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Abstract

With the help of the MAPLE tools we prove that the L.,-norm of the L2-projector onto C"-splines
of order k is bounded independently of A for small m and k > ko(m), namely,

sup || Ps, . (a)lleo < €k, m=1k>5 m=2,k>10.
A )

This gives new evidence to C.de Boor’s conjecture which states such a boundedness for any 0 < m <
k — 2, and which has been proved so far only for m =0,k € N and m =1,k = 3.

We reduced the problem to computing the largest eigenvalue of certain (2m +2) X (2m 4+ 2) matrix, and
used the MAPLE for these computations. This scheme is also applicable for estimating the norms of
Psform >2and k > (m—+ 1)2 + 1. For example, the mesh-independent boundedness of ||P5k,m(A) |loo
holds also, if

m=3k=17,18;  m =4, k = 26, 27.
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1. Introduction

For any integer k,l,m with { +m = k — 1, and any partition of the interval [a, b]
AI{aIt0<t1<...<tNIb}
denote by
S = SL(A) 1= Sk.m(A)

the space of polynomial splines of order k (of degree < k) and smoothness m (with deficiency { = k—1—m).
The latter means that Sk _1(A) := Px(A) is the space of piecewise polynomial functions (of maximal

deficiency k) and
Skm(A) == Pe(A) N C™[a, b].

Traditional splines with highest smoothness at breakpoints belong to C*~2 and have the minimal defi-
ciency 1, we denote their space by

Sk(A) = Si(A) == Sk r_a(A).

Consider the operator Ps of the orthoprojection onto S defined by

b
/ [f(t) = Ps(f,t)]o(t)dt =0, Vo eS.
We are interested in Ps as an operator from L, onto L,, namely in bounds for its norm

1Psllp := e 1Ps(Nlp, 1<p< oo
p:1
In 1972 C.de Boor [B2] conjectured that the L.,-norms of these projectors with respect to splines of
the minimal deficiency are bounded independently of A.

Conjecture. For any k € N
SUP [|Ps(alleo < k- (1.1)

The conjecture was based only on two cases treated by that time:

k=2, 7Z. Ciesielsky [C], 1963
k=3, C.deBoor [Bl], 1968

Since then none of the other &’s (with deficiency 1) has been added to the list.

However, studies of this problem gave a series of particular results which played an important role in
the univariate spline theory as a whole. We will not discuss this connection in details, but concentrate
on the problem itself.

Since

sup [|Ps, a)llec = sup [|Ps, ,.(a)llps
A ,p
a consequence of (1.1) is the estimate
1P, mialls < o, (1.2

so one may test (1.1) testing (1.2) with various particular parameters &k, m, p, A.

1.1. Mesh-dependent bounds. In the series of papers the L..-boundedness of Ps was established
for the quasi-uniform and not much growing quasi-geometric meshes. Precisely, for

hi =t — i, ki =t — 1y,



set
Ay i={A: supk;/r; < M}, A, ={A: sup h;i/h; <p}.
ij li—jl=1
Then
sup || Ps, (a)lleo < cr MY sup ||Psllos < c(k,p), p<1+eg. (1.3)
ACAN ACA,

The basis for these estimates was the fact that the spline orthoprojection of function with finite support
decays exponentially out of this support. This fact was discovered by Douglas, Dupont & Wahlbin
[DDW], generalized by de Boor [B3], and found its mostly complete (and spline-free) form in Demko’s
theorem [De] for inverses of the band matrices.

However, (1.3) do not say anything pro conjecture, since such a mesh restriction provides Lo-
boundedness of similar (interpolation) spline pojectors which are known to be unbounded in general.

In particular, most of these projectors are unbounded on some classes of strictly geometric meshes

Alp = {A . hi+1/hi = p}.
In this respect, pro conjecture were results of Hollig [H], Feng & Kozak [FK], and Jia [J1], that

sup || Ps, .(a)lleo < ck-
p; ACAY

But their methods worked strictly for this geometric case.

There are yet two other approaches to be mentioned.

The first, by Domsta [Do], brought the earliest result on the boundedness of P¢ on non-uniform
meshes, namely on dyadic meshes.

Mityagin [Mi] developed rather general approach oriented on the case of m = k/2—1, but could prove
only the cases of strictly geometric meshes for k = 4,6 (covered later in [J1]).

1.2. Mesh-independent bounds. All the interest, and all the difficulties are concerned, of course,
with mesh-independent estimates. At present there is no visible general approach which could give some
notable advances. However, there exist three approaches which have brought some positive if even modest
mesh-independent results.

1.2a. Total positivity of a relative Gramian. Proved the case of parabolic splines (already
mentioned)
sup || Ps,(a)lleo < ¢, de Boor [B1,B5]; (1.4)
A

and the case of C-splines (m = 0) of any order k:

sup || Ps, o(a)lleo < cx, de Boor [B3]. (1.5)
A

Also the case of cubic splines (k = 4) was announced to be proved [B5].

1.2b. Matrix analysis of a spline-interpolation problem. Also proved the case of C-splines:

sup || Ps, o(a)lleo < cx, Zmatrakov, Subbotin [ZS]. (1.6)
A

1.2c. Exponential decay of null-splines. Proved the L,-boundedness with p from a small neigh-
bourhood of 2:
sup || Ps|l, < c(p, k), p€(2—¢,2+¢L), author [Sh]. (1.7)
A

Theoretically, all these methods are applicable to the general case. But all of them are based on exact
analysis of some exact arithmetic expressions, and complexity of this arithmetics beyond the above cases
makes the general use of these methods rather problematic.

However, the list of particular cases is so short, that any new one seems not to be superfluous.

In [Sh, §7] we pointed out that, theoretically, some constants related to the value of || Pg||sc could be
computed as eigenvalues of some matrices of the relatively small order (2m + 2) x (2m + 2). Our short



experiments at that time had shown that arithmetics of the entries gives no chances for such a computing
by hands.

The goal of our present work was to find whether the MAPLE tools could change something. And
they did.

Our main result 1s

Theorem 1. Form = 1,k>5 and m = 2,k > 10 the Lo, -norm of the Ly-projector onto C™ -splines
1s bounded independently of A:

sup || Ps, ,.(a)lloo < Ck, m=1k>5 m=2 k>10. (1.8)
A

Since the case m = 1, k = 3 was proved by de Boor [B1,B5], and the case k = 4 was announced to be
proved [B5], the case m = 1 is completely positively solved (up to a certain uncertainty for k& = 4).

There is a MAPLE evidence that the result holds for all (small) m, namely
1Py iaylloo S eny k> (m41)"+1,
i.e., for the orthoprojectors onto splines with relatively low smoothness. We checked it for
m=3, k=17,18, m=4, k= 26,27.
In our considerations we restricted ourselves with the case
m< k/2—1,

but such a restriction is not principal, it only simplifies the pre- and forthcoming analysis. So, one
may expect that for relatively small m the MAPLE tools could help in proving the case of C"*-splines
completely, 1.e. for all k& > m + 2.

Remark. There are neither computational, nor theoretical arguments for that the conjecture will not
fail for some k, m. So far, it 1s verified to be true only for particular k&, m with m < 4. In this respect, it
1s worthwhile to mention another de Boor’s conjecture which was also concerned with splines of arbitrary
order k, and which was shown [J2] to be false for & > 20(!). But it is also worthwhile to mention that a
modest award will be offered for a counterexample as well (for details see [B2]).

2. Organisation of the paper

1) In §3 we remind that
k *
IPslloc ~  sup[IN7 ||,
j

where N7 are the elements of the basis biorthogonal to the basis of the L.-normalized B-splines {N;}.

2) In §4 we prove that for each Nre SL(A) there exist two subsets A, C A and two null-splines

s, €8 (A), sy =0, sSy=0, r=0k-1. (2.1)

such that
s (@) = Nj (x), w € [a,b]. (2.2)

3) In §§5-6 we prove that the L(Zk)—norms of any null-spline with null boundary condition (2.1) at the
left endpoint a satisfy the inequality

B e+ 1 g < O 1 e B2 <% (0 1/00) 7 (23



4) In §7 we prove that (2.3) implies

s M eatriear < ey 182 (2.4)

whence, by symmetry,
k k
15712171 < ey N8 a1 (2.5)

5) In §8 we show that (2.2) — (2.5) implies

N
N7l <end o,

i=0

so that
1P, m(a)lloo < ¢hy  if Yam < 1.

6) In §89-11 we show that the values 7 providing (2.3) could be found as the largest eigenvalues of
some special matrices Wy p, of the order (2m + 2) x (2m + 2).
7) In §12 formulas for matrix A relating to W are given.

8) In §13, to illustrate this method, we calculate these eigenvalues in the simplest case m = 0, and
obtain
; < 1
k2 —1 ’

i.e., one more proof of (1.5)-(1.6). In this case all computations are done by hands.

Ye,0 <

9) In §§14-17 we prove that for m = 1,2 also
Y1 <1l, k>05; Yeo2 <1, k>10; (2.6)

what finishes the proof of Theorem 1. §14 contains the statements leading to (2.6) in the case m = 1,
§815-16 presents their MAPLE proofs. The case m = 2 is given briefly in §17.

10) §18 contains a general observation for applicability of this scheme for arbitrary m and k& >
(m+1)? 4+ 1, based on the cases m < 4. We finish the article with a short conclusion.

Remark. The key-point of our method is inequality (2.3) which provides a mesh-independent decay

of the L;,k)—norms of certain null-splines. Having such a decay one can prove the Ly, -boundedness of Pg in
several ways. In [Sh] we did it constructing an orthonormal basis of S (A) as the k-th derivatives of some
null-splines. However, that paper was dealt with smooth splines for which the corresponding inequalities
have more complicated and weaker form than (2.3), so that we found it not possible to refer the reader
therein. Therefore, we give here an independent proof, choosing this time a pass to biorthonormal spline
bases.

3. Reduction to biorthonormal bases

For a given mesh
A={t;}jily={a=to <ty <...<ty =b},

and given k,! define the extended knot-sequence
A= {T] }:;V:O

as the sequence
o, b0y Ty ee sty e Ity ANty TNy s TN
N —— N ——

k { l k



Let {N;} be the B-spline basis of S} (A) forming a partition of unity,

Y ONj=1, N;j<0, supp Nj = (7, 7j44),
j

and {N7} be the basis of S biorthogonal to {N;}, i.e.,
(Ni, NJ) = dij.
The following lemma is known somehow.

Lemma 3.1.

Proof. We have

and due to the inequality [B4]

k
1Y aiNilleo =~ [l(@)lli = sup |a;],
J
we obtaln .
|1Pslloc := sup [[Ps(f)llc ~  sup sup|(N}, f)| = sup [N
I1flloo=1 Iflloo=1 7 J

4. Reduction to null-splines of the order 2k

Notations. Let § = {Ti}?lzp, be a subset of extended A, such that

§=tp, s tp, tprts ooy tprts oo tgoty e tgot, Lo ooty (4.1)
————’ ———’

I l l ly

We denote by [; = [;(§) the multiplicity of t; € § in (4.1). Notice that {; = for all ¢; except the end-points
of 4.

For two functions f,g € C*~1[a, b], we write

f|5 :g|5’

if

[0, =d0, =0T i=pT

Now for any such & we define the subspace of null-splines as

So(8) = {5+ 5 € (D), 5[, ).

Lemma 4.1. For A = {7} and given j set
Ay={r7N A= {m
Then there exist two null-splines s, € gék(Al,), so that

W =0, s, =0, r=0k—1;



such that

Proof. For a given j set
1 Jtk-1

U(x) T II (=7,

u=j+1

and define a function ¢; € C*~1[a, b] by interpolating conditions

1/)1|A1:0’ 1/)1|A2:1/)|A2'

By definition,

oy, =0 ), =0, r=0k-1.
C.de Boor [B4] proved that if a function g; satisfies
9 € Wa, 0], gj|, = 1]
then
(Ni,g;k)) = dij,
i.e., the family {g;k)} is biorthogonal to {N;}.
Define s1 = s(¢1, A) as the spline

Slesllc(A)’ 81|A:1/)1|A'

Such a spline s; exists and is unique.

(4.5)

Due to (4.3)-(4.5), sgk) is orthogonal to each B-spline but the j-th, and since it belongs to St (A),

s (z) = N7 (z), = €[a,b].

The null conditions for s; (in particular at a) follow from (4.2) and (4.5), because of A} C A.
To obtain s, we set

sa(x) = s1(x) — Y(x), € Ja,b].

5. Representation of the L(Qk)-norrns of null-splines

For any spline s of degree 2k — 1 on the mesh A define

k-1
F(s,x) =Y (=1)7s® 177 (@) s ().
r=0
This function is indefinite integral

Fis.e) = [590F ar

so that for [e, d] C [t;,ti41] we have
d
/ [s)(2))2 dt = F(s,d = 0) — F(s,c+0).

If s has deficiency [, i.e. if s € C?*=1=! then

S(k-H)(ti-i-O) 7&5(k+r)(ti—0), r=k—-1-101k—-1,

(5.1)



and the function F (s, x) is not continiuos at ¢;’s. However, if s is a null-spline with multiplicity {, i.e., if
sty =0, r=k—1—-1k—1, i=0,N,

then this discontinuities disappears in the product (5.1), and F'(s,#) is continuous at ¢;’s. In this case
(5.2) holds for any [¢,d] C [to, tn].
Set
F (i) .= F(s,t;).

Then, if s € gék(A), we have

k—1-1

Fi)i= 3 (=1 s (1)s 540 1), (5.3)

r=0

and

82 1y = F i+ d) = F ().

6. The main inequality

Proposition 6.1. Let | > k/2, and s € gék(Al), so that

sV, =0, r=0k—-1. (6.1)
Then there exists a constant ¥ = i m, such that for any triples
tio,ti iy €A, Lo =6L=1ig =1,

holds

||8(k)||i2[tu,t,—1] + ||S(k)||i2[tu,tz] S ﬁz ||S(k)||i2[tutl+l]’

1) o (6.2)
B2 <y pi +1/pi)™"  pi = hi/hi1.

Supplement 6.1. If
Liyn<l=04L=105L_1, but L+l >k,

then (6.2) also holds with some other v' = v ,
Proof. Ineq. (6.2) is equivalent to the following one
(k) (12 L )2 B2 2
112 g0 < SIS g1y + s g1 (6.3)
We prove that a little bit stronger, than (6.3), inequality takes place, namely
18117 r0,eg < Bl Motz alls™ Nl (6.4)

Ineq.(6.4) implies (6.3), since 28zy < z? + §%y.
Notice, that condition (6.1) implies

so that for the left-hand side of (6.5) we have

IO ooy = PG = F(0) = F(i)
= T T s 1),

r=0



Since s is a null-spline with /;-multiple zeros at ¢;’s, where [; = [ > k/2 by the condition, it has at
least ; +1;41 = 21 > k zeros on each interval [¢;,¢;41]. For such a function, Rolle-type arguments provides

(B e 5B s

Ckh:+1/2

IN

) _
=100 < e P=TECT (69)

Hs(k—l—r

A

Mewiry < IRV

Since, moreover, 5|[t tyin] is a polynomial, i.e., from a finite dimensional subspace, the norms equivalence
vybtuv41
gives

. —r—1/2
||5(k+ Ckhi_l / ||5(k)||L2[I,_1]a

s o < ey s,

IN

)||L<x>[Il—1]

|s*H) (1)] < r=0k—1. (6.7)

A

Setting
h=min(h;_1,h;), H=max(h;_1,hs),

and choosing from (6.6),(6.7) the inequalities with h, H respectively, and substituting these estimates
into (6.5) we obtain

IS g gl gl Oy < ex 020" (b HY 12
< (mDer(h/H)'?
< 2Y2(m 4 V)ep(H/h + h/H)=Y/2

Ve (hiz1 /i 4+ hi/hi_1) "2
Yim (pi + 1/ pi) 72,

what proves (6.2) and the proposition.
The multiplicities of #;_1,%;, ;41 as zeros of s were used only in (6.6) in the form

La+lLi>k L+l >k,

hence, the supplement.

Remark. The estimate (6.2), i.e., only with one interval involved in the right-hand side does not hold
for multiplicities! < k/2. The necessary number v of the intervals must satisfy the inequality [(v+1) > k.

7. L;k)-estimates for null-splines

Corollary 7.1. Let R
1>k/2, s€Sy,(A).

Then with the same v = g m as in (6.2) for all iy € Ay, such that Ly +1; > k,

1s¥ Mzt < ey I8, 1< p < 0. (7.1)

Proof. Evidently, (6.2) implies
IsN2 g <720+ 1/0) "M Is®N2 - (7.2)

Set
Foi) = W atrg. fr0) = b7 1),
Since restriction of s%) onto subintervals is a polynomial,

. k
L)~ 1Is® (7.3)



In this notations (7.2) reads
FE=1) <y (pi + 1/pi) " F5 (1),

so that,
2/p—1 g2 s AP et 2 T st
hit™ 11— 1) <y ——h" 1) =~y —+—h;""" 1).
L f( ) <~ pi+ 1 pi () =~ PZZ 1 f3(4)

For p € [1, 0] and any p; the factor with p; is < 1, and we obtain

fp(i=1) <~ fp(0),
respectively,

fpli—d) < 'Ydfp(i)a
and, due to (7.3), the estimate (7.1) is established.

8. [Li;-norm estimates for N7

Lemma 8.1. For
A={t;} ={m}, suppN; = (75, Tj+k), (8.1)

let j' be the index, such that
T = tj/. (82)

Then with the same v as in (6.2),

* d * d *
NG a0 < ey IING ety < e lINF Latry, mypl- (8.3)

Proof. Since the support of N; is non-empty, it contains at least one interval I;, so that by (8.1)—(8.2)

(i, tj1) C (15, Tjth),

hence, the second inequality in (8.3).
To prove the first, set '
o= {n}IiTh # =k

=J

Since | > k/2, this set contains at most 3 different ¢;’s, otherwise

61 = {tj'a"'atj’a tj'-l—la"'atj'-l-la tj'+2a"'atj'+2a tj'+3a"'}a

and
L4+ 20> 241> k+1,

a contradiction.
Therefore, either

61 = {tj'a . 'atj’a tj'-l—la .- 'atj'-l-la tj'+2a .- 'atj'-l-Z}a (84)
lj/(él) lj/+1(51):l ljl+2(61)
or
b = {tj/,...,tj/, tj/+1,...,tj/+1} (85)
1;r(61) Lirg1(61)
with
L (01) + i (1) = k. (8.6)

10



Consider
_ jt+k—-1
Ay = {Ti}i:O .

Since 1 C A, in both cases
(A =12 15:(81), Ljrga (A1) = Ly (d1),
so that for the case (8.4) (since 20 > k), as well as for the case (8.5) (due to (8.6)), we have
Lir(Ar) + 141 (A1) > k, (8.7)

By Corollary 7.1, for any null-spline s € S, (A1), condition (8.7) on j/ gives

||5(k)||L,,[1j,_d] < Cmd||5(k)||L,,[Ij,], 1<p<o0.
By Lemma 4.1, there exists a null-spline s; € gl%(Al), such that
Ny (@) = s (),

and the lemma follows.

Lemma 8.2. For any j, k,
HN;HLl[ijTHk] < Ck.

Proof. Set R R
Ni = (k/mi) 2N, N7 = (ki / k)N,
that is ]\Af‘;F is biorthogonal to the basis of the Lo-normalized B-splines {N;}. C.de Boor [B3] proved that
IN; 2 < cxllPsll2 = cx,

hence R R
HN;HLl[ijTHk] = (k/ﬁj)l/ZHN;||L1[ij7'j+k] < kl/zHN;HLz[Tj,TjM] < ¢

Combining Lemmas 8.1-8.2 we obtain

N
INF et < ek Y7
i=0

hence, the final

Lemma 8.3. If forl > k/2,
7 =m < 1,

then

||N;||L1[a,b] <cg, Jj=0,N/,

and, respectively,
1Psy () lloc < -

11



9. Reduction to an eigenvalue problem

Condition (6.1) implies

F(0) := F(s,x)| =0,

r=tg

hence, if one rewrite (6.2) in terms of F'(i) = F(s,t;), we should look for the best v in the inequality

Fli= 1)+ F() < PIFG+1) = P, 8 < (i +1/p0) 7 (9.1)

For a [-multiple null-spline s, define the vectors

s = (l‘(»l),...,l‘(»zk_l_l))
L el gl ¢ g
where
2 = 5O, r=0,., 2k — 1. (9:2)

Define then a square symmetric matrix 7' by the rule:
F (i) = (Tw;, z),

Then 7" i1s a mirror diagonal matrix with the elements

1 , .
tamya—j = 5(k—m =24 ) (k+m+1—j).

In order to express
F(Z — 1) = (Tl‘i_l, l‘i_l), F(Z + 1) = (Tl‘H_l, $i+1)
in terms of #; too, introduce square matrices A;, such that

-1
i1 = Az, wiog = A w

It 1s known that
Ac = A(hy) = D(h) AD(1/hy),

where A = A(1) is a matrix with respect to the interval [0, 1], and
D(h) = diag (1,h,h2, . ..,h2m+1)

(or any other diagonal matrix with d;11 j4+1/d;; = h).
Also,
A7t = A(=hi) = D(=hi)AD(=1/h;),

in particular,

ATl = CoAC,, Cp=diag(l,—1,1,—1,...).

Finally, set
Bi = A»_l.

K3

In terms of quadratic forms Eq. (9.1) is written as
(TBi—1x;, Bicizi) + (Twi, 2i) < B2 (T Aszy, Aey) — (Tey, 21)),

or

(Bf_1TBi—1 + T, i) < B2 (AT A — T, ).

12



For two symmetric square matrices Uy, Vp with positive definite Vj, the exact constant 2 in the
inequality

(Upz, z) < 3 (Vow, x)

is equal to the largest eigenvalue of the matrix V' Uj.
That is, for
Uy=B TBi_1+T, Vo=AITA, —T, (9.3)

we should find, whether the largest root Apay, =: 42 of the polynomial
p(A) = |V ' Uo = AE| = |V '] - [U — AVR, (9.4)

satisfies
Amax < 72(p+ 1/p)_1a vy <L

10. Some simplifications

Here we will simplify the expressions in (9.3) — (9.4), in order not to deal with 7" and with transposed
matrices A*, B*. Such simplifications seems not to be much necessary for the future MAPLE use, but
they may be useful for theoretical analysis (and at least simplify the MAPLE programs).

10.1. We have
TIA*T=CAC, C=C*=diag(...,—1,1,1,—1,..). 10.1
g ( ) (10.1)
m+1 m+1
Proof. Set
01:diag(l,...,l,—l,...,—l .
N——
m+1 m+1

Then for any two null-splines s;, s2 € gék(A), the vectors x,y € R?™%? of their derivatives

J:(»T):s(lr)(ti)/r!, y(r)zs(;)(ti)/r!, r=10,...,2k—1—1,

satisfy
(i) = 3 (=117 @)™ (1), (10.2)
’I‘:l

For two polynomials f, g € Py, (of degree < 2k — 1), consider the function

2%k—1
O(f,g;e) =Y (=1 F(2)g*F ().
r=0
We have
' (f, g;x) =0,
therefore
o(f,952) = c(f,9). (10.3)

If s1, 82 are two null-splines on A, then ®(s1, s2; ) is continuous in ¢;’s, and according to (10.3)
D(s1, 80;2) = ¢(s1,82), x € [a,b].

In particular,
D(s1,89;t) = P(s1, 825 i41). (10.4)

13



But for x = ¢;

2k—1-1

O(sy,sp2) = . (=) sV (@)s7 T T (@),

r=I

and from (10.2),(10.4) we conclude that

This implies

(C1Txi y) = (C1T %41, yiv1) = (C1T Ajzy, Ayi), Vo, y € RP™H2

C1T = ATCLTA;.

Since C'= C*, T =T~ the transposition will give

Hence

with

TCy = AXTCy A;,

T_lA:»FT = ClAi_lCl = (C1CA;CoCy = CA;C,

C==xCCy==xdiag(1,...,1,—-1,...,—1)diag (1, —1,...).
1Go g ( g ( )

m+1 m+1

In Eq. (10.1) we take for C' the sign (—1)"+1.
10.2. From (10.3) we obtain

that 1s

Similarly,

T7'BITB;, = T A7) TA?
= CA7'CA;?
= CD(h;)A='D(1/h;)CD(h;)A='D(1/h;)
= D(h;))CA='CA='D(1/h;)

ByTB; = TD(h;)CAT*CA™'D(1/h;).

AITA; = TD(h;)CACAD(1/h;).

10.3. Basing on (10.5) — (10.6), from (9.3)-(9.4) we obtain

That 1s

with

p(A) = |Bi_ TBioi+T — AMA;TA; = T)|
= |T||D(hic))CATY\CATID(1/hi1) + E
X (D(hi)CACAD(1/h;) — E)|
= |TD(h)C| |D(pi) A1 CA™ID(1/p;) + C
—A(ACA—C)| |D(1/hs)|.

p(A) = ¢ det (W),

U:=D(p)A~CA=ID(1/p) + C = D(p)CoACACyD(1/p) + C,
Vi=ACA-C, W:=U-M\V.

If for k, m given, with m < k/2 — 1, the largest A = Apax for which p(A) = 0 satisfies

Amax = 37 <Y (p+1/p)7", 0<y=10m <1,

14
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then de Boor’s conjecture for the case k, m is true:

SliPHPSk,m(A)Hoo < k.

11. The algorithm

Step 1. Form the matrix A.
Step 2. Form the matrices

Dy = diag(l,p,...,p*mth),
Dy = diag(l, 1//),..., 1/p?mth),
Co = diag(l,—1,...,1,-1), (1L.1)
C = diag(...,—1,1,1,—1,...).
H/—/H/—/
m+1 m+1
Step 3. Form the matrices
U:= D1CoACAC D, +C, V.= ACA-C, W .=U-W. (112)

Step 4. For the largest root Ay ax of the equation
p(A) = det(W) = 0,

find whether the estimate
Amax < 'le,m(p'i' 1/p), v <1,

takes place.

2. Formula for the matrix A

Lemma 12.1. Let the polynomials f; € P[0, 1] be defined as

=0 = o r=0,0-1; 12
f;l_lw)(o) = Oi—i4ji-14r, r=1,2m+ 2,
and let '
fi= A7), =T 2mT
Then
A={ay}, iy ==t i, 5 =T2m+2 (12.2)
Proof. For any [-null polynomial (spline) s € Pax[0, 1], i.e., such that
sy =s"1)y=0, r=0,1—1,
by definition (12.1) holds
2m+2
s(=141) Z fiy sU=H49)(0). (12.3)

15



In vector form, with normalisation (9.2), i.e.

and with {g = 0, ¢; = 1 Eq. (12.3) reads

(I=14i) _ =2m42 (I=145)! o (I=147)
! _Ejzl (l—1+z')!fZ] o .

Hence, for the matrix A = {a;;}, such that

o — Al‘o

formula (12.2) takes place.
Lemma 12.2. For

A=Ap = {aij}??:-l—f’ M = min{i, 2m+ 3 — j},

holds o
e k+m+1—y k+m+1—-v
= (=DFTmEy (et : 12.4
For the simplest entries, up to the sign, we obtain
k+m+1—j k+m L
.= ioman = [ . , i,j=1,2 2, 12.5
ai= (") = (N1 =T (125
in particular, for any &, m

a1 2m+42 = 1. (126)

Proof. Consider the polynomial

1
s s+t+ 1)
p(z) = Cl$q/x co(l—y)’y' dy, c1=1/¢!, co= %
so that
p(1) =0, r=0,s; p0)=d,, r=0¢g+1+1.
We have "
1
/ _ <5+t+1)(1 x)s+1/xt+1—u’
. s+v
v=1
thus,
t+1
s+i+1 s+v_qtt+l—v
p(x)_cll;< sty )(1 z)* TVl :
Further, for x = 1 and ¢ > v,
(a2 08 o (B 1)) s
s+v

; t+1-—0pv)!
_ s+ (—1)S+V(S+I/)! ((]'1‘ + V)
s+v g+t+1—4)!

16



hence with M = min{é,¢ + 1}

s4i M s s+i)! sdu —v)!
pU) = H L (T iy (CL (s 4 ) Y

(L qye bl My sy (gt oy
(=1l S (D) (t:lt-l——zlz)(q+t(1-|-—l—1ti—i)!(i—u)! (12.7)

t+1—v i—v

= (_1)s+1£s;r!i)! 2111\4:1(_1)11<s+t+1) (q-l—t-l—l—l/)

In our case, with

g=1l-14j = k—m—-2+j,
s=l-1 = k—-m-2, (12.8)
t = 2m+42—j,
we have
p=1; € Pa, PUTI(1) = fiy,
and

! s+i I—1+44)!
Gl (1) = A g

Thus, from the last equality in (12.7) we have

M
+t+1\/g+t+1—v
= -1 s+1 -1 v+1 s )
w = e ()

= Q3.

From (12.8)
s+t+1 = k4+m+1—7j,
t+1 = 2m+3—j,
g+t+1 = k+m+1,

so that, in terms of &k, m, with M = min {i,2m + 3 — j}
M ktmal—i\ [ k+m+1—v
o= | k—m-—1 | v+1 - - )
aij = (=1) ;( T amas— - i— v

The lemma is proved.

The following MAPLE program computes the entries a;; of Ay, for various m = 0,1,... (in the
example for m = 1) which are polynomials with respect to k of degree

dij:(i—1)+(2m+2—j).

> #++++HtHtbter+ Computation of A b+

with(linalg) :
alias (R=binomial) ;
m:=1;

Vv V V V

a:=(i,j) -> expand( sum(

> (1) " (n+1) *R(k+m+1-n, i-n) *R(k+m+1-3j, 2%m+3-j-n) ’,
'n’=1..min(i,2*n+3-3j) ) );

> A:=matrix (2*m+2,2%m+2,a) ;

D s L Y

17



13. The case of C-splines (m = 0)

Step 1. To compute A by hands (as it was promised), we need only to calculate as;, because from
(12.5) — (12.6) up to the sign we obtain

ayyp =az =%k apz=1

= () (5 =

From (12.3) we have

le.,
k 1
A= (_l)k—l
-1 k
Step 2.
D, = dlag(lap)a Dy = dlag(la 1/p)a
Cy =diag(l,-1), C=diag(l,1)=FE.
Step 3.
k2 —1 k
V=A2_F = 2 )
k(k2 -1 K2 —1
k? —k/p
U == cho(Az + E)C()Dz == 2 s
—k(k*=1)p k2
R AR —1) —k(1/p+A
o - (2-1)  —k1fp+N) |
—k(k2=1)(p+A) E2=XkK>-1)
Step 4.
2
pA) =4 X,
i=0
with
b0>0, bl,b2<0,
namely

bo=k* by = k(K> —=1)(p+2+1/p), by=—(k*—1).

Equation p(A) = 0 implies
bo 4 01X = by A% > 0,

1.e.

1
A< =by/by = ——— 24 1/p)" L.
< —bo/by k2—1(p+ +1/p)

Finally
_ 1
62 = Amax <72(p+1/p) 1a 72 = k2 _ 1 (131)

14. The case of C''-splines (m = 1)
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Step 1. The MAPLE program gives Taylor expansion of the entries a;;(k) (which are polynomials
with respect to k). We modified these expression to make them more compact.

k(k26—1) k(kz—l) E—1 1
k(k+1)(k>-4) k(k>=3) k2 _9 k41
A= (_l)k 26 2 2 ¢ 2 2 (141)
(E+1)(k%=3)(k*>=4) (52=1)(k*>=4) E(k%=3) E(k+1)
12 4 2 2
(B2=D[(k*=3)(k?=)+6] (k=1)(k?=-3)(k?—4) k(k—-1)(k*-4) k(k>-1)
36 12 6 6

Examples. Here are the matrices A = Ay for k = 4,5

10 6 3 1 20 10 4 1

40 26 14 5 105 55 23 6
A4 = ) A5 = -

65 45 26 10 231 126 b55 15

54 39 24 10 273 154 70 20

Step 2.
Dy =diag (1, p, p?, p%), Dy =diag(1,1/p,1/p* 1/p%),
Co = diag(1,-1,1,—1), C =diag(~1,1,1,—1).

bl bl bl

Lemma 14.1. Let U, V,W € R*** be the matrices (11.1) — (11.2), and p € Ps be the polynomial

4
p(Ask,p) i=det W = Zbi(k', PN (14.2)

i=0

Then for k> 4
bo,bz,bg,b4>0, bl < 0.

As a consequence we obtain that, if p(A) = 0, and Apax > 0, then
bidmax + b2 A2 <0,
whence

by (ka p)
/\max < — .
b2(ka p)

Lemma 14.2. Fork>5 m=1,

bi(k, p) 2 -1
Amax < — < +1 ,
bZ(k,p) yk,l(p /p)

where

16
2, =11/12 2 = _—— _  k>6.
V5,1 /12, Ve 1 Tk — 2), >0

15. The MAPLE proof of Lemma 14.1
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Since the entries of the matrices U, V' are of the form
wij = pij (k) ™, vij = qi;(k),  Pij. qij € Pamea,

the coefficients b;(k, p) in (14.2) has the form

bi(k,p) = > bij(k)p’, bij € Pu,.
Jj=—8:

For the concrete values k > 4 the MAPLE program shows that for every ¢ = 0,4 the values b;; are of the
same sign for all j = —f;, ;. However, the Taylor expansion of b;;(k) with respect to k has both positive
and negative coefficients. This is not a surprise, since we have the same picture, e.g., for the entries of
A, see (14.1). Short experiments had shown that with & = n+ 5 the Taylor expansion of b;; with respect
to n is already strictly positive.

The following MAPLE programm gives for

k=n+5 n>0;

bl

the coefficients b;(n, p) of the polynomial

4
p(Asn—+5,p) = detW:Zbi(n,p)/\i. (15.1)
7=0
For these coefficients holds ,
bi(n,p) = p " Y bij(n)p’,  bij € Pa,, (15.2)
=0

i.e. b;;(n) are polynomials in n of degree d; — 1.
The values a;, d; are the following:

? 01 2]3 |4
o O[3 141]310
di—1(8[14]16 |14 |8

For every i = 0,4 the coefficients of the polynomials b;;(n) are of the same sign for all j = 0,d; — 1,
namely
signcoeft [b;;] >0, 1=0,2,3,4; signcoeff[b;;] <0, i=1.

Hence, for n > 0,
bo,bz,bg,b4>0, by <0,

and Lemma 14.1 is proved. (As we had mentioned, for & = 4, i.e. for n = —1, the signs of the coefficients
b; are the same).

Remark. One can verify such a sign structure, looking directly at the MAPLE formulas for b;(n, p)
in (15.1), i.e., without extra expansion (15.2). However each of these formulas occupies ca. one page, so
we found it more convenient and safely for sign verification to make the further splitting.

> #++++++++++++ Taylor expansion of b_i, b_{ij}  +++++++
> with(linalg):
> with(powseries):

> alias(si=simplify); alias(R=binomial);

> k:=n+5; m:=1;

20



vV V. V V V vV V. V V V

v V V V VvV

#+++++++ Matrix A

a:=(i,j) -> expand( sum(

> (=1) " (n+1) *R (k+m+1-n, i-n) *R (k+m+1-j, 2*m+3-j-n) ’,
'n’=1..min(i,2%m+3-j) ) );

A:=matrix (2*m+2,2*m+2,a) ;

#+++++++ Matrices C,C0,D1,D2,U,V,W

C:=diag(-1,1,1,-1); CO:=diag(-1,1,-1,1);
D1:=diag(1,1/rho,1/rho"2,1/rho"3); D2:=diag(1l,rho,rho"2,rho"3);
V:=A%*C&*A-C; U:=D1&*CO&*xAL*C&*AL*CO0&*D2+C; W:=U-lambdax*V;
#+++++++ Polynomial p(lambda) = sum_i p(i)lambda”i
p:=powpoly(det (W) ,lambda) :

d:=degree(det (W) ,n)+1;

alpha:=degree(det (W) ,rho); beta:=ldegree(det (W) ,rho);
#+++++++ Polynomials b_i(n,rho) = sum_j b_{ij}(n) rho~j
b0:=taylor(si(p(0)),n,d);

alphal:=degree(p(1) ,rho); betal:=ldegree(p(1),rho);
b1:=powpoly(si(rho~3*p(1)),rho):

b10:=taylor(bl(0) ,n,d);

bl6:=taylor(bl(6) ,n,d);

alpha2:=degree(p(2) ,rho) ; beta2:=ldegree(p(2),rho);
b2:=powpoly(si(rho~4*p(2)) ,rho):

b20:=taylor(b2(0) ,n,d);

b28:=taylor(b2(8) ,n,d);

alpha3:=degree(p(3) ,rho); betal:=ldegree(p(3),rho);
b3:=powpoly(si(rho~3*p(3)),rho):

b30:=taylor(b3(0),n,d);

b36:=taylor(b3(6),n,d);

bd:=taylor(p(4),n,d);

L

16. The MAPLE proof of Lemma 14.2

We will show that for
k=n+5 n>0,

and coeflicients

by :=bi(n,p), bz :=ba(n,p)

of the expansion (15.1), with

16 16 )
= = = 11 12
LT kk—2) T (m+sn+3 7 /12

7=

)
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holds

b _
=5, <71/ (16.2)

Inequality (16.2) is equivalent to the following one
0 <y%b2+ (p+ 1/p)br =t q1(n, p)

The functions ba(n, p), b1(n, p) have the lowest degree with respect to p equal to —4 and —3, respec-
tively. With respect to n they are polynomials.

It would have been sufficient to have 4% = 11/12 for all k, but basing on the dependence of v o on k
in the case m = 0 (see (13.1)), we found it useful to have a similar quadratic decay for 7y 1.

It turned out that ba(n,p) is divided by (n + 5)(n + 3), i.e., the product b, hence ¢1, are also
polynomials in n. In order to have ¢, as a polynomial both in p and n, we multiply it by p*, and check
the inequality

0 < p*[yba + (p+1/p)b1] =2 g(n, p). (16.3)

The following MAPLE programm gives with v from (16.2) the coefficients ¢;(n) of the polynomial

g:=q(n,p) =Y ci(n)p’.

=0
For these coefficients holds

CiEPd,; d;=14; i1 =0,8, d; =15, ¢=1,T7,

i.e. ¢i(n) are polynomials in n of degree d; — 1.

For each ¢ = 0,8 the coefficients of the polynomials ¢;(n) are positive, i.e. (16.3), hence, (16.2) are
true.

> #++++++++++++ Coefficients c_i  +++++++++++

> ggamma:=16/((n+5)*(n+3)) ;
> # ggamma:=11/12;
> q:=powpoly(si(rho~4*( ggamma*p(2) + (rho+1/rho)*p(1) )),rho):

> c0:=taylor(si(q(0)),n,d);
> c8:=taylor(si(q(8)),n,d);

D s

Remark. For £ = 4 we obtained
1< 3/2<'y471 < 2,

therefore no proof of boundedness || Ps, ,(a)|lco- This is, of course, no disproof as well. Such an estimate
means only that there is no fast decrease of the L(Zk)—norms of null-splines for k =4, m = 1.

For k = 3 the inequality (6.2) does not hold at all, the right-hand side of (6.2), hence the matrix V4
are only non-negative definite, and no bounds for vz, exist.

To cover the cases k = 3,4 one may try to use instead of (6.2) an inequality involving on the right-hand

side the Lo-norm over two intervals, i.e., over [t;, {;12].

17. The case of C*-splines (m = 2)
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Lemma 17.1. For m = 2 let U, V,W € R®¥® be the matrices (11.1) — (11.2), and p € P7 be the
polynomial

6
p(Ask,p) = —det W = Z bi(k, p)AT.
i=0
Then for k > 6
blab3ab4ab5ab6 > 0; bOabZ < 0.

As a consequence we obtain that for k& > 6 the largest root Apmax > 0 of the equation p(A) = 0 must
satisfy at least one of the following inequalities

bo 4 b1 dmax < 0, baX2  4b3X3 <0,

max max

whence at least one of the following estimates holds:

bo(k’,p) bz(k’,p)

Amax < — ) max < .
bl(kap) b3(kap)

Lemma 17.2. For k> 10, m = 2,

bo(k’,p) bZ(kap)} 2 -1
Amax < mMax s — , — < +1 , 17.1
{ bl(kap) bS(kap) PVk,Z(p /p) ( )
where 41
Yioa =65/66, 4112 =4/b, Yia= = )k—3) k> 12. (17.2)

Proof of Lemma 17.1. The MAPLE programm which is analogous to that in §15 gives for
k=n+10, n>0;

the coefficients b;(n, p) of the polynomial

6
p(Asn+10,p) = —det W = Z bi (n, p)/\i.

i=0

For these coefficients holds

204

bi(n,p) = p~ Y bij(n)p!, bij € Pu,.
7=0

The values a;, d; are the following:

? Ol 1|12 (34|56
a; 0151819850
di — 1118 28|34 |36 |34|28]|18

For every i = 0,6 the coefficients of the polynomials b;;(n) are of the same sign for all j = 0,d; — 1,
namely
sign coeff [b;;] >0, 1=1,3,4,5,6; sign coeff [b;;] < 0, (=0,2.

Hence,

blab3ab4ab5ab6 > 0; bOabZ < 0’
and Lemma 17.1 is proved. (For 6 < k <9, the signs of the coefficients b; are the same).
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Proof of Lemma 17.2. Tneq. (17.1) is equivalent to the following two:
0 < p’[ybi + (p 4 1/p)bo] =: q1(n, p),
0 < p”[vbs + (p 4 1/p)ba] =: qa(n, p).
The MAPLE programm gives with ~ from (17.2) the coefficients ¢;(n), ¢/(n) of the polynomials

10

no=q(n,p) = Yi—gcn)p,
18 ;
g2 := qa(n,p) = D igci(n)p'.

These coefficients are in turn polynomials in n,

CZ'EP26,Vi; C;EP34,iIO,18; C;EP35,1§Z§17

(17.3)

For each i = 0, 18 the coefficients of the polynomials ¢;, ¢} are positive, i.e. (17.3), hence, (17.1) are true.

18. The cases of ('-splines, m > 2

We made some further computations with the MAPLE to see how the algorithm works for the cases

m = 3,4. They lead us to the following
Observation. Let p € Pay,43 be the polynomial

2m+2
p(Ask,p) i=det W = Z b (k, p)/\i.
i=0
Then for k£ > 2m + 2
signb; = —signbiyq, 1= 0,m,
Signbmy14i = signbp,yt, t=1,m+1,

so that the largest root of the equation p(A) = 0 satisfy the inequality

bm—Zi(ka P)

Amax< max — < Zm +1 _1.
OSiS[m/ﬂ{ bm+1—2z’(k’,P)} Tem o+ 1/1)

The maximum is attained for the ratio with ¢ = 0, and

Yem <1 &= k>m+1)?+1.

This observation is confirmed by the cases

ml o] 2| 3| 4
klz2)25]>10]17,18 26,27

for which the above scheme has been realized, and for which de Boor’s conjecture 1s proved thereby to be

true.
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19. Conclusion

It is clear that the above MAPLE algorithm may help to verify de Boor’s conjecture only for particular
values m. However, the results of our experiments give a hope that the general case of splines with high
knot multiplicity could be proved by purely theoretical means.

This hope is based on the observation that the basic constant v ., from inequality (6.2) decays
relatively fast with & growing, namely,

Yk,m <ka_1, m:0,1,2.

It looks quite probable that some general estimates like those used in the proof of (6.2) will bring the
inequality
Yem < 1—€m, k> ko(m).

This method will hardly give something for smooth C™-splines of order k&, if & = O(m), so that
original de Boor’s conjecture still remains a mystery.
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