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0. IntroductionRecent years have seen a growing interest in questions of shape preservingapproximation. In particular there has been extensive activity in questionsof estimating the degree of approximation of monotone and convex functionsf 2 Lp[a; b] by means of polynomials pn 2 �n, the space of algebraic poly-nomials of degree not exceeding n, and splines of degree k and n equidistantknots, which preserve the monotonicity and the convexity, respectively. Hereand in the sequel, we mean by L1[a; b], the space C[a; b]. Also, in the sequelwe will use for [a; b], the generic interval [0; 1]. These approximation processesare linear in the sense that the approximants for each �xed n are taken froma �xed linear set of elements. The degree of such constrained approximationis in general worse than the degree of nonconstrained approximation of thesame functions. This phenomenon is well illustrated in that while for anyf 2 C1[0; 1] we have En(f)1 � CnEn�1(f 0)1 ;where En(f)1 denotes the degree of approximation by polynomials of degreenot exceeding n, a recent result of Shevchuk [5] shows that there exists anabsolute constant C > 0 such that for any n � 1, a nondecreasing f = fn 2C1[0; 1] exists such thatinfpn2�npn% kf � pnk1 � CEn�1(f 0)1 :Nevertheless the degree of constrained approximation can be estimated byJackson-type estimates, namely, involving the moduli of smoothness of thefunction, but unlike the nonconstrained approximation by polynomials andsuch splines, the estimates of monotone and convex approximation involveonly moduli of smoothness of very restricted orders, !2 and !3, respectively(for details see [2] and [1]).It is well-known that for nonconstrained approximation, nonlinear meth-ods usually achieve a given degree of approximation for a much wider classof functions than linear methods do (see discussion in the book by Petrushevand Popov [4] and especially Chapter 7 therein). Naturally, one would like toknow whether the same phenomenon occurs for constrained approximation,and indeed we prove that this is so for the approximation by splines with2



free knots. Maybe this is to be expected since splines with free knots seemto be most amenable to shape preservation requirements. It would be in-teresting to see whether constrained rational approximation can provide thesame degree of approximation as the nonconstrained does. This seems to bea very di�cult question and the only result we are aware of in this directionis a (non-optimal) estimate of convex rational approximation to a convexcontinuously di�erentiable function (see [3]). The striking conclusion of thiswork is that the constrained approximation by splines with free knots is ina sense as good as the nonconstrained approximation, unlike the situationdescribed above for the approximation by polynomials and splines with �xedknots. (We refer the reader to [4] where the various classes of functions witha given degree of approximation by splines with free knots are characterizedas Besov spaces.) We will show that if we allow the number of knots to besome constant multiple of the original one, then we preserve monotonicityand convexity while guaranteeing the same degree of approximation as in thenonconstrained case. We �rst prove these assertions in x1 and x2 for splineswith free knots without any continuity assumptions at the knots. Then inx3 we show that the same holds for such splines with maximal smoothnessat the knots. At the same time we show in x4 that if one wishes to preservethe monotonicity or convexity with some smaller constant multiple of theoriginal number of knots, even without any continuity assumptions at theknots, then one cannot obtain the same degree of approximation.We denote by S(N; k), the collection of splines of degree k with at mostN � 1 knots, i.e., with at most N polynomial pieces, where we do notassume any smoothness at the knots. We further denote by ~S(N; k), thesub-collection of those splines with maximum continuity, i.e., which are inCk�1[0; 1]. Now we let M r = M r[0; 1] be the space of all functions f de-�ned on [0; 1] for which the rth forward di�erence is nonnegative in [0; 1]. Inparticular M1 is the space of monotone functions in [0; 1], M2 is the spaceof convex functions in [0; 1] and in general we call f 2 M r an r-monotonefunction. Finally, we set M rp = M rp [0; 1] := Lp[0; 1] \M r[0; 1], 0 < p � 1.(Recall that by L1[0; 1] we mean the space C[0; 1].)For f 2M rp , we denote the degree of approximation by splines in S(N; k),by SN;k(f)p, and the degree of approximation by r-monotone splines inS(N; k), by S(r)N;k(f)p. Similarly, we denote by ~S(r)N;k(f)p, the degree of ap-proximation by r-monotone splines in ~S(N; k).3



1. Monotone spline approximationOur result on monotone approximation is the following.Theorem 1. For any k 2 N there exists a constant A = A(k) such thatfor every f 2M1p [0; 1], 0 < p � 1, and each N 2 N we haveS(1)AN;k(f)p � SN;k(f)p :Theorem 1 is an immediate consequence of the following.Proposition 1. For any k 2 N there exists a constant A = A(k) suchthat for every f 2 M1p , 0 < p � 1, N 2 N, and s 2 S(N; k), there exists aspline � such that � 2 S(AN; k) \M1[0; 1];and jf(x)� �(x)j � jf(x)� s(x)j; 8x 2 [0; 1]:The proof of Proposition 1 follows fromLemma 1. For any k 2 N there exists a constant A = A(k) such thatfor every f 2M1, and p 2 �k, there exists a spline � such that� 2 S(A; k) \M1[0; 1];jf(x)� �(x)j � jf(x)� p(x)j; 8x 2 [0; 1];and f(0) � �(0); �(1) � f(1):Proof of Proposition 1. We apply Lemma 1 to each polynomial pieceof the spline s 2 S(N; k).Finally, in order to prove Lemma 1 we divide it into two parts, Lemmas1a and 1b, from which Lemma 1 readily follows.4



Lemma 1a. Let f 2 M1[0; 1] and p 2 �k be given. Then there exists g,such that g 2M1[0; 1]; (A)the di�erence g(x)� p(x) changes its sign at most k times in [0; 1]; (B)g(x) is equal to either f(x) or p(x) 8x 2 [0; 1] so thatjg(x)� p(x)j � jf(x)� p(x)j; 8x 2 [0; 1]; (C)and f(0) = g(0); g(1) = f(1): (D)Lemma 1b. Let g 2 M1 and p 2 �k be such that the di�erence g(x) �p(x) changes its sign at most k times. Then there exists a spline � such that� 2M1[0; 1]; (a)� 2 S(A; k); A = A(k); (b)jg(x)� �(x)j � jg(x)� p(x)j; 8x 2 [0; 1]; (c)and g(0) � �(0); �(1) � g(1): (d)Proof of Lemma 1a. Divide the interval [0; 1] into l subintervals ofmonotonicity of the given polynomial p, i.e.,[0; 1] = [li=lIi; Ii =: [xi; xi+1];where x1 = 0, xl+1 = 1, and the other xi are exactly the points at whichthe derivative p0 changes its sign. We denote Ii by I+i and I�i if on Ii, thepolynomial p is increasing and decreasing, respectively.First, on I�i , the graph of the decreasing polynomial p intersects the graphof the nondecreasing function f at most once, i.e., the di�erence f(x)� p(x)changes sign at most once. We setg(x) = f(x); x 2 I�i :5



On I+i , the graphs of the two non-decreasing functions p and f mayintersect at any number of points, even an in�nite numbers of points ft�g. Ifthe number of intersections is � 1, then we still set g(x) = f(x). Otherwise,we put i := inf� t�; �i := sup� t�;and set g(x) = ( p(x); x 2 (i; �i);f(x); otherwise:By construction, the di�erence g(x) � p(x) changes its sign on I+i at mostonce.We are ready to verify the properties of g.(A). The function g is equal to f 2 M1 on [�i; i+1], and to a non-decreasing part of p on (i; �i). At the points of i we haveg(i�) = f(i�) � f(i+) = p(i+) = g(i+);and similarly at the points �i. Hence g 2M1.(B). The di�erence g(x)� p(x) has at most one change of sign on eachof the intervals Ii of monotonicity of p 2 �k, and the total number l of suchintervals does not exceed k.(C). The inequality holds since g(x) is equal either to f(x) or to p(x).(D). The function g coincides with f at the endpoints of all intervals Ii,in particular 0 and 1.This completes the proof of Lemma 1a.Proof of Lemma 1b. Let fyigl1 be the points where the di�erenceg(x)� p(x) changes its sign. We sety0 = 0; yl+1 = 1; Ji = [yi�1; yi];and denote Ji by J+i and J�i , if the sign of p(x)� g(x) on Ji is non-negativeand non-positive, respectively.We obtain the spline � on [0; 1] by constructing its parts �i on each ofthe intervals Ji with the following properties�i 2M1[Ji]; (a1)6



�i 2 S(Ai; k); (b1)where Ai = Ai(k),jg(x)� �i(x)j � jg(x)� p(x)j; 8x 2 Ji; (c1)and g(yi�1) � �i(yi�1); �i(yi) � g(yi): (d1)Then, the monotonicity of �, i.e., (a), follows by (a1) and (d1).Further, (b) follows by (b1) withA =XAi:Now (c) follows trivially from (c1), and (d) is trivially implied by (d1)since 0 = y0 and 1 = yl+1.We �rst de�ne the spline �i on J+i . Recall that x 2 J+i implies p(x) �g(x).Denote by f�jgkij=1 the points of local minima of the polynomial p insideJ+i , in increasing order, and set �0 = yi�1, �ki+1 = yi.Then for x = yi = �ki+1 let�i(yi) := g(yi) � p(yi):We continue by induction de�ning for x 2 [�j�1; �j),�i(x) := min (p(x); �i(�j)); j = ki + 1; : : : ; 1:Then for J+i , we readily have,(a1). The monotonicity follows from the fact that �i is equal either to anon-decreasing part of p or to a constant which are so de�ned that mono-tonicity is preserved.(b1). Each subinterval [�j�1; �j] of Ji, consists of two intervals (one ofwhich may be empty) with �i being p 2 �k in the left one and a constant inthe right one. The number of these subintervals is equal to ki + 1 � k + 1.Hence, Ai � 2(ki + 1):7



(c1). Our construction yields,g(x) � �i(x) � p(x); 8x 2 J+i :Hence the required inequality.(d1). We have g(yi�1) � �i(yi�1); �i(yi) = g(yi):We proceed in a similar way to de�ne the spline �i on J�i , where we recallthat x 2 J�i implies p(x) � g(x). This time �i is de�ned moving from theleft to the right, and taking maxima instead of minima. Namely, we denoteby f�jgkij=1 the points of local maxima of the polynomial p which are insideJ�i and we set �0 = yj�1, �ki+1 = yi.Then for x = �0 = yi�1 we let�i(x) := g(yi�1) � p(yi�1);and for x 2 (�j; �j+1] we let�i(x) := max(�i(�j�1); p(x)); j = 1; : : : ; ki:This completes the proof of Lemma 1b but we would like to get an estimateof A(k). To this end we see thatA = k+1X1 Ai = 2 k+1X1 (ki + 1) = 2(k + 1) + 2X ki:But by de�nition ki is the number of either local minima or local maximaof the polynomial p 2 �k in the interval Ji. Thus P ki does not exceed thetotal number of the local extrema of p 2 �k, which is � k � 1. Hence,A = Ak � 4k:In fact closer analysis shows that actually A � 2k.Remark. The de�nition of �i on J+i is equivalent to the following:�i(x) := sup q(x);8



where supremum is taken over all functions q such thatq 2M1[J+i ]; q(t) � p(t); 8t 2 J+i ; q(yi) = g(yi):Similarly for J�i (of course taking in�mum on q � p, instead of supremum).We have chosen to give the more constructive proof for the monotone caseand we use the other approach later for the convex case where it signi�cantlysimpli�es part of the proof of Lemma 2b.2. Convex spline approximationIn this section we obtain estimates for convex approximation. We proveTheorem 2. For any k 2 N there exists a constant A = A(k) such thatfor every f 2M2p [0; 1], 0 < p � 1, and any N 2 N we haveS(2)AN;k(f)p � SN;k(f)p :Theorem 2 is an immediate consequence of the following.Proposition 2. For any k 2 N there exists a constant A = A(k) suchthat for every f 2 M2p , 0 < p � 1, N 2 N, and s 2 S(N; k), there exists aspline � such that � 2 S(AN; k) \M2[0; 1];jf(x)� �(x)j � jf(x)� s(x)j; 8x 2 [0; 1]:The proof of Proposition 2 follows fromLemma 2. For any k 2 N there exists a constant A = A(k) such thatfor every f 2M2, and p 2 �k, there exists a spline � such that� 2 S(A; k) \M2[0; 1];jf(x)� �(x)j � jf(x)� p(x)j; 8x 2 [0; 1];f(0) = �(0); �(1) = f(1);9



and f 0(0+) � �0(0+); �0(1�) � f 0(1�):Proof of Proposition 2. We apply Lemma 2 to each polynomial partof the spline s 2 S(N; k).Finally as before, in order to prove Lemma 2 we divide it into two parts,Lemmas 2a and 2b from which Lemma 2 readily follows.Lemma 2a. Let f 2 M2[0; 1] and p 2 �k be given. Then there exists g,such that g 2M2; (E)the di�erence g(x)� p(x) changes its sign at most 2k times in [0; 1]; (F )g(x) is equal to either f(x) or p(x) 8x 2 [0; 1] so thatjg(x)� p(x)j � jf(x)� p(x)j; 8x 2 [0; 1]; (G)f(0) = g(0); g(1) = f(1); (H)and f 0(0+) � g0(0+); g0(1�) � f 0(1�): (K)Lemma 2b. Let g 2 M2[0; 1] and p 2 �k be such that the di�erenceg(x) � p(x) changes its sign at most 2k times. Then there exists a spline �such that � 2M2[0; 1]; (e)� 2 S(A; k); A = A(k); (f)jg(x)� �(x)j � jg(x)� p(x)j; 8x 2 [0; 1]; (g)g(0) = �(0); �(1) = g(1); (h)and g0(0+) � �0(0+); �0(1�) � g0(1�): (k)10



Proof of Lemma 2a. Divide the interval [0; 1] into l subintervals ofconvexity and concavity of the given polynomial p, i.e.,[0; 1] = [li=lIi; Ii = [xi; xi+1];where x1 = 0, xl+1 = 1, and the other xi are exactly the points at whichthe second derivative p00 changes sign. Denote Ii by I+i and I�i , if on Ii, p isconvex and concave, respectively.On I�i , the graph of the concave polynomial p intersects the graph of theconvex function f at most twice, i.e., the di�erence f(x)� p(x) changes signat most twice. So we set g(x) = f(x); x 2 I�i :On the other hand on I+i , the graphs of the two convex functions p and fmay intersect at any number of points, even at an in�nite number of pointsft�g. If the number of intersections is � 2, then we still set g(x) = f(x).Otherwise, we put i := inf f t� : f 0(t�+) � p0(t�+) g;�i := sup f t� : p0(t��) � f 0(t��) g;and we set g(x) = ( p(x); x 2 (i; �i);f(x); otherwise:Note that at two consecutive t�'s the above inequalities are reversed. There-fore there is at most one t� < i for which p0(t�+) � f 0(t�+ax), and there isat most one t� > �i for which f 0(t��) � p0(t��). Thus there is at most oneintersection between f and p on either side of (i; �i). Hence, the di�erenceg(x)� p(x) changes sign at most twice in I+i .We now verify that g has the required properties.(E). The function g is evidently continuous. It is equal to f 2 M2 on[�i; i+1], and to a convex part of p on (i; �i). At the points i, we haveg0(i�) � f 0(i�) � f 0(i+) � p0(i+) = g0(i+); (2:1)i.e., g0(i�) � g0(i+):11



Similarly for the points �i. Hence g 2M2.(F ). The di�erence g(x) � p(x) has at most two changes of sign in eachof the intervals Ii, of convexity and concavity of p 2 �k, and the number ofsuch intervals is less than k.(G). The inequality holds since g(x) is equal either to f(x) or to p(x).(H). The function g coincides with f at the endpoints of each of theintervals Ii, in particular at 0 and 1.(K). If 0 < 1, then g coincides with f in the neighborhood of 0, hencethe �rst derivatives coincide too. The same with 1, if �l+1 < 1. Otherwise,the inequalities follow by (2.1) and its counterpart for �i.This completes the proof of Lemma 2a.Proof of Lemma 2b. Let fyigl1 be the points where the di�erenceg(x)� p(x) changes its sign. We sety0 = 0; yl+1 = 1; Ji = [yi�1; yi];and denote Ji by J+i and J�i , if on Ji, the sign of p(x)� g(x) is non-negativeand non-positive, respectively.We obtain the spline � on [0; 1] by constructing its parts �i on each ofthe intervals Ji with the following properties�i 2M2[Ji]; (e1)�i 2 S(Ai; k); (f1)where Ai = Ai(k),jg(x)� �i(x)j � jg(x)� p(x)j; 8x 2 Ji; (g1)g(yi�1) = �i(yi�1); �i(yi) = g(yi); (h1)and g0(yi�1+) � �0i(yi�1+); �0i(yi�) � g0(yi�): (k1)Then, the convexity of �, that is (e) follows from (e1), (h1) and (k1).Further, (f) follows by (f1) withA =XAi;12



Now, (g) trivially follows from (g1) and �nally (h) and (k) follow from(h1) and (k1), respectively since 0 = y0 and 1 = yl+1.On J+i we have g(x) � p(x), and we set�i(x) := sup q(x)where supremum is taken over all functions q such thatq 2M2[J+i ]; q(t) � p(t); 8t 2 J+i ; q(u) = g(u); u = yi�1; yi:Then the convexity of �i(x) readily follows as the maximum of convexfunctions is convex, hence (e1).As for the other requirements.(f1). We have to show that �i is a piecewise polynomial, and evaluateAi. Denote by f�jgkij=1 the points where the second derivative p00 changes itssign, and set �0 = yi�1, �ki+1 = yi. Then we haveJ+i = [kij=0 Tj; where Tj := [�j; �j+1];and on each of the intervals Tj the polynomial p is alternatingly convexand concave. Denote Tj by T+j and T�j if, respectively, it is an interval ofconvexity or concavity of p.By de�nition, �i(x) � p(x), so that J+i = G [ E, whereG := fx 2 J+i : �i(x) < p(x) g; and E := fx 2 J+i : �i(x) = p(x) g:Obviously G is open, hence it is a union of open intervals. On each of theseintervals the convex function �i(x) is linear, for otherwise we can replace partof it by a linear function in a way that preserves both the convexity and theinequality �i(x) < p(x). A contradiction to the de�nition of �i.It is also evident that the intervals T�j are contained in G. Hence the setE consists of some closed subintervals where p is convex. We claim that therecan be at most one such subinterval in T+j . For if we assume the contraryand we take two neighboring disjoint subintervals in T+j , then between them�i(x) is a linear function which coincides with p at the endpoints. But p isconvex, thus �i(x) � p(x), a contradiction.13



Thus, for x 2 J+i the function �i(x) de�ned above coincides with p(x) onat most one subinterval of each T+j , and is equal to a linear function betweentwo such neighboring subintervals, in particular on T�j . Hence�i 2 S(Ai; k); where Ai � Xj: Tj2J+i 1 = ki + 1;where ki is the number of sign changes of p00 on J+i .Now, (g1) and (k1) follow since by constructiong(x) � �i(x) � p(x); 8x 2 J+i ;and (h1) holds for all functions q involved in the de�nition of �i, hence holdsfor �i. The de�nition of �i and the proofs are more complicated on J�i , wherep(x) � g(x).Again divide the interval J�i into subintervals T+j and T�j of convexityand concavity of the polynomial p, respectively, and setTj = [�j; �j+1]; j = 0; : : : ; ki:On each interval T�j we prescribe one point �j at which the distance betweenp and g is minimal, that is,g(�j)� p(�j) � g(x)� p(x); 8x 2 T�j :If there are more than one such a point, then we arbitrarily take one.We de�ne the linear functions`�1(x) : `�1(yi�1) = g(yi�1); `0�1(yi�1) = g0(yi�1+);`ki+1(x) : `ki+1(yi) = g(yi); `0ki+1(yi) = g0(yi�);and for j such that Tj = T�j ,`j(x) : 8><>: `(r)j (�j) = p(r)(�j); r = 0; 1; if �j is interior point;`j(�j) = p(�j); `0j(�j) = g0(�j+) if �j = �j ;`j(�j) = p(�j); `0j(�j) = g0(�j�) if �j = �j+1:We observe that it follows from the minimality property of �j, that g0(�j�) �p0(�j) � g0(�j+), whenever �j is interior to T�j , and when �j is one of the14



endpoints, then the right-hand inequality holds or the left-hand inequalityholds when �j is the left-hand endpoint or the right-hand endpoint, respec-tively. This together with the convexity of g, implies that the slope of `j�1is smaller than the slope of `j+1, and that`j(x) � g(x); 8x 2 J�i :We now set `(x) := maxj `j(x);and �nally, �i(x) := max f `(x); p(x) g:(e1). First, since `j is the tangent to p at a point of concavity, then`(x) � `j(x) � p(x); 8x 2 T�j ; j 2 f0; : : : ; kig:This means that the inequality `(z0) < p(z0);implies that z0 2 T+j for some j. Therefore if we let�j(x) = ( max f `j�1(x); p(x); `j+1(x) g; x 2 T+j ;max f `j�1; `j+1(x) g; x =2 T+j ;then evidently �i(x) = maxj �j(x):In order to complete the proof of (e1), we �rst prove that for each j wehave �j 2 M2[J�i ]. Then �i is convex as the maximum of convex functionsand the proof of (e1) is complete.To this end we note that since`j�1(�j) � p(�j); `j+1(�j+1) � p(�j+1);each of the equations`j�1(x)� p(x) = 0; `j+1(x)� p(x) = 0; (2:2)15



has at most one solution in T+j = [�j; �j+1]. Moreover, if these solutions existand are �j�1, �j+1 respectively, then we have`0j�1(�j�1) � p0(�j�1); p0(�j+1) � l0j+1(�j+1): (2:3)If there is no solution to one or any of the equations (2.2), or if their solutionssatisfy the inequality �j�1 � �j+1;then �j(x) = max f `j�1(x); `j+1(x)g and it is convex since the slope of `j�1is smaller than the slope of `j+1.If on the other hand, each of the equations (2.2) has a solution in T+j ,and these solutions satisfy the inequality�j�1 < �j+1;then �j(x) = 8>><>>: `j�1(x); x 2 [yi�1; �j�1];p(x); x 2 [�j�1; �j+1];`j+1(x); x 2 [�j+1; yi];and by virtue of (2.3), �j is convex.(f1). Recall that `(x) := maxj `j(x); `j 2 �1;where `�1 and `ki+1 correspond to the endpoints of J�i and the others to theintervals T�j of concavity of the polynomial p. Hence` 2 S(A0i; 1); A0i � 2 + Xj: Tj=T�j 1:Since �i(x) = max f `(x); p(x) g;we change ` into p at most once in each T+j . Thus,�i 2 S(Ai; k);16



where Ai � A0i + Xj: Tj=T+j 1 � 2 + Xj: Tj�J�i 1 = ki + 3:Now for (g1) we havep(x) � �j(x); x 2 T�j�1 [ T+j [ T�j+1;�j(x) � g(x); x 2 J�i ;and �i(x) = maxj �j(x):Hence p(x) � �i(x) � g(x); x 2 J�i :Finally (h1) and (k1) follow by the construction.It remains to evaluate A. We have at most 2k sign changes of g(x)�p(x),hence at most 2k + 1 intervals Ji. ThereforeA � 2k+1X1 Ai � 2k+1X1 (ki + 3) = 3(2k + 1) +X ki:By de�nition ki is the number of sign changes of p00 on the interval Ji, sothat P ki does not exceed the total number of zeros of the second derivativeof p 2 �k, that is, � k � 2. Hence,A = Ak � 7k + 1:This concludes the proof of Lemma 2b.3. Approximation by smooth splinesTheorem 3. Let r = 1; 2. For any k 2 N there exists a constantB = B(k) such that for every f 2M rp [0; 1], 0 < p � 1, and each N 2 N wehave ~S(r)BN;k(f)p � SN;k(f)p :17



Theorem 3 readily follows from Theorems 1 and 2, and the followinglemma.Lemma 3. Let r = 1; 2. For each k 2 N, there exists a constantB = B(k) with the following property. For every f 2 M rp [0; 1], 0 < p � 1,and all N 2 N and �0 > 0, if a (non-smooth) spline s 2 S(N; k) \M r[0; 1],is such that kf � skp < �0; (3:1)then for every � > 0, a (smooth) spline s� 2 ~S(BN; k) \ M r[0; 1] exists,satisfying kf � s�kp < �0 + �:Proof of Theorem 3. The proof follows from the above by letting�0 & SN(f)p, which we can do by Theorems 1 and 2, and �! 0.Proof of Lemma 3. We �rst prove the lemma for monotone approxi-mation, which we later apply to the convex case.The monotone case. We begin by replacing the spline s 2 S(N; k) \M1[0; 1] with a continuous spline ~s 2 S(2N; k) \M1[0; 1] such thatkf � ~skp < �0 + �=3: (3:2)Let x1 < � � � < xN�1 be the knots of s and set xN := 1. If p = 1, let�(�) > 0 be such thatjf(x)� f(y)j < �=3; jx� yj � �; (3:3)and su�ciently small so that xi + � < xi+1, i = 1; : : : ; N � 1. Otherwise, wejust assume the latter on �.If xi is any of the points of discontinuity of s, then we replace s on[xi; xi + �] by the straight line connecting s(xi�) and s(xi + �). The newspline ~s is evidently in S(2N; k) \M1[0; 1], and it di�ers from s only on theintervals [xi; xi + �]. Now, the boundedness of s implies that for 0 < p <1,we may choose � so small thatks� ~skp < �=3: (3:4)18



This together with (3.1), implies (3.2). If p =1, then it follows by (3.1) and(3.3) that for xi � x � xi + �,js(xi�)� f(x)j < �0 + �=3and js(xi + �)� f(x)j < �0 + �=3:Hence (3.2) follows.Thus, replacing �0 by �0 + �=3, which we rename �0, we may assume thats satis�es (3.1) and is continuous. By adding �x=3 to s we obtain �s such thatjs(x) � �s(x)j � �=3 and �s0 � �, where � := �=3. Therefore, we may assumethat s0 � � for some �xed small � > 0.We now smooth s0 at each of the knots xi, i = 1; : : : ; N � 1, retaining thenonnegativity and keeping close to it in the L1 norm.Let xi be any of the knots of s, and we wish to smooth it there. Thenat xi there meet two polynomial pieces of s, the polynomial p1 on the leftand p2 on the right. Recall that p01 � � in some left neighborhood of xi andp02 � � in some right neighborhood of xi. By [4, Lemma 7.12] it follows thatfor the above �, there exists a �0 > 0, such that for each 0 < � � �0, a splines0i 2 ~S(k + 1; k � 1) exists, with knots at xi = y1 < y2 < � � � < yk = xi + �,such that s0i(x) = � p01(x); x � xi;p02(x); x � xi + �;and 0 � s0i(x) � maxfp01(xi); p02(xi + �)g+ �; xi < x < xi + �:We denote the smooth spline obtained in this way s0� and observe that inview of the boundedness of s0, for su�ciently small � � �0, we haveks0 � s0�k1 < �=3:Hence by integration we get a spline s� 2 ~S(k(N � 1) + 1; k)\M1[0; 1], suchthat ks� s�k1 < �=3;hence for all 0 < p � 1 ks� s�kp < �=3: (3:5)We conclude the proof of the monotone case by combining this with (3.1).19



The convex case. We observe that the convex spline s is continuous atthe knots, but that s0 which is monotone, may have jumps there. We �rstsmooth the monotone s0 by the previous scheme so that for the given �, weobtain s0� 2 ~S(BN; k� 1), such that together, (3.4) and (3.5) in the L1-normfor s0 become ks0 � s0�k1 < �:Note that �0 of (3.1) is not involved in any way since we do not use thesup-norm. Now we integrate and obtain a convex s� 2 ~S(BN; k), such thatfor all 0 < p �1, ks� s�kp < �:Now, by virtue of (3.1)kf � s�kp � kf � skp + ks� s�kp< �0 + �;and the proof is concluded.4. A negative resultIn this section we show that the upper bounds for the constants A(r) :=A(k), r = 1; 2, in Theorems 1 and 2, respectively, namely,A(1) � 2k; A(2) � 7k + 1;are exact up to the order with respect to k, the degree of the splines. Specif-ically, we obtain the following lower estimateA(r) � "k � r2 # ; k > r + 1:Note that the result is valid for r-monotone approximation, r � 1 so westate it accordingly. This means that for a given r 2 N, we can guaranteethe same error bounds for shape-preserving approximation by spline withfree N1 knots, as for the best approximation by spline with free N knots onlyif N1 � c k N;20



for some c > 0.The proof of the following theorem is a slight modi�cation of the ar-guments by Shvedov [6] for the case of shape preserving approximation bypolynomials.Theorem 4. For any k; r 2 N, k > r + 1, a constant a = a(k; r) exists,such that for any N 2 N and 0 < p � 1, and each C > 0, there existsF 2M r[0; 1], for which S(r)aN;k(F )p > C SN;k(F )p:Proof. Given k; r;N as above, we setm := [(k � r)=2]; and N1 := Nm:Let q1 2 �2m be the polynomialq1(x) := mYi=1(x� i=m)2; x 2 [0; 1];and qN(x) := q1(Nx� j); x 2 (j=N; (j + 1)=N ]; j = 0; : : : ; N � 1:Finally for 0 < � < 1(2m)2m to be prescribed, letq(x) := q(x; N; �) := qN(x)� �;and f(x) := f(x; N; �) := max f q(x); 0 g:The functions q(x) and f(x) have the following properties.q 2 S(N; 2m); (4:1)f(x) � 0; x 2 [0; 1]; (4:2)q(�=N1) = �� < 0; � = 1; : : : ; N1; (4:3)jq(x)� f(x)j � �; x 2 [0; 1]; (4:4)21



and mes fx : q(x) 6= f(x)g � c1(m)p�: (4:5)Only (4.5) needs explanation. First observe thatmesfx : q(x) 6= f(x)g = mesfx : q(x) < 0g= mesfx : qN(x) < �g= Nmesfx 2 [0; 1=N ] : qN(x) < �g= mesfx : q1(x) < �g:For x 2 [ 12m ; 1], there is exactly one � such that jx� �m j � 12m . For all j 6= �we have jx� jm j > 12m . Thus q1(x) < � implies� 12m�m�1 jx� �mj < p�:Hence jx� �m j < (2m)m�1p� < 12m;by the choice of �. Sinceq1(x) > � 12m�2m > �; 0 � x < 12m;we conclude that mesfx : q1(x) < �g � 12(2m)mp�;so (4.5) is proved.Next, de�ne the functions Q and F as the rth integrals of q and f re-spectively, i.e., Q(x) = Z x0 Z tr0 : : : Z t20 q(t1) dt1 : : : dtr ;and F (x) = Z x0 Z tr0 : : : Z t20 f(t1) dt1 : : : dtr :It immediately follows by (4.1) through (4.5) thatQ 2 S(N; k); (4:6)22



F 2M r[0; 1]; (4:7)Q(r)(�=N1) = �� < 0; � = 1; : : : ; N1; (4:8)and jQ(x)� F (x)j � c1(m)�p�: (4:9)Finally, we show that for any k, r, k > r + 1, N , 0 < p � 1 and C > 0we can prescribe � so that for any R 2 S(N1; k) \M r the inequalitykF �Rkp > C kF �Qkpis valid. This proves Theorem 4 witha(k; r) � m = "k � r2 # :To this end let R 2 S(N1; k) \M r[0; 1]:Then, since the total number of its polynomial pieces is � N1, there existsan interval I0, such thatR jI02 �k; jI0j := mes I0 = 1=N1;and thus for some � 2 f1; : : : ; N1 � 1gx� := �=N1 2 �I0:We are now going to apply the relationR(r)(x�) � 0;which is due to the assumption that R 2 M r[0; 1]; Markov's inequality forp 2 �k(I), namely, kp(r)kL1(I) � c2(p; r; k; jIj) kpkLp(I);and (4.6) through (4.9) in order to obtain23



kF �QkLp[0;1] � kF �QkL1[0;1]� c1 �p�= c1p� jQ(r)(x�)j� c1p� jQ(r)(x�)�R(r)(x�)j� c1p� kQ(r) �R(r)kL1(I0)� c1 c2p� kQ�RkLp(I0)� c1 c2p� kQ�RkLp [0;1]� c1 c2 c3(p)p� ( kQ� FkLp[0;1] + kF �RkLp [0;1] ):Therefore we conclude thatkF �QkLp[0;1] � c4p� ( kQ� FkLp[0;1] + kF �RkLp [0;1] );where c4 := c1 c2 c3 = c(k; p; r;N):Hence, kF �RkLp[0;1]) � c5 kF �QkLp[0;1];with c5 = 1c4p� � 1;Thus we can readily prescribe � small enough so thatc5 > C:This completes the proof.Acknowledgement. The results of this paper were obtained in February1995 while both authors were visiting Prof. R. A. DeVore at the Universityof South Carolina. The authors are indebted to Ron DeVore for making theirvisit possible and to him and to Pencho Petrushev for valuable discussionsand helpful comments on the subject.References24
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