1] into ! subintervals of
convexity and concavity of the given polynomial p, i.e.,

[07 1] = Uﬁ:lfi; I; = [%,%’4—1],

where ; = 0, ;37 = 1, and the other z; are exactly the points at which
the second derivative p” changes sign. Denote I; by I;” and I; ,if on I;, p is
convex and concave, respectively.

On I, the graph of the concave polynomial p intersects the graph of the
convex function f at most twice, i.e., the difference f(z) — p(z) changes sign
at most twice. So we set

g(z) = f(z), =e€l;.

On the other hand on I;7, the graphs of the two convex functions p and f
may intersect at any number of points, even at an infinite number of points
{to}. If the number of intersections is < 2, then we still set g(z) = f(z).

Otherwise, we put
v :=1inf {ts : f'(tat) < P'(tat)},

§; :=sup{ta: P(ta—) < f'(ta—)},

olz) = { p(z), 2 € (7, 6);

f(z), otherwise.

and we set

Note that at two consecutive t,’s the above inequalities are reversed. There-
fore there is at most one ¢, < 7; for which p'(to+) < f'(to + az), and there is
at most one t, > §; for which f'(t,—) < p'(ta—). Thus there is at most one
intersection between f and p on either side of (y;,d;). Hence, the difference
g(z) — p(z) changes sign at most twice in I;".

We now verify that g has the required properties.

(E). The function g is evidently continuous. It is equal to f € M? on
[0;,Yit+1], and to a convex part of p on (v;,d;). At the points 7;, we have

9(vi—) < f(%=) < Flwt) <p(vt) = g'(vit), (2.1)

i.e.
g (vi—) < g'(vit).

11



Similarly for the points §;. Hence g € M?2.

(F). The difference g(z) — p(z) has at most two changes of sign in each
of the intervals I;, of convexity and concavity of p € I, and the number of
such intervals is less than k.

(G). The inequality holds since g(z) is equal either to f(z) or to p(z).

(H). The function g coincides with f at the endpoints of each of the
intervals I;, in particular at 0 and 1.

(K). If 0 < 71, then g coincides with f in the neighborhood of 0, hence
the first derivatives coincide too. The same with 1, if §,; < 1. Otherwise,
the inequalities follow by (2.1) and its counterpart for é;.

This completes the proof of Lemma 2a.

Proof of Lemma 2b. Let {y;}, be the points where the difference
g(z) — p(z) changes its sign. We set

Yo = 07 Yi+1 = 17 J’L = [y'i—lay’i]a

and denote J; by J7 and J;, if on J;, the sign of p(z) — g(z) is non-negative
and non-positive, respectively.

We obtain the spline m on [0,1] by constructing its parts m; on each of
the intervals J; with the following properties

m; € M?[J;], (el)
m; € S(Ai, k), (f1)
where A; = A;(k),
9(2) — mi(z)| < |g(=) —p(=)|, Ve (91)
9(yim1) = mi(yia),  mi(yi) = 9(vi), (h1)
a 9'(yimrt) < milyioit), mlyi—) < g'(yi—)- (k1)

Then, the convexity of 7, that is (e) follows from (el), (k1) and (k1).
Further, (f) follows by (f1) with

A:ZA“

12



Now, (g) trivially follows from (gl) and finally (k) and (k) follow from
(k1) and (k1), respectively since 0 = yo and 1 = y41.

On J;" we have g(z) < p(z), and we set

ni(s) 1= sup a(2)
where supremum is taken over all functions ¢ such that

g€ M*[JF]; q(t) <p(t), VteJ'; qu)=gu), v=vyi1, v

Then the convexity of m;(z) readily follows as the maximum of convex
functions is convex, hence (el).

As for the other requirements.

(f1). We have to show that m; is a piecewise polynomial, and evaluate
A;.
Denote by {fj}f’zl the points where the second derivative p” changes its
sign, and set & = y;_1, &k, +1 = yi;- Then we have

Ji"‘ = U?":O T;, where Tj:=[&;,&i41],

and on each of the intervals T the polynomial p is alternatingly convex
and concave. Denote T by Tj"' and T if, respectively, it is an interval of
convexity or concavity of p.

By definition, m;(z) < p(z), so that J* = G U E, where

G:={zeJ: m(z)<p(z)}, and FE:={zcJ’: mz)=p(z)}

Obviously G is open, hence it is a union of open intervals. On each of these
intervals the convex function 7;(z) is linear, for otherwise we can replace part
of it by a linear function in a way that preserves both the convexity and the
inequality m;(z) < p(z). A contradiction to the definition of =;.

It is also evident that the intervals T} are contained in GG. Hence the set
E consists of some closed subintervals where p is convex. We claim that there
can be at most one such subinterval in Tj"'. For if we assume the contrary
and we take two neighboring disjoint subintervals in Tj"', then between them
mi(z) is a linear function which coincides with p at the endpoints. But p is
convex, thus m;(z) > p(z), a contradiction.

13



Thus, for z € J;" the function ;(z) defined above coincides with p(z) on
at most one subinterval of each Tj"', and is equal to a linear function between
two such neighboring subintervals, in particular on 7; . Hence

m; € S(Ai k), where A; < Z 1=Fk +1,

j: Tyed;

where k; is the number of sign changes of p” on J;.
Now, (g1) and (k1) follow since by construction

g(z) < mi(z) <p(z), VeeJ,

and (h1) holds for all functions ¢ involved in the definition of 7;, hence holds
for ;. The definition of 7; and the proofs are more complicated on J;”, where

p(z) < g(z).
Again divide the interval J; into subintervals Tj"' and T, of convexity
and concavity of the polynomial p, respectively, and set

TJ: [fj)fj-l-l]) J:077k1

On each interval T;” we prescribe one point 7; at which the distance between
p and g is minimal, that is,

g(n;) —p(n;) < g(z) —p(z), VeeT;.

If there are more than one such a point, then we arbitrarily take one.
We define the linear functions

La(z): La(yia) =9(Win), £1(yia) = g'(yiat),
bopa(z) 0 (i) = 9(yi), b ya(w:) = 9'(yi—),
and for j such that T; = T},
1, if ; 1s interior point,

0,
g'(m+) ifn;=¢,
g'(ni—) ifn; =&

£;(n;) = p(n;), £;(n;)
£i(n;) = p(n;), f’(m)

We observe that it follows from the minimality property of n;, that ¢'(n;—) <
p'(n;) < g'(n;j+), whenever n; is interior to T; , and when 7; is one of the

fﬁr)(n ) = p(r)(m) r=
.7
7
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endpoints, then the right-hand inequality holds or the left-hand inequality
holds when 7; is the left-hand endpoint or the right-hand endpoint, respec-
tively. This together with the convexity of g, implies that the slope of £;_;
is smaller than the slope of £;., and that

lj(m) < g(iI:), Ve € J; .
We now set

Y(z) := max £(2),

7

and finally,
ri(z) = max {£(z), p(x) }.
(el). First, since £; is the tangent to p at a point of concavity, then
(o) > b(2) > ple), VaeTy, je{o... kb
This means that the inequality

l(ZO) < p(z:O)7
implies that zy € Tj‘" for some 7. Therefore if we let
i(2) = { max {4;_1(z), p(z), L1 ()}, z €T},
3 max{{;_1, £j+1(z) }, y TJ-"',

then evidently

mi(z) = max oi(z).

In order to complete the proof of (el), we first prove that for each j we
have ¢; € M?[J]. Then =; is convex as the maximum of convex functions
and the proof of (el) is complete.

To this end we note that since

£i1(&5) > p(&),  Liva(&ivr) > p(€i41),

each of the equations

Li1(z) —p(z) =0, £i1i(z) —p(z) =0, (2.2)



has at most one solution in Tj'" = [&;,€;+1]. Moreover, if these solutions exist
and are 8;_1, B;41 respectively, then we have

£ (Bi—1) <P'(Bi-1), P(Bir1) < U1(Bitr). (2.3)

If there is no solution to one or any of the equations (2.2), or if their solutions
satisfy the inequality
Bi-1 = Bit,

then ¢;(z) = max {{;_1(z), £;+1(z)} and it is convex since the slope of £;_;
is smaller than the slope of £;;.

If on the other hand, each of the equations (2.2) has a solution in Tj"',
and these solutions satisfy the inequality

Bi-1 < Bjis1,

then
Lia(z), =z € [yio1,Bil;
¢i(z) = ¢ p(z), z € [Bj-1,B5+1];
Liti(z), z € [Bj11,¥il,

and by virtue of (2.3), ¢; is convex.

(f1). Recall that

{(z) := max {;(z), {; €Il

7

where £_; and £, ;1 correspond to the endpoints of J; and the others to the
intervals T of concavity of the polynomial p. Hence

e S(ALL), Al<2+ ) 1L

7: Tj:Tj_

Since
mi(z) = max {{(z), p(z) },

we change £ into p at most once in each Tj'". Thus,

™ € S(A“ k),

16



where
A <A+ > 1<2+ > 1=k+3.

.7 T]:T]+ ] T]CJI_

Now for (g1) we have
p(z) < ¢i(z), =zcT; ;U Tj+ UT,,

¢i() < g(=), welJ,
and
mi(z) = max ¢;(z).
j
Hence
p(z) <mi(z) <g(z), zelJ .
Finally (k1) and (k1) follow by the construction.

It remains to evaluate A. We have at most 2k sign changes of g(z) —p(z),
hence at most 2k 4 1 intervals J;. Therefore

A<D A <Y (ki +3)=302k+1) + > k.

1 1

By definition k; is the number of sign changes of p” on the interval J;, so
that > k; does not exceed the total number of zeros of the second derivative
of p € I, that is, < k — 2. Hence,

A=A, <Tk+1.

This concludes the proof of Lemma 2b.
3. Approximation by smooth splines

Theorem 3. Let r = 1,2. For any k € N there exists a constant
B = B(k) such that for every f € M;[0,1], 0 < p < oo, and each N € N we

have

SN e(F)o < Sna(f)p -
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Theorem 3 readily follows from Theorems 1 and 2, and the following
lemma.

Lemma 3. Let r = 1,2. For each k € N, there exists a constant

B = B(k) with the following property. For every f € M}[0,1], 0 < p < oo,

and all N € N and ¢ > 0, if a (non-smooth) spline s € S(N,k) N M"[0, 1],
1s such that

IF — sllp < e (31)

then for every ¢ > 0, a (smooth) spline s. € g(BN,k) N MT[0,1] ezists,
satisfying
IF — sellp < ot .

Proof of Theorem 3. The proof follows from the above by letting
€0 \« SN(f)p, which we can do by Theorems 1 and 2, and ¢ — 0.

Proof of Lemma 3. We first prove the lemma for monotone approxi-
mation, which we later apply to the convex case.

The monotone case. We begin by replacing the spline s € S(N, k) N
M?'[0,1] with a continuous spline § € S(2N, k) N M*'[0,1] such that

I|If — 3|, < €0+ €/3. (3.2)

Let z; < -+ < xy_1 be the knots of s and set zxy := 1. If p = oo, let
d(e) > 0 be such that

f(z) - fly)l <e€/3,  [z—y| <4, (3:3)

and sufficiently small so that z; + § < z;11,72=1,..., N — 1. Otherwise, we
just assume the latter on 4.

If z; is any of the points of discontinuity of s, then we replace s on
[z;, z; + &] by the straight line connecting s(z;—) and s(z; + ). The new
spline § is evidently in S(2N, k) N M*[0,1], and it differs from s only on the
intervals [z;, z; + §]. Now, the boundedness of s implies that for 0 < p < oo,
we may choose § so small that

s — 3], < ¢/3. (3.4)
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This together with (3.1), implies (3.2). If p = oo, then it follows by (3.1) and
(3.3) that for z; < z < z; + 4,

|s(z:i—) — f(2)| < eo+¢/3

and
|s(z; +8) — f(z)| < €0 +€¢/3.
Hence (3.2) follows.

Thus, replacing €y by €, + €/3, which we rename €y, we may assume that
s satisfies (3.1) and is continuous. By adding ez /3 to s we obtain 5 such that
|s(z) — 3(z)| < ¢/3 and &' > n, where n := ¢/3. Therefore, we may assume
that s’ > 7 for some fixed small > 0.

We now smooth s’ at each of the knots z;,7 = 1,..., N — 1, retaining the
nonnegativity and keeping close to it in the L; norm.

Let z; be any of the knots of s, and we wish to smooth it there. Then
at x; there meet two polynomial pieces of s, the polynomial p; on the left
and p, on the right. Recall that p} > 1 in some left neighborhood of z; and
ph > 7 in some right neighborhood of z;. By [4, Lemma 7.12] it follows that
for the above 7, there exists a §o > 0, such that for each 0 < § < 4y, a spline
st € S(k+ 1,k — 1) exists, with knots at 2; = 41 <y < -+ < yp = @; + 4,
such that ' (2) <

/ _ JPi\z), T = Ty,
=i, esaes
and
0 < si(2) < max{p(z:), pp(@: + 8)} + 1, =i <z <zt

We denote the smooth spline obtained in this way s, and observe that in
view of the boundedness of s, for sufficiently small § < §, we have

||s" — sl]|1 < €/3.

Hence by integration we get a spline s, € S(k(N — 1) +1,k) N M'[0,1], such
that
[ = selloo < €/3,

hence for all 0 < p < oo
|s — sel|lp < €/3. (3.5)

We conclude the proof of the monotone case by combining this with (3.1).

19



The convex case. We observe that the convex spline s is continuous at
the knots, but that s’ which is monotone, may have jumps there. We first
smooth the monotone s’ by the previous scheme so that for the given ¢, we
obtain s! € 5(BN, k — 1), such that together, (3.4) and (3.5) in the L;-norm
for s’ become

Is' = sl < e

Note that ¢ of (3.1) is not involved in any way since we do not use the
sup-norm. Now we integrate and obtain a convex s € S(BN, k), such that
for all 0 < p < o0,

|s — sel[p < €.

Now, by virtue of (3.1)

1F = selle <11 = sl + s = sells
< € + €,

and the proof is concluded.
4. A negative result

In this section we show that the upper bounds for the constants A" :=
A(k),»=1,2, in Theorems 1 and 2, respectively, namely,

AN <ok AP < Tk 41,

are exact up to the order with respect to k, the degree of the splines. Specif-
ically, we obtain the following lower estimate

AW > BT

], kE>r+1.

Note that the result is valid for r-monotone approximation, » > 1 so we
state it accordingly. This means that for a given » € N, we can guarantee
the same error bounds for shape-preserving approximation by spline with
free N; knots, as for the best approximation by spline with free N knots only
if

N; > ck N,
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for some ¢ > 0.

The proof of the following theorem is a slight modification of the ar-
guments by Shvedov [6] for the case of shape preserving approximation by

polynomials.

Theorem 4. For any k,» € N, k > r + 1, a constant a = a(k,r) ezists,
such that for any N € N and 0 < p < oo, and each C > 0, there exists

F € M"[0,1], for which

S (F)p > C Sy a(F)p.

Proof. Given k,r, N as above, we set
m:=[(k—7)/2], and N;:= Nm.

Let ¢; € IIy,, be the polynomial

m

qi(z) := H(af: —i/m)?, =z ¢c[0,1],

=1

and
gv(2) == qu(Nz —j), =€ (j/N,(G+1)/N], 7=0,...
Finally for 0 < € < W to be prescribed, let
q(@) := q(z; N, €) := qn(z) — ¢,
and

f(z) = f(o; N,0) = max{g(z), 0}
The functions g(z) and f(z) have the following properties.
g € S(N,2m),
fl@) 20, =€l0,1],
=—e<0, v=1,...,Ny,
_f(m)|§€7 mE[O,l],

q(v/Ny
lq(z

~—  ~—
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and
mes {2+ q(2) # f(2)} < x(m)Ve (45)
Only (4.5) needs explanation. First observe that
mes{z : ¢g(z) # f(z)} = mes{z: q(z) <0}
=mes{z : gqn(z) < €}
= Nmes{z € [0,1/N]: gn(z) < €}
=mes{z : ¢:(z) < €}.
For € [3-,1], there is exactly one v such that |z — | < ;= For all j # v
we have |z — #| > ;. Thus qi(z) < € implies

1 \™1! v
()<
m m

Hence )
|z — 1| < (2m)™ e < —,
m 2m

by the choice of €. Since

1\™ 1
qi(z) > (—) >e, 0<z<—,
2m 2m

we conclude that
1
mes{z : q(z) < €} < 5(2m)m\/g,

o (4.5) is proved.
Next, define the functions @ and F as the rth integrals of ¢ and f re-

spectively, i.e.,
tr ta
D= [ [ e
tr
/ / / )ty .. dt, .

It immediately follows by (4.1) through (4.5) that

and

Q€ S(N, k), (4.6)
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Fe M[o,1], (4.7)
QW(w/N) =—-€e<0, v=1,..., Ny, (4.8)

and

Q(z) — F(2)| < cr(m)eve. (4.9)

Finally, we show that for any k, r, k >r+ 1, N,0 <p<ooand C >0
we can prescribe € so that for any R € S(Ny, k) N M" the inequality

|1F = R}, > C|F =@l

is valid. This proves Theorem 4 with

a(k,r) > m = lk;’"]

To this end let
R € S(Ni, k)N M"[0,1].

Then, since the total number of its polynomial pieces is < Ny, there exists
an interval Iy, such that

R |IOE g, |lo]:=mesly=1/Ny,
and thus for some p € {1, ..., N; — 1}

z, = p/N; € I.

We are now going to apply the relation

R(T)(m”) >0,

which is due to the assumption that R € M"[0, 1]; Markov’s inequality for
p € IIx(I), namely,

1P ey < c2(por, K, 11) Il 2, 0);

and (4.6) through (4.9) in order to obtain
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IF = Qllzyon < IF = Qlzaron
< ey
= \/E |Q(T)(m”)|
< e veElQU(z,) — RN (=)
< av/e|QM — RUL )
< erer/€||Q — RHLP(IO)
< acay/el|lQ — Rl|L,0.
< acaes(p) vVe(llQ — Fllzyo1 + |1F — Rllz,01)-

Therefore we conclude that

| F = Qi1 < ca Ve (@ — Fllpypo,11 + [|1F — Rl|L,00,1] )5

where
cs :=ciepc3 = c(k,p,r, N).
Hence,
I1F = Rl|L,00,11) = ¢5 [|F = @l L0,
with

1
= s

Thus we can readily prescribe € small enough so that

Cy ]_,

C5>C.

This completes the proof.
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