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1. IntroductionFor any integer k; l;m with l +m = k � 1, and any partition of the interval [a; b]� = fa = t0 < t1 < : : : < tN = bgdenote by S := Slk(�) := Sk;m(�)the space of polynomial splines of order k (of degree < k) and smoothnessm (with de�ciency l = k�1�m).The latter means that Sk;�1(�) := Pk(�) is the space of piecewise polynomial functions (of maximalde�ciency k) and Sk;m(�) := Pk(�) \ Cm[a; b]:Traditional splines with highest smoothness at breakpoints belong to Ck�2 and have the minimal de�-ciency 1, we denote their space by Sk(�) := S1k(�) := Sk;k�2(�):Consider the operator PS of the orthoprojection onto S de�ned byZ ba [f(t)� PS(f; t)]�(t) dt = 0; 8� 2 S:We are interested in PS as an operator from Lp onto Lp, namely in bounds for its normkPSkp := supkfkp=1 kPS(f)kp ; 1 � p � 1:In 1972 C.deBoor [B2] conjectured that the L1-norms of these projectors with respect to splines ofthe minimal de�ciency are bounded independently of �.Conjecture. For any k 2N sup� kPSk(�)k1 < ck: (1:1)The conjecture was based only on two cases treated by that time:k = 2; Z: Ciesielsky [C]; 1963k = 3; C: deBoor [B1]; 1968Since then none of the other k's (with de�ciency 1) has been added to the list.However, studies of this problem gave a series of particular results which played an important role inthe univariate spline theory as a whole. We will not discuss this connection in details, but concentrateon the problem itself.Since sup� kPSk(�)k1 = sup�;m;p kPSk;m(�)kp;a consequence of (1:1) is the estimate kPSk;m(�)kp < ck; (1:2)so one may test (1:1) testing (1:2) with various particular parameters k;m; p;�.1.1. Mesh-dependent bounds. In the series of papers the L1-boundedness of PS was establishedfor the quasi-uniform and not much growing quasi-geometric meshes. Precisely, forhi := ti+1 � ti; �i := ti+k � ti;2



set �M := f� : supij �i=�j � Mg; �� := f� : supji�jj=1hi=hj � �g:Then sup���M kPSk(�)k1 < ckM1=2; sup���� kPSk1 < c(k; �); � < 1 + �k: (1:3)The basis for these estimates was the fact that the spline orthoprojection of function with �nite supportdecays exponentially out of this support. This fact was discovered by Douglas, Dupont & Wahlbin[DDW], generalized by deBoor [B3], and found its mostly complete (and spline-free) form in Demko'stheorem [De] for inverses of the band matrices.However, (1:3) do not say anything pro conjecture, since such a mesh restriction provides L1-boundedness of similar (interpolation) spline pojectors which are known to be unbounded in general.In particular, most of these projectors are unbounded on some classes of strictly geometric meshes�0� = f� : hi+1=hi = �g:In this respect, pro conjecture were results of H�ollig [H], Feng & Kozak [FK], and Jia [J1], thatsup�; ���0� kPSk;m(�)k1 < ck:But their methods worked strictly for this geometric case.There are yet two other approaches to be mentioned.The �rst, by Domsta [Do], brought the earliest result on the boundedness of PS on non-uniformmeshes, namely on dyadic meshes.Mityagin [Mi] developed rather general approach oriented on the case of m = k=2�1, but could proveonly the cases of strictly geometric meshes for k = 4; 6 (covered later in [J1]).1.2. Mesh-independent bounds. All the interest, and all the di�culties are concerned, of course,with mesh-independent estimates. At present there is no visible general approach which could give somenotable advances. However, there exist three approaches which have brought some positive if even modestmesh-independent results.1.2a. Total positivity of a relative Gramian. Proved the case of parabolic splines (alreadymentioned) sup� kPS3(�)k1 < c; deBoor [B1,B5]; (1:4)and the case of C-splines (m = 0) of any order k:sup� kPSk;0(�)k1 < ck; deBoor [B3]. (1:5)Also the case of cubic splines (k = 4) was announced to be proved [B5].1.2b. Matrix analysis of a spline-interpolation problem. Also proved the case of C-splines:sup� kPSk;0(�)k1 < ck; Zmatrakov, Subbotin [ZS]. (1:6)1.2c. Exponential decay of null-splines. Proved the Lp-boundedness with p from a small neigh-bourhood of 2: sup� kPSkp < c(p; k); p 2 (2 � �0k; 2 + �00k); author [Sh]. (1:7)Theoretically, all these methods are applicable to the general case. But all of them are based on exactanalysis of some exact arithmetic expressions, and complexity of this arithmetics beyond the above casesmakes the general use of these methods rather problematic.However, the list of particular cases is so short, that any new one seems not to be superuous.In [Sh, x7] we pointed out that, theoretically, some constants related to the value of kPSk1 could becomputed as eigenvalues of some matrices of the relatively small order (2m + 2) � (2m + 2). Our short3



experiments at that time had shown that arithmetics of the entries gives no chances for such a computingby hands.The goal of our present work was to �nd whether the MAPLE tools could change something. Andthey did.Our main result isTheorem 1. For m = 1; k � 5 and m = 2; k � 10 the L1-norm of the L2-projector onto Cm-splinesis bounded independently of �:sup� kPSk;m(�)k1 < ck; m = 1; k � 5; m = 2; k � 10: (1:8)Since the case m = 1, k = 3 was proved by de Boor [B1,B5], and the case k = 4 was announced to beproved [B5], the case m = 1 is completely positively solved (up to a certain uncertainty for k = 4).There is a MAPLE evidence that the result holds for all (small) m, namelykPSk;m(�)k1 � ck; k � (m + 1)2 + 1;i.e., for the orthoprojectors onto splines with relatively low smoothness. We checked it form = 3; k = 17; 18; m = 4; k = 26; 27:In our considerations we restricted ourselves with the casem < k=2� 1;but such a restriction is not principal, it only simpli�es the pre- and forthcoming analysis. So, onemay expect that for relatively small m the MAPLE tools could help in proving the case of Cm-splinescompletely, i.e. for all k � m+ 2.Remark. There are neither computational, nor theoretical arguments for that the conjecture will notfail for some k;m. So far, it is veri�ed to be true only for particular k;m with m � 4. In this respect, itis worthwhile to mention another de Boor's conjecture which was also concerned with splines of arbitraryorder k, and which was shown [J2] to be false for k � 20(!). But it is also worthwhile to mention that amodest award will be o�ered for a counterexample as well (for details see [B2]).2. Organisation of the paper1) In x3 we remind that kPSk1 k� supj kN�j k1;where N�j are the elements of the basis biorthogonal to the basis of the L1-normalized B-splines fNjg.2) In x4 we prove that for each N�j 2 Slk(�) there exist two subsets �� � � and two null-spliness� 2 ~Sl2k(��); s(r)1 (a) = 0; s(r)2 (b) = 0; r = 0; k � 1: (2:1)such that s(k)� (x) = N�j (x); x 2 [a; b]: (2:2)3) In xx5-6 we prove that the L(k)2 -norms of any null-spline with null boundary condition (2:1) at theleft endpoint a satisfy the inequalityks(k)k2L2[t0;ti�1 ] + ks(k)k2L2[t0;ti] � �2 ks(k)k2L2[ti;ti+1]; �2 < 2(�i + 1=�i)�1: (2:3)4



4) In x7 we prove that (2:3) impliesks(k)1 kL1[Ii�d ] � ckdks(k)1 kL1[Ii] (2:4)whence, by symmetry, ks(k)2 kL1[Ii+d ] � ckdks(k)2 kL1[Ii]: (2:5)5) In x8 we show that (2:2)� (2:5) implieskN�j k1 � ck NXi=0 i;so that kPSk;m(�)k1 � c0k; if k;m < 1:6) In xx9-11 we show that the values � providing (2:3) could be found as the largest eigenvalues ofsome special matrices Wk;m of the order (2m+ 2)� (2m + 2).7) In x12 formulas for matrix A relating to W are given.8) In x13, to illustrate this method, we calculate these eigenvalues in the simplest case m = 0, andobtain k;0 < 1k2 � 1 < 1;i.e., one more proof of (1:5)-(1:6). In this case all computations are done by hands.9) In xx14-17 we prove that for m = 1; 2 alsok;1 < 1; k � 5; k;2 < 1; k � 10; (2:6)what �nishes the proof of Theorem 1. x14 contains the statements leading to (2:6) in the case m = 1,xx15-16 presents their MAPLE proofs. The case m = 2 is given briey in x17.10) x18 contains a general observation for applicability of this scheme for arbitrary m and k �(m + 1)2 + 1, based on the cases m � 4. We �nish the article with a short conclusion.Remark. The key-point of our method is inequality (2:3) which provides a mesh-independent decayof the L(k)p -norms of certain null-splines. Having such a decay one can prove the L1-boundedness of PS inseveral ways. In [Sh] we did it constructing an orthonormal basis of Sk(�) as the k-th derivatives of somenull-splines. However, that paper was dealt with smooth splines for which the corresponding inequalitieshave more complicated and weaker form than (2:3), so that we found it not possible to refer the readertherein. Therefore, we give here an independent proof, choosing this time a pass to biorthonormal splinebases. 3. Reduction to biorthonormal basesFor a given mesh � = ftigNi=0 = fa = t0 < t1 < : : : < tN = bg;and given k; l de�ne the extended knot-sequence� = f�jgN 0j=0as the sequence t0; : : : ; t0;| {z }k t1; : : : ; t1;| {z }l : : : tN�1; : : : ; tN�1;| {z }l tN ; : : : ; tN :| {z }k5



Let fNjg be the B-spline basis of Slk(�) forming a partition of unity,Xj Nj � 1; Nj � 0; supp Nj = (�j ; �j+k);and fN�j g be the basis of S biorthogonal to fNjg, i.e.,(Ni; N�j ) = �ij :The following lemma is known somehow.Lemma 3.1. kPSk1 k� supj kN�j k1:Proof. We have PS(f) =Xj (N�j ; f)Nj ;and due to the inequality [B4] kX ajNjk1 k� k(aj)kl1 = supj jajj;we obtain kPSk1 := supkfk1=1kPS(f)k1 k� supkfk1=1 supj j(N�j ; f)j = supj kN�j k1:4. Reduction to null-splines of the order 2kNotations. Let � = f�igq0i=p0 be a subset of extended �, such that� = tp; : : : ; tp;| {z }lp tp+1; : : : ; tp+1;| {z }l : : : tq�1; : : : ; tq�1;| {z }l tq; : : : ; tq| {z }lq (4:1)We denote by li = li(�) the multiplicity of ti 2 � in (4:1). Notice that li = l for all ti except the end-pointsof �.For two functions f; g 2 Ck�1[a; b], we writef��� = g���;if f (r)��ti = g(r)��ti ; r = 0; li � 1; i = p; q:Now for any such � we de�ne the subspace of null-splines as~Sl2k(�) = fs : s 2 Sl2k(�); s���=0g:Lemma 4.1. For � = f�igN 0i=0 and given j set�1 := f�igj+k�1i=0 ; �2 := f�igN 0i=j+1:Then there exist two null-splines s� 2 ~Sl2k(��), so thats(r)1 ��a = 0; s(r)2 ��b = 0; r = 0; k� 1;6



such that s(k)� (x) = N�j (x); x 2 [a; b]:Proof. For a given j set  (x) := 1(k � 1)! j+k�1Y�=j+1(x� ��);and de�ne a function  1 2 Ck�1[a; b] by interpolating conditions 1���1 = 0;  1���2 =  ���2 :By de�nition,  1���1 = 0;  (r)1 ��a = 0; r = 0; k� 1: (4:2)C.deBoor [B4] proved that if a function gj satis�esgj 2W k1 [a; b]; gj��� =  1���; (4:3)then (Ni; g(k)j ) = �ij; (4:4)i.e., the family fg(k)j g is biorthogonal to fNjg.De�ne s1 = s( 1;�) as the spline s1 2 Slk(�); s1��� =  1���: (4:5)Such a spline s1 exists and is unique.Due to (4.3)-(4.5), s(k)1 is orthogonal to each B-spline but the j-th, and since it belongs to Slk(�),s(k)1 (x) = N�j (x); x 2 [a; b]:The null conditions for s1 (in particular at a) follow from (4:2) and (4:5), because of �1 � �.To obtain s2 we set s2(x) := s1(x)�  (x); x 2 [a; b]:5. Representation of the L(k)2 -norms of null-splinesFor any spline s of degree 2k � 1 on the mesh � de�neF (s; x) := k�1Xr=0(�1)rs(k�1�r)(x)s(k+r)(x): (5:1)This function is inde�nite integral F (s; x) = Z [s(k)(t)]2 dt;so that for [c; d] � [ti; ti+1] we haveZ dc [s(k)(x)]2 dt = F (s; d� 0)� F (s; c+ 0): (5:2)If s has de�ciency l, i.e. if s 2 C2k�1�l, thens(k+r)(ti + 0) 6= s(k+r)(ti � 0); r = k � 1� l; k � 1;7



and the function F (s; x) is not continiuos at ti's. However, if s is a null-spline with multiplicity l, i.e., ifs(k�1�r)(ti) = 0; r = k � 1� l; k � 1; i = 0; N;then this discontinuities disappears in the product (5:1), and F (s; x) is continuous at ti's. In this case(5:2) holds for any [c; d]� [t0; tN ].Set F (i) := F (s; ti):Then, if s 2 ~Sl2k(�), we have F (i) := k�1�lXr=0 (�1)rs(k�1�r)(ti)s(k+r)(ti); (5:3)and ks(k)k2L2[ti;ti+d] = F (i+ d)� F (i):6. The main inequalityProposition 6.1. Let l > k=2, and s 2 ~Sl2k(�1), so thats(r)��t0 = 0; r = 0; k� 1: (6:1)Then there exists a constant  = k;m, such that for any triplesti�1; ti; ti+1 2 �1; li�1 = li = li+1 = l;holds ks(k)k2L2[t0;ti�1] + ks(k)k2L2[t0;ti] � �2 ks(k)k2L2[ti;ti+1];�2 < 2(�i + 1=�i)�1; �i = hi=hi�1: (6:2)Supplement 6.1. If li+1 < l = li = li�1; but li + li+1 � k;then (6:2) also holds with some other 0 = 0k;mProof. Ineq. (6.2) is equivalent to the following oneks(k)k2L2[t0;ti] � 12ks(k)k2L2[Ii�1 ] + �22 ks(k)k2L2[Ii]: (6:3)We prove that a little bit stronger, than (6:3), inequality takes place, namelyks(k)k2L2[t0;ti] � �ks(k)kL2[Ii�1 ]ks(k)kL2[Ii] (6:4)Ineq.(6.4) implies (6.3), since 2�xy � x2 + �2y.Notice, that condition (6:1) implies F (0) := F (s; x)��x=t0 = 0;so that for the left-hand side of (6:5) we haveks(k)k2L2[t0;ti] = F (i)� F (0) = F (i)= Pk�1�lr=0 (�1)rs(k�1�r)(ti)s(k+r)(ti); (6:5)8



Since s is a null-spline with li-multiple zeros at ti's, where li = l � k=2 by the condition, it has atleast li+ li+1 = 2l � k zeros on each interval [ti; ti+1]. For such a function, Rolle-type arguments providesjs(k�1�r)(ti)j � 8<: ks(k�1�r)kL1[Ii�1 ] � ckhr+1=2i�1 ks(k)kL2[Ii�1 ];ks(k�1�r)kL1[Ii] � ckhr+1=2i ks(k)kL2[Ii ] r = 0; k� 1: (6:6)Since, moreover, s��[t�;t�+1] is a polynomial, i.e., from a �nite dimensional subspace, the norms equivalencegives js(k+r)(ti)j � 8<: ks(k+r)kL1[Ii�1 ] � ckh�r�1=2i�1 ks(k)kL2[Ii�1 ];ks(k+r)kL1[Ii] � ckh�r�1=2i ks(k)kL2[Ii ]; r = 0; k� 1: (6:7)Setting h = min(hi�1; hi); H = max(hi�1; hi);and choosing from (6:6),(6:7) the inequalities with h;H respectively, and substituting these estimatesinto (6:5) we obtainks(k)k2L2[t0;ti]ks(k)k�1L2[Ii�1 ]ks(k)k�1L2[Ii] � ckPk�1�lr=0 (h=H)r+1=2� (m + 1)ck(h=H)1=2� 21=2(m + 1)ck(H=h+ h=H)�1=2= k;m(hi�1=hi + hi=hi�1)�1=2= k;m(�i + 1=�i)�1=2;what proves (6:2) and the proposition.The multiplicities of ti�1; ti; ti+1 as zeros of s were used only in (6:6) in the formli�1 + li � k; li + li+1 � k;hence, the supplement.Remark. The estimate (6:2), i.e., only with one interval involved in the right-hand side does not holdfor multiplicities l < k=2. The necessary number � of the intervals must satisfy the inequality l(�+1) � k.7. L(k)p -estimates for null-splinesCorollary 7.1. Let l > k=2; s 2 ~Sl2k(�1):Then with the same  = k;m as in (6:2) for all ti+1 2 �1, such that li+1 + li � k,ks(k)kLp[Ii�d ] � ckdks(k)kLp[Ii]; 1 � p � 1: (7:1)Proof. Evidently, (6:2) impliesks(k)k2L2[Ii�1 ] � 2(�i + 1=�i)�1ks(k)k2L2[Ii ]: (7:2)Set f2(i) := ks(k)kL2[Ii]; fp(i) := h1=p�1=2i f2(i):Since restriction of s(k) onto subintervals is a polynomial,fp(i) k� ks(k)kLp[Ii]: (7:3)9



In this notations (7:2) reads f22 (i� 1) < 2 (�i + 1=�i)�1f22 (i);so that, h2=p�1i�1 f22 (i � 1) < 2 �2=p�1i�i + 1=�ih2=p�1i f22 (i) = 2 �2=pi�2i + 1h2=p�1i f22 (i):For p 2 [1;1] and any �i the factor with �i is < 1, and we obtainfp(i � 1) < fp(i);respectively, fp(i � d) < dfp(i);and, due to (7:3), the estimate (7:1) is established.8. L1-norm estimates for N�jLemma 8.1. For � = ftig = f�i0g; suppNj = (�j ; �j+k); (8:1)let j0 be the index, such that �j = tj0: (8:2)Then with the same  as in (6:2),kN�j kL1[Ij0�d ] � ckdkN�j kL1[Ij0 ] � ckdkN�j kL1[�j ;�j+k ]: (8:3)Proof. Since the support ofNj is non-empty, it contains at least one interval Ii, so that by (8:1)�(8:2)(tj0 ; tj0+1) � (�j ; �j+k);hence, the second inequality in (8:3).To prove the �rst, set �1 = f�igj+k�1i=j ; #�1 = k:Since l � k=2, this set contains at most 3 di�erent ti's, otherwise�1 = ftj0; : : : ; tj0;| {z }lj0 tj0+1; : : : ; tj0+1;| {z }l tj0+2; : : : ; tj0+2;| {z }l tj0+3; : : :g;and lj0 + 2l � 2l + 1 � k + 1;a contradiction.Therefore, either �1 = ftj0; : : : ; tj0;| {z }lj0 (�1) tj0+1; : : : ; tj0+1;| {z }lj0+1(�1)=l tj0+2; : : : ; tj0+2| {z }lj0+2(�1) g; (8:4)or �1 = ftj0; : : : ; tj0;| {z }lj0 (�1) tj0+1; : : : ; tj0+1| {z }lj0+1(�1) g (8:5)with lj0(�1) + lj0+1(�1) = k: (8:6)10



Consider �1 = f�igj+k�1i=0 :Since �1 � �1, in both cases lj0 (�1) = l � lj0(�1); lj0+1(�1) = lj0+1(�1);so that for the case (8:4) (since 2l � k), as well as for the case (8:5) (due to (8:6)), we havelj0(�1) + lj0+1(�1) � k; (8:7)By Corollary 7.1, for any null-spline s 2 ~Sl2k(�1), condition (8:7) on j0 givesks(k)kLp[Ij0�d ] � ckdks(k)kLp[Ij0 ]; 1 � p � 1:By Lemma 4.1, there exists a null-spline s1 2 ~Sl2k(�1), such thatN�j (x) = s(k)1 (x);and the lemma follows.Lemma 8.2. For any j; k, kN�j kL1[�j ;�j+k ] � ck:Proof. Set N̂i = (k=�i)1=2Ni; N̂�j = (�j=k)1=2N�j ;that is N̂�j is biorthogonal to the basis of the L2-normalized B-splines fN̂ig. C.deBoor [B3] proved thatkN̂�j k2 � ckkPSk2 = ck;hence kN�j kL1[�j ;�j+k ] = (k=�j)1=2kN̂�j kL1[�j ;�j+k ] � k1=2kN̂�j kL2[�j ;�j+k ] � c0k:Combining Lemmas 8.1-8.2 we obtainkN�j kL1[a;b] � ck NXi=0 i;hence, the �nalLemma 8.3. If for l � k=2,  = k;m < 1;then kN�j kL1[a;b] � ck; j = 0; N 0;and, respectively, kPSk;m(�)k1 � c0k:
11



9. Reduction to an eigenvalue problemCondition (6:1) implies F (0) := F (s; x)��x=t0 = 0;hence, if one rewrite (6:2) in terms of F (i) = F (s; ti), we should look for the best  in the inequalityF (i� 1) + F (i) � �2 [F (i+ 1)� F (i)]; �2 < 2(�i + 1=�i)�1: (9:1)For a l-multiple null-spline s, de�ne the vectorsxi = (x(l)i ; : : : ; x(2k�1�l)i )= (x(k�1�m)i ; : : : ; x(k+m)i ) 2 R2m+2where x(r)i = s(r)(ti)=r!; r = 0; : : : ; 2k � 1: (9:2)De�ne then a square symmetric matrix T by the rule:F (i) =: (Txi; xi);Then T is a mirror diagonal matrix with the elementstj;2m+3�j = 12(k �m � 2 + j)! (k +m + 1� j)!:In order to express F (i� 1) = (Txi�1; xi�1); F (i+ 1) = (Txi+1; xi+1)in terms of xi too, introduce square matrices Ai, such thatxi+1 = Aixi; xi�1 = A�1i�1xi:It is known that Ai = A(hi) = D(hi)AD(1=hi);where A = A(1) is a matrix with respect to the interval [0; 1], andD(h) = diag �1; h; h2; : : : ; h2m+1�(or any other diagonal matrix with dj+1;j+1=djj = h).Also, A�1i = A(�hi) = D(�hi)AD(�1=hi);in particular, A�1 = C0AC0; C0 = diag (1;�1; 1;�1; : : :):Finally, set Bi := A�1i :In terms of quadratic forms Eq. (9.1) is written as(TBi�1xi; Bi�1xi) + (Txi; xi) � �2�(TAixi; Aixi) � (Txi; xi)�;or �(B�i�1TBi�1 + T )xi; xi� � �2�(A�i TAi � T )xi; xi�:12



For two symmetric square matrices U0; V0 with positive de�nite V0, the exact constant �2 in theinequality (U0x; x) � �2(V0x; x)is equal to the largest eigenvalue of the matrix V �10 U0.That is, for U0 = B�i�1TBi�1 + T; V0 = A�iTAi � T; (9:3)we should �nd, whether the largest root �max =: �2 of the polynomialp(�) = jV �10 U0 � �Ej = jV �10 j � jU0 � �V0j; (9:4)satis�es �max < 2(� + 1=�)�1;  < 1:10. Some simpli�cationsHere we will simplify the expressions in (9:3)� (9:4), in order not to deal with T and with transposedmatrices A�; B�. Such simpli�cations seems not to be much necessary for the future MAPLE use, butthey may be useful for theoretical analysis (and at least simplify the MAPLE programs).10.1. We have T�1A�T = CAC; C = C� = diag (: : : ;�1; 1| {z }m+1 ; 1;�1; : : :| {z }m+1 ): (10:1)Proof. Set C1 = diag (1; : : : ; 1| {z }m+1 ;�1; : : : ;�1| {z }m+1 ):Then for any two null-splines s1; s2 2 ~Sl2k(�), the vectors x; y 2 R2m+2 of their derivativesx(r)i = s(r)1 (ti)=r!; y(r)i = s(r)2 (ti)=r!; r = l; : : : ; 2k� 1� l;satisfy (C1Txi; yi) = 2k�1�lXr=l (�1)rs(r)1 (ti)s(2k�1�r)2 (ti): (10:2)For two polynomials f; g 2 P2k (of degree � 2k � 1), consider the function�(f; g;x) = 2k�1Xr=0 (�1)rf (r)(x)g(2k�1�r)(x):We have �0(f; g;x) = 0;therefore �(f; g;x) = c(f; g): (10:3)If s1; s2 are two null-splines on �, then �(s1; s2;x) is continuous in ti's, and according to (10:3)�(s1; s2;x) = c(s1; s2); x 2 [a; b]:In particular, �(s1; s2; ti) = �(s1; s2; ti+1): (10:4)13



But for x = ti �(s1; s2;x) = 2k�1�lXr=l (�1)rs(r)1 (x)s(2k�1�r)2 (x);and from (10:2),(10:4) we conclude that(C1Txi; yi) = (C1Txi+1; yi+1) = (C1TAixi; Aiyi); 8xi; yi 2 R2m+2:This implies C1T = A�iC1TAi:Since C = C�, T = T �, the transposition will giveTC1 = A�iTC1Ai;Hence T�1A�iT = C1A�1i C1 = C1C0AiC0C1 = CAiC;with C = �C1C0 = � diag (1; : : : ; 1| {z }m+1 ;�1; : : : ;�1| {z }m+1 ) diag (1;�1; : : :):In Eq. (10.1) we take for C the sign (�1)m+1.10.2. From (10:3) we obtainT�1B�i TBi = T�1(A�1i )�TA�1i= CA�1i CA�1i= CD(hi)A�1D(1=hi)CD(hi)A�1D(1=hi)= D(hi)CA�1CA�1D(1=hi)that is B�i TBi = TD(hi)CA�1CA�1D(1=hi): (10:5)Similarly, A�iTAi = TD(hi)CACAD(1=hi): (10:6)10.3. Basing on (10:5)� (10:6), from (9.3)-(9.4) we obtainp(�) := ��B�i�1TBi�1 + T � ��A�iTAi � T ���= ��T �� ��D(hi�1)CA�1CA�1D(1=hi�1) + E�� �D(hi)CACAD(1=hi) �E���= ��TD(hi)C�� ��D(�i)A�1CA�1D(1=�i) + C�� �ACA� C��� ��D(1=hi)��:That is p(�) = ck det (W );with U := D(�)A�1CA�1D(1=�) +C = D(�)C0ACAC0D(1=�) +C;V := ACA� C; W := U � �V:If for k;m given, with m � k=2� 1, the largest � = �max for which p(�) = 0 satis�es�max =: �2 < 2(� + 1=�)�1; 0 <  = k;m < 1;14



then deBoor's conjecture for the case k;m is true:sup� kPSk;m(�)k1 < ck:11. The algorithmStep 1. Form the matrix A.Step 2. Form the matrices D1 := diag (1; �; : : : ; �2m+1);D2 := diag (1; 1=�; : : : ; 1=�2m+1);C0 := diag (1;�1; : : : ; 1;�1);C := diag (: : : ;�1; 1| {z }m+1 ; 1;�1; : : :| {z }m+1 ): (11:1)Step 3. Form the matricesU := D1C0ACAC0D2 + C; V := ACA�C; W := U � �W: (11:2)Step 4. For the largest root �max of the equationp(�) = det(W ) = 0;�nd whether the estimate �max < 2k;m(� + 1=�); 2 < 1;takes place. 12. Formula for the matrix ALemma 12.1. Let the polynomials fj 2 P2k[0; 1] be de�ned asf (r)j (1) = f (r)j (0) = 0; r = 0; l� 1;f (l�1+r)j (0) = �l�1+j;l�1+r ; r = 1; 2m+ 2; (12:1)and let fij := f (l�1+i)j (1); i; j = 1; 2m+ 2;Then A = faijg; aij = (l�1+j)!(l�1+i)!) fij ; i; j = 1; 2m+ 2 (12:2)Proof. For any l-null polynomial (spline) s 2 P2k[0; 1], i.e., such thats(r)(0) = s(r)(1) = 0; r = 0; l � 1;by de�nition (12:1) holds s(l�1+i)(1) = 2m+2Xj=1 fij s(l�1+j)(0): (12:3)15



In vector form, with normalisation (9:2), i.e.x(r)i = 1r!s(r)(ti);and with t0 = 0, t1 = 1 Eq. (12:3) readsx(l�1+i)1 =P2m+2j=1 (l�1+j)!(l�1+i)! fij x(l�1+j)0 :Hence, for the matrix A = faijg, such that x1 = Ax0formula (12:2) takes place.Lemma 12.2. For A := Ak;m := faijg2m+2i;j=1 ; M = minfi; 2m + 3� jg;holds aij = (�1)k�m�1 MX�=1(�1)�+1� k +m + 1� j2m + 3� j � ���k +m + 1� �i� � �: (12:4)For the simplest entries, up to the sign, we obtaina1;j = �k +m+ 1� j2m + 2� j �; ai;2m+2 = �k +mi � 1 �; i; j = 1; 2m+ 2; (12:5)in particular, for any k;m a1;2m+2 = 1: (12:6)Proof. Consider the polynomialp(x) := c1xq Z 1x c2(1� y)syt dy; c1 = 1=q!; c2 = (s + t+ 1)!s! t! ;so that p(r)(1) = 0; r = 0; s; p(r)(0) = �qr ; r = 0; q+ t+ 1:We have Z 1x = t+1X�=1�s + t + 1s + � �(1 � x)s+�xt+1��;thus, p(x) = c1 t+1X�=1�s + t+ 1s + � �(1� x)s+�xq+t+1�� :Further, for x = 1 and i � �,�(1 � x)s+�xq+t+1���(s+i) = �s + is + �� �(1� x)s+��(s+�) �xq+t+1���(i��)= �s + is + �� (�1)s+�(s + �)! (q + t+ 1� �)!q + t+ 1� i)!16



hence with M = minfi; t+ 1gp(s+i)(1) = 1q! PM�=1 �s+t+1s+� � (s+i)!(s+�)! (i��)! (�1)s+�(s + �)! (q+t+1��)!q+t+1�i)!= (�1)s+1 (s+i)!q! PM�=1(�1)��s+t+1t+1��� (q+t+1��)!(q+t+1�i)! (i��)!= (�1)s+1 (s+i)!q! PM�=1(�1)��s+t+1t+1��� �q+t+1��i�� � (12:7)In our case, with q = l � 1 + j = k �m� 2 + j;s = l � 1 = k �m� 2;t = 2m + 2� j; (12:8)we have p = fj 2 P2k; p(s+i)(1) = fij;and q!(s+i)!p(s+i)(1) = (l�1+j)!(l�1+i)! fij = aij:Thus, from the last equality in (12:7) we haveaij = (�1)s+1 MX�=1(�1)�+1�s + t + 1t + 1� ���q + t+ 1� �i � � �:From (12:8) s+ t+ 1 = k +m + 1� j;t+ 1 = 2m+ 3� j;q + t+ 1 = k +m + 1;so that, in terms of k;m, with M = minfi; 2m+ 3� jgaij = (�1)k�m�1 MX�=1(�1)�+1� k +m + 1� j2m + 3� j � ���k +m + 1� �i� � �:The lemma is proved.The following MAPLE program computes the entries aij of Ak;m for various m = 0; 1; : : : (in theexample for m = 1) which are polynomials with respect to k of degreedij = (i � 1) + (2m + 2� j):> #+++++++++++++++++ Computation of A +++++++++++++> with(linalg):> alias(R=binomial);> m:=1;> a:=(i,j) -> expand( sum('(-1)^(n+1)*R(k+m+1-n,i-n)*R(k+m+1-j,2*m+3-j-n)','n'=1..min(i,2*m+3-j) ) );> A:=matrix(2*m+2,2*m+2,a);> #+++++++++++++++++++++++++++++++++++++++++++++++++++17



13. The case of C-splines (m = 0)Step 1. To compute A by hands (as it was promised), we need only to calculate a21, because from(12:5)� (12:6) up to the sign we obtaina11 = a22 = k; a12 = 1:From (12.3) we have a21 = �k1��k1�� �k0��k � 10 � = k2 � 1;i.e., A = (�1)k�1 24 k 1k2 � 1 k 35Step 2. D1 = diag (1; �); D2 = diag (1; 1=�);C0 = diag (1;�1); C = diag (1; 1) = E:Step 3. V = A2 � E = 224 k2 � 1 kk(k2 � 1) k2 � 1 35 ;U = D1C0(A2 +E)C0D2 = 224 k2 �k=��k(k2 � 1)� k2 35 ;W = U � �V = 224 k2 � �(k2 � 1) �k(1=� + �)�k(k2 � 1)(� + �) k2 � �(k2 � 1) 35 :Step 4. p(�) = 4 2Xi=0 bi�i;with b0 > 0; b1; b2 < 0;namely b0 = k2; b1 = �k2(k2 � 1)(� + 2 + 1=�); b2 = �(k2 � 1):Equation p(�) = 0 implies b0 + b1� = �b2�2 > 0;i.e. � < �b0=b1 = 1k2 � 1(� + 2 + 1=�)�1:Finally �2 := �max < 2(� + 1=�)�1; 2 = 1k2 � 1 : (13:1)14. The case of C1-splines (m = 1)18



Step 1. The MAPLE program gives Taylor expansion of the entries aij(k) (which are polynomialswith respect to k). We modi�ed these expression to make them more compact.A = (�1)k 26666664 k(k2�1)6 k(k�1)2 k � 1 1k(k+1)(k2�4)6 k(k2�3)2 k2 � 2 k + 1(k+1)(k2�3)(k2�4)12 (k2�1)(k2�4)4 k(k2�3)2 k(k+1)2(k2�4)[(k2�3)(k2�4)+6]36 (k�1)(k2�3)(k2�4)12 k(k�1)(k2�4)6 k(k2�1)6 37777775 (14:1)Examples. Here are the matrices A = Ak for k = 4; 5A4 = 26666664 10 6 3 140 26 14 565 45 26 1054 39 24 10 37777775 ; A5 = �26666664 20 10 4 1105 55 23 6231 126 55 15273 154 70 20 37777775 :Step 2. D1 = diag (1; �; �2; �3); D2 = diag (1; 1=�; 1=�2; 1=�3);C0 = diag (1;�1; 1;�1); C = diag (�1; 1; 1;�1):Lemma 14.1. Let U; V;W 2 R4�4 be the matrices (11:1)� (11:2), and p 2 P5 be the polynomialp(�; k; �) := detW = 4Xi=0 bi(k; �)�i: (14:2)Then for k � 4 b0; b2; b3; b4 > 0; b1 < 0:As a consequence we obtain that, if p(�) = 0, and �max > 0, thenb1�max + b2�2max < 0;whence �max < � b1(k; �)b2(k; �) :Lemma 14.2. For k � 5, m = 1,�max < � b1(k; �)b2(k; �) < 2k;1(� + 1=�)�1;where 25;1 = 11=12; 2k;1 = 16k(k � 2) ; k � 6:15. The MAPLE proof of Lemma 14.119



Since the entries of the matrices U; V are of the formuij = pij(k)�i�j ; vij = qij(k); pij; qij 2 P2m+4;the coe�cients bi(k; �) in (14:2) has the formbi(k; �) = �iXj=��i bij(k)�j ; bij 2 Pdi :For the concrete values k � 4 the MAPLE program shows that for every i = 0; 4 the values bij are of thesame sign for all j = ��i; �i. However, the Taylor expansion of bij(k) with respect to k has both positiveand negative coe�cients. This is not a surprise, since we have the same picture, e.g., for the entries ofA, see (14:1). Short experiments had shown that with k = n+5 the Taylor expansion of bij with respectto n is already strictly positive.The following MAPLE programm gives fork = n+ 5; n � 0;the coe�cients bi(n; �) of the polynomialp(�;n+ 5; �) := detW = 4Xi=0 bi(n; �)�i: (15:1)For these coe�cients holds bi(n; �) = ���i 2�iXj=0 bij(n)�j ; bij 2 Pdi ; (15:2)i.e. bij(n) are polynomials in n of degree di � 1.The values �i; di are the following: i 0 1 2 3 4�i 0 3 4 3 0di � 1 8 14 16 14 8For every i = 0; 4 the coe�cients of the polynomials bij(n) are of the same sign for all j = 0; di � 1,namely sign coe� [bij] > 0; i = 0; 2; 3; 4; sign coe� [bij] < 0; i = 1:Hence, for n � 0, b0; b2; b3; b4 > 0; b1 < 0;and Lemma 14.1 is proved. (As we had mentioned, for k = 4, i.e. for n = �1, the signs of the coe�cientsbi are the same).Remark. One can verify such a sign structure, looking directly at the MAPLE formulas for bi(n; �)in (15:1), i.e., without extra expansion (15:2). However each of these formulas occupies ca. one page, sowe found it more convenient and safely for sign veri�cation to make the further splitting.> #++++++++++++ Taylor expansion of b_i, b_{ij} +++++++> with(linalg):> with(powseries):> alias(si=simplify); alias(R=binomial);> k:=n+5; m:=1; 20



> #+++++++ Matrix A> a:=(i,j) -> expand( sum('(-1)^(n+1)*R(k+m+1-n,i-n)*R(k+m+1-j,2*m+3-j-n)','n'=1..min(i,2*m+3-j) ) );> A:=matrix(2*m+2,2*m+2,a);> #+++++++ Matrices C,C0,D1,D2,U,V,W> C:=diag(-1,1,1,-1); C0:=diag(-1,1,-1,1);> D1:=diag(1,1/rho,1/rho^2,1/rho^3); D2:=diag(1,rho,rho^2,rho^3);> V:=A&*C&*A-C; U:=D1&*C0&*A&*C&*A&*C0&*D2+C; W:=U-lambda*V;> #+++++++ Polynomial p(lambda) = sum_i p(i)lambda^i> p:=powpoly(det(W),lambda):> d:=degree(det(W),n)+1;> alpha:=degree(det(W),rho); beta:=ldegree(det(W),rho);> #+++++++ Polynomials b_i(n,rho) = sum_j b_{ij}(n) rho^j> b0:=taylor(si(p(0)),n,d);> alpha1:=degree(p(1),rho); beta1:=ldegree(p(1),rho);> b1:=powpoly(si(rho^3*p(1)),rho):> b10:=taylor(b1(0),n,d);> ...> b16:=taylor(b1(6),n,d);> alpha2:=degree(p(2),rho); beta2:=ldegree(p(2),rho);> b2:=powpoly(si(rho^4*p(2)),rho):> b20:=taylor(b2(0),n,d);> ...> b28:=taylor(b2(8),n,d);> alpha3:=degree(p(3),rho); beta1:=ldegree(p(3),rho);> b3:=powpoly(si(rho^3*p(3)),rho):> b30:=taylor(b3(0),n,d);> ...> b36:=taylor(b3(6),n,d);> b4:=taylor(p(4),n,d);> #+++++++++++++++++++++++++++++++++++++++++++++++++16. The MAPLE proof of Lemma 14.2We will show that for k = n+ 5; n � 0;and coe�cients b1 := b1(n; �); b2 := b2(n; �)of the expansion (15:1), with2 := 2k;1 = 16k(k � 2) := 16(n + 5)(n+ 3) ; or 2 := 11=12; (16:1)21



holds �b1b2 < 2(� + 1=�)�1: (16:2)Inequality (16.2) is equivalent to the following one0 < 2b2 + (� + 1=�)b1 =: q1(n; �)The functions b2(n; �), b1(n; �) have the lowest degree with respect to � equal to �4 and �3, respec-tively. With respect to n they are polynomials.It would have been su�cient to have 2 = 11=12 for all k, but basing on the dependence of k;0 on kin the case m = 0 (see (13:1)), we found it useful to have a similar quadratic decay for k;1.It turned out that b2(n; �) is divided by (n + 5)(n + 3), i.e., the product b2, hence q1, are alsopolynomials in n. In order to have q1 as a polynomial both in � and n, we multiply it by �4, and checkthe inequality 0 < �4[b2 + (� + 1=�)b1] =: q(n; �): (16:3)The following MAPLE programm gives with  from (16:2) the coe�cients ci(n) of the polynomialq := q(n; �) = 8Xi=0 ci(n)�i:For these coe�cients holds ci 2 Pdi ; di = 14; i = 0; 8; di = 15; i = 1; 7;i.e. ci(n) are polynomials in n of degree di � 1.For each i = 0; 8 the coe�cients of the polynomials ci(n) are positive, i.e. (16:3), hence, (16:2) aretrue.> #++++++++++++ Coefficients c_i +++++++++++> ggamma:=16/((n+5)*(n+3));> # ggamma:=11/12;> q:=powpoly(si(rho^4*( ggamma*p(2) + (rho+1/rho)*p(1) )),rho):> c0:=taylor(si(q(0)),n,d);> ...> c8:=taylor(si(q(8)),n,d);> #++++++++++++++++++++++++++++++++++++++++++++Remark. For k = 4 we obtained 1 < 3=2 < 4;1 < 2;therefore no proof of boundedness kPS4;1(�)k1. This is, of course, no disproof as well. Such an estimatemeans only that there is no fast decrease of the L(k)2 -norms of null-splines for k = 4;m = 1.For k = 3 the inequality (6:2) does not hold at all, the right-hand side of (6:2), hence the matrix V0are only non-negative de�nite, and no bounds for 3;1 exist.To cover the cases k = 3; 4 one may try to use instead of (6:2) an inequality involving on the right-handside the L2-norm over two intervals, i.e., over [ti; ti+2].17. The case of C2-splines (m = 2)22



Lemma 17.1. For m = 2 let U; V;W 2 R6�6 be the matrices (11:1) � (11:2), and p 2 P7 be thepolynomial p(�; k; �) := �detW = 6Xi=0 bi(k; �)�i:Then for k � 6 b1; b3; b4; b5; b6 > 0; b0; b2 < 0:As a consequence we obtain that for k � 6 the largest root �max > 0 of the equation p(�) = 0 mustsatisfy at least one of the following inequalitiesb0 + b1�max < 0; b2�2max + b3�3max < 0;whence at least one of the following estimates holds:�max < � b0(k; �)b1(k; �) ; �max < � b2(k; �)b3(k; �) :Lemma 17.2. For k � 10, m = 2,�max < max�� b0(k; �)b1(k; �) ; � b2(k; �)b3(k; �)� < 2k;2(� + 1=�)�1; (17:1)where 210;2 = 65=66; 211;2 = 4=5; 2k;2 = 81(k � 1)(k � 3) ; k � 12: (17:2)Proof of Lemma 17.1. The MAPLE programm which is analogous to that in x15 gives fork = n+ 10; n � 0;the coe�cients bi(n; �) of the polynomialp(�;n+ 10; �) := � detW = 6Xi=0 bi(n; �)�i:For these coe�cients holds bi(n; �) = ���i 2�iXj=0 bij(n)�j ; bij 2 Pdi :The values �i; di are the following:i 0 1 2 3 4 5 6�i 0 5 8 9 8 5 0di � 1 18 28 34 36 34 28 18For every i = 0; 6 the coe�cients of the polynomials bij(n) are of the same sign for all j = 0; di � 1,namely sign coe� [bij] > 0; i = 1; 3; 4; 5;6; sign coe� [bij] < 0; i = 0; 2:Hence, b1; b3; b4; b5; b6 > 0; b0; b2 < 0;and Lemma 17.1 is proved. (For 6 � k � 9, the signs of the coe�cients bi are the same).23



Proof of Lemma 17.2. Ineq. (17:1) is equivalent to the following two:0 < �5[b1 + (� + 1=�)b0] =: q1(n; �);0 < �9[b3 + (� + 1=�)b2] =: q2(n; �): (17:3)The MAPLE programm gives with  from (17.2) the coe�cients ci(n); c0i(n) of the polynomialsq1 := q1(n; �) = P10i=0 ci(n)�i;q2 := q2(n; �) = P18i=0 c0i(n)�i:These coe�cients are in turn polynomials in n,ci 2 P26; 8i; c0i 2 P34; i = 0; 18; c0i 2 P35; 1 � i � 17:For each i = 0; 18 the coe�cients of the polynomials ci; c0i are positive, i.e. (17:3), hence, (17:1) are true.18. The cases of Cm-splines, m > 2We made some further computations with the MAPLE to see how the algorithm works for the casesm = 3; 4. They lead us to the followingObservation. Let p 2 P2m+3 be the polynomialp(�; k; �) := detW = 2m+2Xi=0 bi(k; �)�i:Then for k � 2m + 2 sign bi = �sign bi+1; i = 0;m;sign bm+1+i = sign bm+1; i = 1;m+ 1;so that the largest root of the equation p(�) = 0 satisfy the inequality�max < max0�i�[m=2]�� bm�2i(k; �)bm+1�2i(k; �)� < 2k;m(� + 1=�)�1:The maximum is attained for the ratio with i = 0, andk;m < 1 () k � (m + 1)2 + 1:This observation is con�rmed by the casesm 0 1 2 3 4k � 2 � 5 � 10 17; 18 26; 27for which the above scheme has been realized, and for which deBoor's conjecture is proved thereby to betrue. 24



19. ConclusionIt is clear that the above MAPLE algorithmmay help to verify de Boor's conjecture only for particularvalues m. However, the results of our experiments give a hope that the general case of splines with highknot multiplicity could be proved by purely theoretical means.This hope is based on the observation that the basic constant k;m from inequality (6:2) decaysrelatively fast with k growing, namely,k;m < cmk�1; m = 0; 1; 2:It looks quite probable that some general estimates like those used in the proof of (6:2) will bring theinequality k;m < 1� �m; k > k0(m):This method will hardly give something for smooth Cm-splines of order k, if k = O(m), so thatoriginal deBoor's conjecture still remains a mystery.References[B1] C. de Boor, On the convergence of odd-degree spline interpolation, J.Approx. Theory 1 (1968),452{463.[B2] C. de Boor, The quasi-interpolant as a tool in elementary polynomial theory, in \ApproximationTheory" (G. G. Lorentz, Ed.), pp. 269{276, Acad. Pres, New York, 1973.[B3] C. de Boor, A bound on the L1-norm of L2-approximaton by splines in terms of a global meshratio, Math.Comp. 30 (1976), 765-771.[B4] C. de Boor, On local linear functional which vanish at all B-splines but one, in \Theory ofApproximation with Applications" (A. G. Law and B. N. Sahney, Eds.), pp.120{145, AcademicPress, New York, 1976.[B5] C. de Boor, On a max-norm bound for the least-square spline approximant, in \Approximationand Function Spaces" (Z. Ciesielsky, Ed.), pp. 163{175, Proceedings of the International Conference(Gdansk, August 27-31, 1979), PWN, Warzawa, 1981.[Ci] Z. Ciesielsky, Properties of the orthonormal Franklin system, Sudia Math. 23 (1963), 141{157.[De] S. Demko, Inverses of band matrices and local convergence of spline projections, SIAM J.Numer.Anal.14 (1977), 616{619[Do] J. Domsta, A theorem on B-splines, Studia Math. 41 (1972), 291{314.[DDW] J. Douglas, T. Dupont & L. Wahlbin, Optimal L1-error estimate for Galerkin approximationto solutions of two point boundary value problems, Math.Comp. 29 (1975), 475{583.[FK] Y. Y. Feng & J. Kozak, On the generalized Euler-Frobenius polynomial, J.Approx. Theory 32(1981), 327{338.[H�o] K. H�ollig, L1-boundedness of L2-projections on splines for a geometric mesh, J.Approx. Theory33 (1981), 318{333.[J1] R. Jia, L1-boundedness of L2-projections on splines for a multiple geometric mesh, Math.Comp.48 (1987), 675{690.[J2] R. Jia, Spline interpolation at knot averages, Constr. Approx. 4 (1988), 1-7.25



[Mi]B. Mityagin, Quadratic pencils and least-squares piecewise-polynomial approximation,Math.Comp.40 (1983), 283{300.[Sh] A. Yu. Shadrin, On Lp-boundedness of the L2-projector onto splines, J. Approx. Theory 77(1994), 331{348.[ZS]N. Zmatrakov & Yu. N.Subbotin, Multiple interpolating splines of degree 2k+1 with de�ciencyk, Trudy MIAN 164 (1983), 75{90 (in Russian).

26


