
The L∞-norm of the L2-spline-projector

is bounded independently of the knot sequence:

A proof of deBoor’s conjecture

A.Yu. Shadrin

Institut für Geometrie und Praktische Mathematik

RWTH Aachen, Germany

on leave from

Computing Center, 630090 Novosibirsk, Russia

New postal address: DAMTP

Cambridge University

Silver Street

Cambridge CB3 9EW

England

new e-mail: a.shadrin@damtp.cam.ac.uk



Abstract

We prove that the L∞-norm of the L2-projector P onto the spline space Sk(∆) is bounded
independently of the knot-sequence, i.e.,

sup
∆

‖PSk(∆)‖∞ < ck.

This proves a conjecture stated by de Boor in 1972. We make use of specific properties
of matrices associated with the null-splines, various determinant identities and elements
of combinatorics. Total positivity of the matrices involved plays the key-role.

Key-words: Splines, L2-projector, de Boor’s conjecture, totally positive matrices.

AMS subject classification: primary 41A15, second 15A45.



Contents

0 Introduction 3
0.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Formulation of Theorem I . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Outline of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Main ingredients of the proof 7
1.1 B-splines and their properties . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 L2-projector and the inverse of the B-spline Gramian . . . . . . . . . . . . 8
1.3 Analytic version of de Boor’s Lemma 1.2.4 . . . . . . . . . . . . . . . . . . 10
1.4 Main idea. Formulation of Theorem Φ . . . . . . . . . . . . . . . . . . . . 10
1.5 Proof of Theorem I and its corollaries . . . . . . . . . . . . . . . . . . . . 11
1.6 Proof of Theorem Φ: proof of (A1) . . . . . . . . . . . . . . . . . . . . . . 12
1.7 An invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.8 Proof of Theorem Φ: proof of (A2) . . . . . . . . . . . . . . . . . . . . . . 14
1.9 Vectors zν . Formulation of Theorem Z . . . . . . . . . . . . . . . . . . . . 16
1.10 Proof of Theorem Φ: proof of (A3) . . . . . . . . . . . . . . . . . . . . . . 16

2 Proof of Theorem Z: intermediate estimates for zν 18
2.1 Notation and auxiliary statements . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Reduction to a linear system of equations . . . . . . . . . . . . . . . . . . 19

2.2.1 Derivatives of null-splines at knots . . . . . . . . . . . . . . . . . . 19
2.2.2 The matrices B,B′, C . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Linear system for zν . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 First estimates for zν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Total positivity of the matrices A,B,C . . . . . . . . . . . . . . . 23
2.3.2 First estimate for z0 . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 First estimate for zν . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Properties of the matrices C . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Second estimates for zν . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Proof of Theorem Z: final estimates for zν 29
3.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 The matrices S and A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 The matrix S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 The matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 The matrices Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 A further strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Minimal and maximal paths . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Characterization of E[β,i] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Relation between the minors of Q and C . . . . . . . . . . . . . . . . . . . 46
3.8 Index relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8.1 The statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8.2 Proof: The case l = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 48

1



3.8.3 Proof: The case l 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 Completion of the proof of Theorem Z . . . . . . . . . . . . . . . . . . . . 51
3.10 Last but not least . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Comments 53
4.1 A survey of earlier and related results. . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Earlier results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 L2-projector onto finite element spaces. . . . . . . . . . . . . . . . 54
4.1.3 A general spline interpolation problem . . . . . . . . . . . . . . . . 54
4.1.4 A problem for the multivariate Dk-splines . . . . . . . . . . . . . . 55

4.2 On de Boor’s Lemma 1.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Gram-matrix and de Boor’s Lemma 1.2.4 . . . . . . . . . . . . . . 55
4.2.2 On the choice of the null-spline σ . . . . . . . . . . . . . . . . . . . 56

4.3 Simplifications in particular cases . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Additional facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Orthogonality of φ ∈ Sk(∆) to Sk−1(∆) . . . . . . . . . . . . . . . 59
4.4.2 Null-splines with Birkhoff boundary conditions at t0 . . . . . . . . 60
4.4.3 Further properties of the matrices C . . . . . . . . . . . . . . . . . 61

4.5 On the constant ck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 66

2



Chapter 0

Introduction

0.1 Preface

1. Preface. In this paper we prove de Boor’s conjecture concerning the L2 spline
projector. The exact formulation is given in §0.2. Since the proof is rather long, it is
divided into three chapters, with an outline given in §0.3. For the same reason, all the
comments (historical notes, motivations, analysis of other methods, etc.) are moved to
the end of the paper. The proof is almost self-contained, we cite (without proof) only
some basic spline properties and determinant identities, and two somewhat more special
lemmas (accompanied by known simple proofs).

2. Notation. There is some mixture of notations. We use the familiar i, j both as
one- and multivariate indices, and we use p as p := k− 2 when dealing with k, the order
of the splines, while in other cases p is just an integer.

3. Acknowledgements. I am grateful to Prof.W. Dahmen for giving me the op-
portunity to work at the RWTH Aachen, and for his constant inspiring encouragement
of my studies. Thanks are extended to Prof.H. Esser, who took a lively part in discus-
sions and provided many constructive suggestions. It is a pleasure to acknowledge that
Prof.C. de Boor, in spite of some consequences for his finances, took an active part at all
stages of the proof’s evolution. To him I am obliged for a lot of hints and remarks, in
particular, for essential simplification of some of my arguments and notations.

0.2 Formulation of Theorem I

1. For an integer k > 0, and a partition

∆ := ∆N := {a = t0 < t1 < · · · < tN = b},

denote by
S := Sk(∆) := Pk(∆) ∩ Ck−2[a, b]

the space of polynomial splines of order k (i.e., of degree < k) with the knot sequence ∆
satisfying k − 1 continuity conditions at each interior knot.

Consider PS, the orthoprojector onto S with respect to the ordinary inner product

(f, g) :=
∫ b

a
fg, i.e.,

(f, s) = (PSf, s), ∀s ∈ S.

We are interested in PS as an operator from L∞ to L∞, i.e., in bounds for its norm

‖PS‖∞ := sup
f

‖PS(f)‖∞
‖f‖∞

.

In this paper we prove the following fact.
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Theorem I. For any k, the L∞-norm of the L2-projector P onto the spline space
Sk(∆) is bounded independently of ∆, i.e.,

sup
∆

‖PSk(∆)‖∞ ≤ ck. (0.2.1)

This theorem proves the conjecture of de Boor of 1972 made in [B2], see also §3.10
for details.

Earlier the mesh-independent bound (0.2.1) was proved for k = 2, 3, 4.
For k > 4 all previously known results proved boundedness of ‖PS‖∞ only under

certain restrictions on the mesh ∆. (See §4.1 for a survey of earlier and related results.)
2. Some of the earlier restrictions on ∆ included spline spaces with multiple and/or

(bi-)infinite knot-sequences, therefore two corollaries of Theorem I are worthwhile to be
mentioned.

The first extends the result to the splines with a lower smoothness, the so-called
splines with multiple knots. For k and ∆ = (ti)

N
0 as given above, we introduce a sequence

of smoothness parameters m := (mi)
N
0 where 0 ≤ mi ≤ k − 1, and denote by Sk(∆,m)

the space of polynomial splines of order k with the knot sequence ∆ which, for every i,
have mi − 1 continuous derivatives in a neighbourhood of ti. If all mi are equal to m,
then

Sk,m(∆) := Sk(∆, (m, . . . ,m)) = Pk(∆) ∩ Cm−1[a, b], Sk(∆) = Sk,k−1(∆).

Corollary I. For any k,

sup
∆,m

‖PSk(∆,m)‖∞ ≤ ck. (0.2.2)

The second corollary extends Theorem I to the splines with (bi-)infinite knot-sequence
∆∞ := (ti) and with smoothness parameters m∞ := (mi). We denote the space of these
splines by Sk(∆∞,m∞).

Corollary II. For any k,

sup
∆∞,m∞

‖PSk(∆∞,m∞)‖∞ ≤ ck. (0.2.3)

0.3 Outline of the proof

The proof is divided into three parts.
1. The first part (Chapter 1) describes the main ingredients of the proof.
Let (Mν), (Nν) be the L1-, respectively the L∞-normalized B-spline basis of Sk(∆)

(see §1.1). Our starting point (§1.3) is the observation that if φ is a spline such that

(A0) φ ∈ Sk(∆);

(A1) (−1)ν sign (φ,Mν) = const ∀ν;
(A2) |(φ,Mν)| ≥ cmin ∀ν;
(A3) ‖φ‖∞ ≤ cmax;

then
‖PSk(∆)‖∞ ≤ dk · cmax

cmin
.

This is an analytic version of de Boor’s rather simple algebraic lemma (§1.2) on the
inverse of a totally positive matrix applied to the Gram-matrix {(Mν , Nλ)}.
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Our main idea (§1.4) is the choice

φ := σ(k−1), σ ∈ S2k−1(∆) (0.3.1)

where σ is the null-spline of the even degree 2k − 2 such that

σ(tν) = 0, ν = 0, . . . , N ;

σ(l)(t0) = σ(l)(tN ) = 0, l = 1, . . . , k − 2;

1
(k−1)!σ

(k−1)(tN ) = 1.

(0.3.2)

The main claim, Theorem Φ of §1.4, is that φ so defined satisfies the properties (A0)-(A3)
given above.

As we show in §§1.6-1.8, the choice (0.3.1) makes the most problematic property (A1)
almost automatically fulfilled and provides also (A2) quite easily. To prove (A3), we use
for the components of the vector

zν = (z(1)
ν , . . . , z(2p+1)

ν ), z(l)
ν :=

1

l!
σ(l)(tν) · |hν |l−1−p, p := k − 2, (0.3.3)

(where |hν | := tν+1 − tν), the following estimate

|z(l)
ν | ≤ ck, if l ≥ p+ 1, ν ≤ N − k. (0.3.4)

This estimate forms the content of Theorem Z in §1.9. The rest of the proof (Chapters
2-3) consists of deriving (0.3.4).

2. In Chapter 2, we show that, for each ν, the vector zν in (0.3.3) is a solution to a
certain system of linear equations and provide intermediate estimates for it.

The known linear equations (§2.2) connecting derivatives zν of a null-spline at the
neighbouring knots are of the form

zν+1 = −D(ρν)Azν , ν = 0, . . . , N.

Here ρν := hν/hν+1 is the local mesh ratio, D(ρ) and A are some special matrices. For
a fixed ν, this gives the equations

B′zν = z0, Czν = zN

with the matrices B′, C being products of A and D(ρs) in certain combinations. Our
choice (0.3.2) of the null-spline σ provides the boundary conditions

z0 := (0, . . . , 0︸ ︷︷ ︸
p

, z
(p+1)
0 , . . . , z

(2p+1)
0 ), zN := (0, . . . , 0, 1︸ ︷︷ ︸

p+1

, z
(p+2)
N , . . . , z

(2p+1)
N ) .

They allow us to determine the vector zν as a solution of the linear system of equations

Mzν = (0, . . . , 0, 1︸ ︷︷ ︸
2p+1

)T , M =
B′[p, :]

C[p + 1, :]
,

where the matrix M is composed of the first p rows of B′ and the first p+ 1 rows of C
(see §2.2). We solve this system explicitly by Cramer’s rule,

z(l)
ν = (−1)2p+1+l detM (l)

detM
,

and then apply the Laplace expansion by minors of B′ and C to both determinants.
Some elementary inequalities yield then (§2.3) the first estimates:

|z(l)
ν | ≤ max

i∈Jl

C(p, il)

C(p + 1, i′)
, l = 1, . . . , 2p+ 1. (0.3.5)
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Here, J, Jl are the sets of (multi-) indices of the form

J := {i ∈ N
p : 1 ≤ i1 < · · · < ip ≤ 2p+ 1}, J

l := {i ⊂ J : is 6= l};

bold n stands for the index (1, 2, . . . , n); i′ and il are two different complements to i ∈ Jl

i ∪ i′ = (2p + 1), i ∪ il = (2p + 1) \ {l},

and C(i, j) are the corresponding minors (see §2.1 for detailed notation).
The orders of the minors in the right-hand side of (0.3.5) differs by one. We use some

relations to equalize them and obtain (§2.5) the second estimate:

|z(l)
ν | ≤ cp max

i∈Jl

C(p, il)

C(p, i∗)
, l = 1, . . . , 2p+ 1. (0.3.6)

Here i∗ ∈ J is the index symmetric to i ∈ Jl, i.e., i∗s = 2p+ 2 − ip+1−s.
3. In Chapter 3, in §§3.3-3.7, we find a necessary and sufficient condition on the

indices i, j denoted
i � j, i, j ∈ J,

for the inequality
C(p, i) ≤ cpC(p, j).

In §3.8 we verify that depending on l the indices il and i∗ satisfy this condition, namely
that

il2 � i∗ � il1 , l1 ≤ p+ 1 ≤ l2,

which gives
C(p, il) ≤ cpC(p, i∗), l ≥ p+ 1.

Combined with (0.3.6) this proves (0.3.4) and hence Theorem I.
This part of the proof is a bit long and technical, and it would be interesting to find

simpler arguments (see §§4.3-4.4 of Comments for a discussion).
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Chapter 1

Main ingredients of the proof

1.1 B-splines and their properties

As before, for k,N ∈ N, and a knot sequence

∆ = {a = t0 < t1 < · · · < tN = b},

the notation
Sk(∆) := Pk(∆) ∩ Ck−2[a, b]

stands for the space of polynomial splines of order k (i.e., of degree < k) on ∆.
The subintervals of ∆ and their lengthes will be denoted by

Ij := (tj , tj+1), |hj | := tj+1 − tj .

Let ∆(k) = (ti)
N+k−1
i=−k+1 be an extended knot sequence, such that

a = t−k+1 = · · · = t0 < t1 < · · · < tN = · · · = tN+k−1 = b.

By (Nj)
N−1
j=−k+1 we denote the B-spline sequence of order k on ∆(k) forming a partition

of unity, i.e.,

Nj(x) := Nj,k(x) := ([tj+1, . . . , tj+k] − [tj , . . . , tj+k−1])(· − x)k−1
+ ,

and by (Mj) the same sequence normalized with respect to the L1-norm:

Mj(x) := Mj,k(x) := k [tj , . . . , tj+k](· − x)k−1
+ :=

k

tj+k − tj
Nj(x).

The following lemmas are well-known.

Lemma 1.1.1 ([B4], Eqs. (4.2)-(4.5)) For any k and any ∆(k), one has

suppNj = [tj , tj+k], Nj ≥ 0,
∑

Nj = 1, (1.1.1)

Mj(x) =
k

tj+k − tj
Nj(x),

∫ tj+k

tj

Mj(t) dt = 1. (1.1.2)

Lemma 1.1.2 ([B4], Th. 3.1) The B-spline sequence (Ni) forms a basis for Sk(∆).

Lemma 1.1.3 ([B4], Th. 5.2) For any k, there exists a constant κk, the so-called B-
spline basis condition number, such that, for any a = (aj) and any ∆,

κ−1
k ‖a‖l∞ ≤ ‖

∑

j

ajNj‖L∞
≤ ‖a‖l∞ (1.1.3)
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Lemma 1.1.4 ([Schu], Th. 4.53) Any spline s ∈ Sk(∆N ) has at most N + k− 2 zeros
counting multiplicities.

Lemma 1.1.5 ([B4], Eq. (4.6))

Mi,1(x) =
1

ti+1 − ti
, x ∈ [ti, ti+1), i = 0, . . . , N − 1; (1.1.4)

M ′
i,k(x) =

k

ti+k − ti
[Mi,k−1(x) −Mi+1,k−1(x)] , i = −k + 1, . . . , N − 1. (1.1.5)

We will need two more lemmas.

Lemma 1.1.6 Let Mi ∈ Sk(∆) be the L1-normalized B-spline. Then

sign M
(k−1)
i

∣∣∣
(ti+ν−1,ti+ν)

= (−1)ν−1, ν = 1, . . . , k. (1.1.6)

Proof. Follows by induction from (1.1.4)-(1.1.5).

Lemma 1.1.7 Let Ii′ be a largest subinterval of suppMi = [ti, ti+k]. Then

|M (k−1)
i (x)| = const ≥ |hi′ |−k, x ∈ (ti′ , ti′+1). (1.1.7)

Proof. By induction. For k = 1 due to (1.1.4) the lemma is true. Let x ∈ Ii′ . From
(1.1.5)–(1.1.6) we obtain

|M (k−1)
i,k (x)| =

k

ti+k − ti
|M (k−2)

i,k−1 (x) −M
(k−2)
i+1,k−1(x)|

=
k

ti+k − ti
(|M (k−2)

i,k−1 (x)| + |M (k−2)
i+1,k−1(x)|)

≥ 1

|hi′ |
· |hi′ |−(k−1)

= |hi′ |−k.

1.2 L2-projector and the inverse of the B-spline Gramian

Consider PS, the orthogonal projector onto Sk(∆) with respect to the ordinary inner
product, i.e.,

(f, s) = (PSf, s), ∀s ∈ Sk(∆).

For N ′ = N + k − 1, let G be the N ′ ×N ′ matrix

G = {(Mi, Nj)}N−1
i,j=−k+1.

Lemma 1.2.1 [B1] For any k,∆, one has

‖PSk(∆)‖L∞
≤ ‖G−1‖l∞ .

Proof. Let f ∈ L∞, and PS(f) =
∑

j aj(f)Nj, so that for a = (ai(f))

(Ga)i :=
∑

j

(Mi, Nj) aj(f) = (f,Mi) =: bi(f).

By (1.1.3),
‖PS(f)‖L∞

≤ ‖a(f)‖l∞,
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and by (1.1.1)-(1.1.2)

‖b(f)‖l∞ := max
i

|(f,Mi)| ≤ ‖f‖L∞
· max

i
‖Mi‖L1 = ‖f‖L∞

.

Thus

‖PS‖∞ = sup
f

‖PS(f)‖L∞

‖f‖L∞

≤ sup
f

‖a(f)‖l∞

‖b(f)‖l∞

= sup
f

‖G−1b(f)‖l∞

‖b(f)‖l∞

≤ ‖G−1‖∞
as claimed.

Lemma 1.2.2 [B1] The matrix G is totally positive, i.e.,

G

(
i1, . . . , ip
j1, . . . , jp

)
≥ 0.

Lemma 1.2.3 [B1] The matrix G−1 := (g
(−1)
ij ) is checkerboard, i.e.,

|g(−1)
ij | = (−1)i+jg

(−1)
ij .

Proof. Let Gji be the algebraic adjoint to gji. By Cramer’s rule

g
(−1)
ij = (−1)i+j detGji/ detG,

and by Lemma 1.2.2 both determinants detG, detGji are non-negative.

Lemma 1.2.4 [B1] Let H−1 be a checkerboard matrix, and let a, b ∈ RN be vectors,
such that Ha = b, and

(a1) (−1)i sign bi = const ∀i;
(a2) min

i
|bi| ≥ cmin;

(a3) ‖a‖∞ ≤ cmax.

Then
‖H−1‖∞ ≤ cmax

cmin
.

Proof. Let a, b satisfy (a1)-(a3), and let

H−1 := (h
(−1)
ij ), |h(−1)

ij | = (−1)i+jh
(−1)
ij .

Then

|ai| = |(H−1b)i| := |
∑

j

h
(−1)
ij bj | =

∑

j

|h(−1)
ij bj |

≥ min
j

|bj | ·
∑

j

|h(−1)
ij | .

Therefore,

‖a‖∞ := max
i

|ai| ≥ min
j

|bj | · max
i

∑

j

|h(−1)
ij |

= min
j

|bj | · ‖H−1‖∞ .
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1.3 Analytic version of de Boor’s Lemma 1.2.4

Let a ∈ RN ′

and let φ ∈ Sk(∆) be a spline of order k on ∆ that has the expansion

φ =
∑

j

ajNj .

Then, since G := {(Mi, Nj)}, one obtains

bi := (Ga)i =
∑

j

(Mi, Nj) aj = (Mi, φ).

By Lemma 1.1.3, we also have

‖a‖l∞ ≤ κk ‖φ‖L∞

where κk is the B-spline basis condition number.
Using these two facts, Lemma 1.2.4 applied to the matrix G combined with Lemma

1.2.1 implies the following statement.

Lemma 1.3.1 Let φ be any spline, such that

(A0) φ ∈ Sk(∆);

(A1) (−1)i sign (φ,Mi) = const ∀i;
(A2) |(φ,Mi)| ≥ cmin(k) ∀i;
(A3) ‖φ‖∞ ≤ cmax(k).

Then

‖PSk(∆)‖∞ ≤ κk
cmax(k)

cmin(k)
.

1.4 Main idea: definition of φ via a null-spline σ.

Formulation of Theorem Φ

Definition 1.4.1 Define the spline σ as the spline of the even degree 2k− 2 on ∆, i.e.,

σ ∈ S2k−1(∆), (1.4.1)

that satisfies the following conditions:

σ(ti) = 0, i = 0, . . . , N ; (1.4.2)

σ(l)(t0) = σ(l)(tN ) = 0, l = 1, . . . , k − 2; (1.4.3)

1

(k − 1)!
σ(k−1)(tN ) = 1. (1.4.4)

The spline σ defined by (1.4.1)-(1.4.4) exists and is unique, see [Schu], Theorem 4.67.
This fact will follow also from our further considerations where we show that σ results
from the solution of a system of linear equations with some non-singular matrix.

Our main idea is to define φ as follows.

Definition 1.4.2 Set
φ(x) := σ(k−1)(x). (1.4.5)

Example 1.4.3 For k = 2, σ is a parabolic null-spline, and its first derivative φ = σ′ is
the broken line that alternates between +1 and −1 at the knots, i.e.,

φ =
∑

(−1)iNi, k = 2.

10



Our main result is the following theorem.
Theorem Φ. For any k there exist constants cmax(k), cmin(k), such that for any ∆N

with N ≥ 2k the spline φ defined via (1.4.5) satisfies the relations

(A0) φ ∈ Sk(∆N );

(A1) (−1)i sign (φ,Mi) = const ∀i;
(A2) |(φ,Mi)| > cmin(k) ∀i;
(A3) ‖φ‖L∞[ti,ti+1] < cmax(k) ∀i.

Remark. The restrictions N ≥ 2k is needed only in the proof of (A3).
Proof of A0. Since σ ∈ S2k−1(∆), clearly φ := σ(k−1) ∈ Sk(∆).

1.5 Proof of Theorem I and its corollaries

Proof of Theorem I. From Theorem Φ, by Lemma 1.3.1,

‖PSk(∆N )‖∞ ≤ ck, N ≥ 2k.

To complete the proof, it remains to cover the case N < 2k. As is known (see, e.g., [S1]),

‖PSk(∆N )‖∞ ≤ c(k,N),

hence,
‖PSk(∆N )‖∞ ≤ c′k, N < 2k,

and finally
‖PSk(∆)‖∞ ≤ c′′k, ∀∆.

Proof of Corollary I. Let (Mi), (Ni) be the B-spline sequences for the space
Sk(∆,m) of splines with multiple knots defined on the extended knot-sequence

(τ0, . . . , τN ′) := (t0, . . . , t0︸ ︷︷ ︸
k−m0

, . . . ti, . . . , ti︸ ︷︷ ︸
k−mi

, . . . tN , . . . , tN︸ ︷︷ ︸
k−mN

).

Further, let (M
(n)
i ), (N

(n)
i ) be the B-spline sequences on the knot-sequences ∆(n) = (t

(n)
j )

chosen so that
t
(n)
j < t

(n)
j+1, lim

n→∞
t
(n)
j = τj .

Then, as is known,

lim
n→∞

(M
(n)
i , N

(n)
j ) = (Mi, Nj),

whence, for the corresponding Gramians, we have

‖G−1‖∞ = lim
n→∞

‖(G(n))−1‖∞ ≤ ck,

where that last inequality is due to Theorem I. Thus,

‖PSk(∆,m)‖∞ ≤ ‖G−1‖∞ ≤ ck.
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Proof of Corollary II. Let (Mi), (Ni) be the B-spline sequences for the space
Sk(∆∞,m∞) of splines with multiple (bi-)infinite knot-sequence. Then also

‖PSk(∆∞,m∞)‖∞ ≤ ‖G−1
∆∞

‖∞,

where G∆∞
:= (Mi, Nj) is the corresponding (bi-)infinite Gram-matrix. By Corollary I,

all of its finite principal submatrices G∆N
are boundedly invertible. This implies that

G∆∞
is invertible, too, and

‖G−1
∆∞

‖∞ ≤ lim
N→∞

‖G−1
∆N

‖∞ ≤ ck.

1.6 Proof of Theorem Φ: proof of (A1)

Lemma 1.6.1 The spline σ changes its sign exactly at the points (ti)
N−1
i=1 , i.e.,

(−1)i sign σ
∣∣∣
(ti−1,ti)

= const, i = 1, . . . , N.

Proof. By definition (1.4.2)-(1.4.3), the spline σ ∈ S2k−1(∆) has at least N+1+2(k−2)
zeros counting multiplicities, and by Lemma 1.1.4 any spline from S2k−1(∆) has at most
N + (2k − 1) − 2 such zeros. Therefore, σ has no zeros different from (1.4.2)-(1.4.3).

Property (A1). Let φ be the spline (1.4.5). Then

(−1)i sign (φ,Mi) = const ∀i.

Proof of (A1). Integration by parts yields

(φ,Mi) :=

∫ ti+k

ti

σ(k−1)(t)Mi(t) dt

= (−1)k−1

∫ ti+k

ti

σ(t)M
(k−1)
i (t) dt

+

k−1∑

l=1

(−1)l+1σ(k−1−l)(x)M
(l−1)
i (x)

∣∣∣
ti+k

ti

.

(1.6.1)

At the point x = ti we have

σ(k−1−l)(ti) = 0, ti = t0, l = 1, . . . , k − 1;

M
(l−1)
i (ti) = 0, ti > t0, l = 1, . . . , k − 1;

and similarly for x = ti+k

σ(k−1−l)(ti+k) = 0, ti+k = tN , l = 1, . . . , k − 1;

M
(l−1)
i (ti+k) = 0, ti+k < tN , l = 1, . . . , k − 1.

Thus, the sum in (1.6.1) vanishes and

(φ,Mi) :=

∫ ti+k

ti

σ(k−1)(t)Mi(t) dt = (−1)k−1

∫ ti+k

ti

σ(t)M
(k−1)
i (t) dt. (1.6.2)

12



Since both σ(t) andM
(k−1)
i (t) alternate in sign on the sequence of subintervals of [ti, ti+k],

we have

(−1)i sign (φ,Mi) = (−1)i · (−1)k−1 sign σ
∣∣∣
(ti,ti+1)

sign M
(k−1)
i

∣∣∣
(ti,ti+1)

= (−1)i · (−1)k−1 · (−1)i const · 1
= (−1)k−1 · const.

Hence,
(−1)i sign (φ,Mi) = const, i = −k + 1, . . . , N − 1.

1.7 An invariant

For the proof of (A2) and for some further use in §2.4, we will need the following consid-
erations.

Definition 1.7.1 For two functions f, g and n ∈ N, set

G(f, g;x) :=
n+1∑

l=0

(−1)lf (l)(x)g(n+1−l)(x),

whenever the right-hand side makes sense.

Lemma 1.7.2 Let p, q be two polynomials of degree n+ 1 on I. Then

G(p, q;x) = const(p, q), ∀x ∈ I.

Proof. It is readily seen that G′(p, q;x) = 0 for all x ∈ R, hence the statement.

Lemma 1.7.3 Let s1, s2 be two null-splines of degree n+ 1 on ∆, i.e.,

s1, s2 ∈ Sn+2(∆), s1(ti) = s2(ti) = 0, i = 0, . . . , N. (1.7.1)

Then
G(s1, s2;x) = const(s1, s2), x ∈ [a, b]. (1.7.2)

Proof. By Lemma 1.7.2 the function G(s1, s2) is piecewise constant.
On the other hand, since the continuity conditions on s1, s2 ∈ Sn+2(∆) imply the

inclusion s1, s2 ∈ Cn[a, b], we have

s
(l)
1 s

(n+1−l)
2

∣∣∣
ti−0

= s
(l)
1 s

(n+1−l)
2

∣∣∣
ti+0

, l = 1, . . . , n,

and due to the null values of s1, s2 on ∆ also

s
(l)
1 s

(n+1−l)
2

∣∣∣
ti−0

= s
(l)
1 s

(n+1−l)
2

∣∣∣
ti+0

= 0, l = 0, l = n+ 1,

i.e., the function G(s1, s2) is continuous.

As a corollary, we obtain
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Lemma 1.7.4 Let σ ∈ S2k−1(∆) be the null-spline defined in (1.4.1)-(1.4.3). Then

H(x) := [σ(k−1)(x)]2 + 2

k−1∑

l=1

(−1)lσ(k−1−l)(x)σ(k−1+l)(x) = (k − 1)!2. (1.7.3)

Proof. The functionH is obtained fromG(s1, s2) if we set s1 = s2 = σ and n+1 = 2k−2,
precisely

H(x) = (−1)k−1G(σ, σ;x).

Therefore, by (1.7.2), it is a constant function.
The boundary conditions on σ at tN are

σ(l)(tN ) = 0, l ≤ k − 2; σ(k−1)(tN ) = (k − 1)!,

therefore for x = tN the sum in (1.7.3) vanishes, i.e.

H(tN ) = [σ(k−1)(tN )]2 := (k − 1)!2.

Thus,
H(x) = H(tN ) = (k − 1)!2 ∀x ∈ [a, b].

Lemma 1.7.5 We have
1

(k − 1)!
|σ(k−1)(t0)| = 1. (1.7.4)

Proof. The boundary conditions (1.4.3) on σ at t0 are

σ(l)(t0) = 0, l ≤ k − 2.

Therefore, for x = t0, the sum in (1.7.3) vanishes, i.e.,

H(t0) = [σ(k−1)(t0)]
2.

On the other hand, by (1.7.3),

H(t0) = (k − 1)!2.

1.8 Proof of Theorem Φ: proof of (A2)

For the proof of (A2), we need the following estimate.

Lemma 1.8.1 There exists a positive constant ck such that the inequality

‖σ‖L1[ti,ti+1] ≥ ck |hi|k (1.8.1)

holds uniformly in i.
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Proof. By (1.7.3), we have

(k − 1)!2 = H(ti)

:= [σ(k−1)(ti)]
2 + 2

k−2∑

m=1

(−1)mσ(k−1−m)(ti)σ
(k−1+m)(ti)

=
[
σ(k−1)(ti)

]2
+ 2

k−2∑

m=1

(−1)m[σ(k−1−m)(ti) · |hi|−m] · [σ(k−1+m)(ti) · |hi|m].

From the latter equality follows that

max
|m|≤k−2

|σ(k−1+m)(ti)| · |hi|m ≥ ck,

or, equivalently,
max

1≤l≤2k−3
|σ(l)(ti)| · |hi|l+1 ≥ ck |hi|k. (1.8.2)

By the Markov inequality for polynomials,

‖σ‖L1[ti,ti+1] ≥ cl |hi|l+1 ‖σ(l)‖L∞[ti,ti+1] ∀ l,

so that making use of (1.8.2), we obtain

‖σ‖L1[ti,ti+1] ≥ c′k |hi|k.

Property (A2). There exists a positive constant cmin(k) depending only on k such
that, for any ∆, the spline φ defined in (1.4.5) satisfies the relation

|(φ,Mi)| ≥ cmin(k), i = −k + 1, . . . , N − 1.

Proof of (A2) Let Ii′ be a largest subinterval of suppMi := [ti, ti+k]. Since

sign σ(t) · sign M
(k−1)
i (t) = const, t ∈ [ti, ti+k],

we have

|(φ,Mi)| :=

∣∣∣∣
∫ ti+k

ti

σ(k−1)(t)Mi(t) dt

∣∣∣∣

(1.6.2)
=

∣∣∣∣
∫ ti+k

ti

σ(t)M
(k−1)
i (t) dt

∣∣∣∣

=

∫ ti+k

ti

|σ(t)M
(k−1)
i (t)| dt

≥
∫ ti′+1

ti′

|σ(t)M
(k−1)
i (t)| dt

= |M (k−1)
i (xi′ )| · ‖σ‖L1[ti′ ,ti′+1]

,

and due to (1.8.1) and (1.1.7)

|(φ,Mi)| ≥ ckc
′
k =: cmin(k).
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1.9 Vectors zν. Formulation of Theorem Z

Theorem Z formulated below enables us to verify in the next section the last condition
(A3) of Theorem Φ.

Definition 1.9.1 Set

zi := (z
(1)
i , . . . , z

(2k−3)
i ) ∈ R

2k−3, i = 0, . . . , N − 1, (1.9.1)

with

z
(l)
i :=

1

l!
σ(l)(ti) · |hi|l−k+1, l = 1, . . . , 2k − 3. (1.9.2)

In the rest of the paper we are going to prove the following theorem.
Theorem Z. There exists a constant ck depending only on k such that, for N ≥ k,

the estimates
|z(l)

i | ≤ ck, l ≥ k − 1, i = 0, . . . , N − k, (1.9.3)

hold uniformly in i and l.
This theorem almost evidently implies the estimate

‖φ‖L∞[ti,ti+1] := ‖σ(k−1)‖L∞[ti,ti+1] ≤ c′k, i ≤ N − k,

which coincides with (A3) except for the indices i > N − k. In the next section we prove
this implication and show how to cover for N ≥ 2k the case i > N − k of (A3).

1.10 Proof of Theorem Φ: proof of (A3)

Property (A3). There exists a constant cmax(k) depending only on k such that, for any
∆N with N ≥ 2k, the spline φ defined (1.4.5) satisfies the relation

‖φ‖L∞[ti,ti+1] ≤ cmax(k), ∀i. (1.10.1)

Proof of (A3). 1) The case N ≥ 2k, i ≤ N − k. In this case, by (1.9.3) of Theorem
Z, and by definitions (1.9.2), (1.4.5) we have

1

m!
|φ(m)(ti)| · |hi|m =

1

m!
|σ(k−1+m)(ti)| · |hi|m

=
(k − 1 +m)!

m!
|z(k−1+m)

i |
≤ c′k, m = 0, . . . , k − 2.

On [ti, ti+1] the spline φ := σ(k−1) is an algebraic polynomial of degree k − 1, and by
Taylor expansion,

φ(ti+1) =

k−1∑

m=0

1

m!
φ(m)(ti)|hi|m.

Hence,

|φ(k−1)(ti)| · |hi|k−1 ≤ |φ(ti+1)| +
k−2∑

m=0

1

m!
|φ(m)(ti)| · |hi|m ≤ k · c′k,

and finally

‖φ(x)‖L∞[ti,ti+1] ≤
k−1∑

m=0

1

m!
|φ(m)(ti)| · |hi|m

≤ (2k − 1) · c′k =: cmax(k), i ≤ N − k, N ≥ 2k.
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2) The case N ≥ 2k, i ≥ N − k. Let σ̃ be the null-spline that is defined by the same
interpolation and boundary conditions (1.4.2)-(1.4.3) as σ, but with the normalization
at the left end-point

1

(k − 1)!
σ̃(t0) = 1.

Accordingly, we set,
φ̃ = σ̃(k−1).

Then, due to symmetry, by Theorem Z applied to σ̃, we obtain

‖φ̃‖L∞[ti,ti+1] ≤ cmax(k), i ≥ k.

On the other hand, we established in (1.7.4) that

1

(k − 1)!
σ(t0) = ±1.

This implies the equality
φ̃ = ±φ,

and, correspondingly, the estimate

‖φ‖L∞[ti,ti+1] ≤ cmax(k), i ≥ k.

If N ≥ 2k, then N − k ≥ k, thus

‖φ‖L∞[ti,ti+1] < cmax(k), i ≥ N − k, N ≥ 2k.

This completes the proof of Theorem Φ.
Remark. The size and the structure of the proof of Theorem Z (that is, of (A3))

given in the next two chapters are in a sharp contrast with the short proofs of (A1)-(A2)
given above. We conclude this chapter with a conjecture which probably could be useful
in finding a simpler proof of (A3).

Conjecture 1.10.1 Let φ := σ(k−1) be the spline (1.4.5). Then it takes its maximal
absolute values at the endpoints, i.e.,

|φ(x)| ≤ |φ(a)| (= |φ(b)| = (k − 1)!) , ∀x ∈ [a, b].

In particular, the sum in (1.7.3) is always nonnegative, and zero only if x is a knot of
high multiplicity.
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Chapter 2

Proof of Theorem Z:

intermediate estimates for zν

2.1 Notation and auxiliary statements

Let U be any n× n matrix. We denote by

U [α, β] := U

[
α1, . . . , αp

β1, . . . , βq

]

the submatrix of U (not necessarily square) whose (s, t)-entry is U [αs, βt] with α and
β sequences (indices) with increasing entries. The default sequence (:) stands for the
sequence of all possible entries. So, U [α, :] is the matrix made up from rows α1, . . . , αp of
U . The sequence (\s) stands for all entries but one numbered s. For example, U [\1, \l+1]
is the matrix made up from rows 2, . . . , n and columns 1, . . . , l, l+ 2, . . . , n of U .

The notation

U(α, β) := det U

[
α1, . . . , αp

β1, . . . , βp

]
:= U

(
α1, . . . , αp

β1, . . . , βp

)

(now with #α = #β) stands for the corresponding subdeterminant.
A matrix U is called totally positive (TP) if

U(α, β) ≥ 0 ∀α, β.

As was already mentioned, by indices we mean sequences with increasing entries. For
convenience we will also view indices as sets when writing, e.g., α ⊂ β to express that
the components of α appear also in β.

For n ∈ N, the bold n denotes the index (1, 2, . . . , n). Further,

Ip,n := {i ⊂ n : #i = p} := {(is)p
s=1 : 1 ≤ i1 < · · · < ip ≤ n}.

For the special case n = 2p + 1 we set

J := Ip,2p+1, J
l := {i ∈ J : {l} /∈ i}, l = 1, . . . , 2p+ 1.

For i ∈ Ip,n, its complement i′ and its conjugate index i∗ are given, respectively, by

i′ ∈ In−p,n, i′ := n \ i,
i∗ ∈ Ip,n, i∗ := (n+ 1 − ip, . . . , n+ 1 − i1).

For i ∈ Jl, we define also the l-complement

il ∈ J
l, il := i′ \ {l}.
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Finally, for two indices i, j ∈ Ip,n, we denote

i ≤ j ⇔ is ≤ js ∀s, |i| :=
∑

s

is.

The following lemmas will be used frequently (see [Ka], pp. 1–6).

Lemma 2.1.1 (Cauchy–Binet Formula) If U, V,W ∈ Rn×n and U = VW , then for
any i, j ∈ Ip,n

U(i, j) =
∑

α∈Ip,n

V (i, α)W (α, j).

This relation will be referred to as ‘the CB-formula’ for short.

Lemma 2.1.2 (Inverse Determinants) If V = U−1, then for any i, j ∈ Ip,n we have

V (i, j) = (−1)|i+j|U(j′, i′)

detU
.

Lemma 2.1.3 (Laplace Expansion by Minors) For any fixed index i ∈ Ip,n, we
have

detU =
∑

α∈Ip,n

(−1)|i+α|U(i, α)U(i′, α′).

We will also use the following estimate.

Lemma 2.1.4 Let q ∈ N, and as, bs, cs ≥ 0. Then

min
s

bs
cs

≤
∑q

s=1 asbs∑q
s=1 ascs

≤ max
s

bs
cs
. (2.1.1)

Proof. Let

min
s

bs
cs

= ǫ, max
s

bs
cs

= ǫ.

Then ǫcs ≤ bs ≤ ǫcs, and

ǫ

q∑

s=1

ascs ≤
q∑

s=1

asbs ≤ ǫ

q∑

s=1

ascs.

2.2 Reduction to a linear system of equations

2.2.1 Derivatives of null-splines at knots

Let q be a null spline on ∆ of degree n+ 1, i.e.,

q ∈ Sn+2(∆), q(tν) = 0 ∀ν.

Set

qν := (q(1)ν , . . . , q(n)
ν ) ∈ R

n, q(l)ν :=
1

l!
q(l)(tν), l = 0, . . . , n+ 1.
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On [tν , tν+1], q is an algebraic polynomial, and by Taylor expansion of q at x = tν we
obtain

1

i!
q(i)(tν+1) =

1

i!

n+1∑

j=i

1

(j − i)!
q(j)(tν) · |hν |j−i

=

n+1∑

j=i

(
j!

i!(j − i)!

)
1

j!
q(j)(tν) · |hν |j−i,

i.e.,

q
(i)
ν+1 · |hν |i =

n+1∑

j=i

(
j

i

)
q(j)ν · |hν |j .

Since q
(0)
ν = q

(0)
ν+1 = 0, we have

q(n+1)
ν · |hν |n+1 = −

n∑

j=1

q(j)ν · |hν |j ,

and hence

q
(i)
ν+1 · |hν |i =

n∑

j=i

[(
j

i

)
−

(
n+ 1

i

)]
q(j)ν · |hν |j , i = 1, . . . , n.

For the vectors qν we have therefore the equality

D0(hν)qν+1 = −AD0(hν)qν , (2.2.1)

where A is the n× n matrix given by

A =
{(

n+ 1

i

)
−

(
j

i

)}n

i,j=1
(2.2.2)

and
D0(h) = diag ⌈h, h2, . . . , hn⌋. (2.2.3)

By Taylor expansion of q at x = tν+1, we conclude that

D0(−hν)qν = −AD0(−hν)qν+1,

so that in view of (2.2.1)
A−1 = D0AD0, (2.2.4)

with
D0 := D0(−1) = diag ⌈−1, 1,−1, 1 . . .⌋. (2.2.5)

It is more convenient to employ another scaling of qν in (2.2.1), namely by the matrix

Dh := D(h) := h−n/2−1/2D0(h)

= diag ⌈h−n/2+1/2, h−n/2+3/2, . . . , hn/2−1/2)⌋, (2.2.6)

which satisfies
detD(h) = 1.

Then we also have the equality

D(hν)qν+1 = −AD(hν)qν ,

which may be rewritten as

D(hν+1)qν+1 = −D(hν+1/hν)AD(hν )qν . (2.2.7)
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2.2.2 The matrices B, B′, C

Set
yν := D(hν)qν , ν < N ; yN := D(hN−1)qN ,

i.e., for a null spline q ∈ Sn+2(∆), we define the vectors

yν := (y(1)
ν , . . . , y(n)

ν ) ∈ R
n,

with the components

y(l)
ν :=

1

l!
q(l)(tν) · |hν |l−(n+1)/2, ν = 0, . . . , N − 1;

y
(l)
N :=

1

l!
q(l)(tν) · |hN−1|l−(n+1)/2.

Set also
ρν := hν+1/hν.

Then from (2.2.7) follows that the vectors yν are connected by the rules

yν+1 = −D(ρν)Ayν , ν = 0, . . . , N − 2,

yN = −AyN−1,

and

yν−1 = −D0AD(1/ρν−1)D0yν , ν = 1, . . . , N − 1,

yN−1 = −D0AD0yN .

Now fix an index ν. Then we have two systems of equations

Cyν = (−1)N−νyN , B′yν = (−1)νy0, (2.2.8)

with

C := CN−ν := AD(ρN−1)AD(ρN−2) · · ·AD(ρν)A,

B := Bν := AD(1/ρ0)AD(1/ρ1) · · ·AD(1/ρν−1),

B′ := B′
ν := D0BD0.

(2.2.9)

2.2.3 Linear system for zν

Now we rewrite formula (2.2.8) for our special null-spline σ ∈ S2k−2(∆) defined in (1.4.1)–
(1.4.4). For the sake of brevity, set

p := k − 2.

Then the corresponding vectors are

zν := (z(1)
ν , . . . , z(2p+1)

ν ) ∈ R
2p+1, ν = 0, . . . , N,

with

z
(l)
ν := 1

l!σ
(l)(tν) · |hν |l−(p+1), ν = 0, . . . , N − 1;

z
(l)
N := 1

l!σ
(l)(tN ) · |hN−1|l−(p+1), ν = N.

Moreover, by definition (1.4.2)-(1.4.4) of σ, we know that

z0 =
(

0 . . . , 0︸ ︷︷ ︸
p=k−2

, z
(p+1)
0 , z

(p+1)
0 , . . . , z

(2p+1)
0

)
,

zN =
(

0 . . . , 0︸ ︷︷ ︸
p=k−2

, 1, z
(p+1)
n , . . . , z

(2p+1)
n

)
.
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By (2.2.8), we have two systems of equations

B′zν = (−1)νz0, Czν = (−1)N−νzN ,

or in view of the prescribed values of the first components of z0, zN

B′zν = (−1)ν




0
...

0





p=k−2

z
(p+1)
0

z
(p+2
0

...

z
(2p+1)
0




, Czν = (−1)N−ν




0
...

0

1





p+1=k−1

z
(p+2)
N

...

z
(2p+1)
N




, ν > 0.

According to the notation introduced in §2.1 the upper half of these equations could be
written as

B′[p, :] × zν(:) = (−1)ν




0

...

0








p , C[p + 1, :] × zν(:) = (−1)N−ν




0
...

0

1









p+1 .

For ν = 0 we have
CNz0 = (−1)NzN

or

Cz0 := C ×




0

...

0





p=k−2

z
(p+1)
0

z
(p+2)
0

...

z
(2p+1)
0




= (−1)N




0

...

0

1





p+1=k−1

z
(p+2)
N

...

z
(2p+1)
N




, ν = 0.

In terms of the unknowns z̃0 := (z
(p+1)
0 , z

(p+2)
0 , . . . , z

(2p+1)
0 ) and in our notation the upper

half of this system is equivalent to

C[p + 1,p′] × z̃0 = (−1)N




0
...

0

1








p+1.

In summary, we can form one system with a known right-hand side and obtain the
following result.
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Theorem 2.2.1 Let

zν := (z(1)
ν , . . . , z(2p+1)

ν ), z(l)
ν :=

1

l!
σ(l)(tν) · |hν |l−(p+1),

z̃0 := (z
(p+1)
0 , z

(p+2)
0 , . . . , z

(2p+1)
0 ).

Then, the vector zν ∈ R2p+1 is a solution to the system

Mzν = (−1)N−ν(0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0, 1︸ ︷︷ ︸
p+1

), M :=


 B′[p, :]

C[p + 1, :]


 , ν > 0, (2.2.10)

and the vector z̃0 ∈ Rp+1 is a solution to the system

M0z̃0 = (−1)N (0, . . . , 0, 1︸ ︷︷ ︸
p+1

), M0 := C[p + 1,p′]. (2.2.11)

2.3 First estimates for zν

2.3.1 Total positivity of the matrices A, B, C

By definition (2.2.9),

C := CN−ν := ADγ1ADγ2 · · ·ADγN−ν
A,

B := Bν := ADδ1ADδ2 · · ·ADδν
,

B′ := B′
ν := D0BD0,

where γs, δs are some positive numbers.

Lemma 2.3.1 The matrix A is totally positive.

Proof. See e.g. [BS]. We present another proof in §3.2.2.

Lemma 2.3.2 The matrices B and C are totally positive.

Proof. By Lemma 2.3.1, the matrix A is totally positive, and so is D(γ), as a diagonal
matrix with positive entries. By the CB-formula, the product of TP-matrices is a TP-
matrix.

Lemma 2.3.3 For any ν ∈ N, we have

B′
ν(i, j) = (−1)|i+j|Bν(i, j). (2.3.1)

Proof. By definition, we have

D0 := diag ⌈(−1)l⌋,

thus, by the CB-formula,

B′
ν(i, j) = D0(i, i)Bν(i, j)D0(j, j).

But since
D0(i, i) = (−1)|i|, D0(j, j) = (−1)|j|.

the statement follows.
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2.3.2 First estimate for z0

Theorem 2.3.4 The solution z̃0 = (z
(p+1)
0 , . . . , z

(2p+1)
0 )T to the problem

M0 z̃0 = (0, . . . , 0, 1︸ ︷︷ ︸
p+1

)T , M0 := C[p + 1,p′] (2.3.2)

satisfies the relation

|z(l)
0 | =

C(p,pl)

C(p + 1,p′)
, l = p+ 1, . . . , 2p+ 1. (2.3.3)

Proof. From (2.3.2) we infer

z̃0 = (z
(p+1)
0 , . . . , z

(2p+1)
0 ) = M−1

0 · (0, . . . , 0, 1︸ ︷︷ ︸
p+1

)T = M−1
0 [:, p+ 1],

i.e., z̃0 coincides with the last column of M−1
0 . By Cramer’s rule, we obtain

z
(l)
0 = z̃

(l−p)
0 = M−1

0 [l − p, p+ 1] = (−1)l+1 detM
(l−p)
0

detM0
,

where M
(l−p)
0 is the algebraic adjoint to the element M0[p+ 1, l− p]. The formulas

detM
(l−p)
0 := M0(\p+ 1, \l− p) := M0(p, \l− p) := C(p,pl),

detM0 := C(p + 1,p′)

follow from definitions and prove the theorem.

2.3.3 First estimate for zν

Theorem 2.3.5 The solution zν ∈ R2p+1 to the problem

Mzν = (0, . . . , 0, 1︸ ︷︷ ︸
2p+1

)T , M :=



 B′[p, :]

C[p + 1, :]



 ∈ R
(2p+1)×(2p+1) (2.3.4)

admits the estimate

|z(l)
ν | ≤ max

j∈Jl

C(p, jl)

C(p + 1, j′)
. (2.3.5)

Proof. 1) First we derive an expression for zν . Note that

M :=


 B′[p, :]

C[p + 1, :]


 :=




B′[p, :]

C[p, :]



 =: M [2p, :]

C[p+ 1, :]


 . (2.3.6)

From (2.3.4) we infer that

zν = M−1 · (0, . . . , 0, 1)T = M−1[:, 2p+ 1],

i.e., the vector zν is equal to the last column of M−1. By Cramer’s rule we obtain

z(l)
ν = M−1[l, 2p+ 1] = (−1)2p+1+l detM (l)

detM
, (2.3.7)
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where M (l) is the algebraic adjoint to the element M [2p+ 1, l], i.e.,

detM (l) := M(\2p+ 1, \l) = M(2p, \l).

2) Next we estimate detM (l). Expanding the determinant M(2p, \l) in (2.3.6) by
Laplace Expansion (2.1.3) by Minors of B′(p, \l) and C(p, \l), we obtain

detM (l) := M(2p, \l) =
∑

j∈Jl

(−1)ǫl(j)B′(p, j)C(p, jl),

where ǫl(j) are some integers. From (2.3.1) it follows that

B′(p, j) = (−1)ǫ(j)B(p, j)

for some integer ǫ(j). Therefore

| detM (l)| ≤
∑

j∈Jl

B(p, j)C(p, jl). (2.3.8)

3) We also need an expression for detM . Expanding the determinant detM in (2.3.6)
by Laplace Expansion (2.1.3) by Minors of B′ and C, and using (2.3.1), we find

detM =
∑

j∈J

(−1)|p+j|M(p, j)M(p′, j′)

:=
∑

j∈J

(−1)|p+j|B′(p, j)C(p + 1, j′)

=
∑

j∈J

B(p, j)C(p + 1, j′) .

i.e.,

detM =
∑

j∈J

B(p, j)C(p + 1, j′). (2.3.9)

4) Now we are able to bound zν . From (2.3.7)-(2.3.9), it follows that

|z(l)
ν | =

| detM (l)|
| detM | ≤

∑
j∈Jl B(p, j)C(p, jl)

∑
j∈J

B(p, j)C(p + 1, j′)
≤

∑
j∈Jl B(p, j)C(p, jl)

∑
j∈Jl B(p, j)C(p + 1, j′)

.

Applying Lemma 2.1.4 to the latter ratio we obtain

|z(l)
ν | ≤ max

j∈Jl

C(p, jl)

C(p + 1, j′)
.

2.4 Properties of the matrices C

The orders of the minors of C in the right hand side of (2.3.3) and (2.3.5) differ by one.
In this section we establish some relation between minors of C which allow us to equalize
these orders.

Definition 2.4.1 Define F ∈ Rn×n as an anti-diagonal matrix with the only non-zero
elements

F [i, n+ 1 − i] =
(
n+1

i

)−1
.
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Recall that by definition (2.2.5)

D0 := ⌈−1,+1, . . .⌋.

Lemma 2.4.2 There holds the equality

C−1 = (D0F )−1C∗(D0F ). (2.4.1)

Proof. Consider two null-splines s1, s2 ∈ Sn+2(∆) of degree n+ 1 on ∆,

s1, s2 ∈ Sn+2(∆), s1(tν) = s2(tν) = 0, ∀tν ∈ ∆,

and the vectors xν , yν ∈ Rn of their normalized successive derivatives

x(l)
ν :=

1

l!
s
(l)
1 (tν) · |hν |l−n/2+1, y(l)

ν :=
1

l!
s
(l)
2 (tν) · |hν |l−n/2+1. (2.4.2)

We proved in Lemma 1.7.3 the equality

G(s1, s2;x) :=

n+1∑

l=0

(−1)ls
(l)
1 (x) s

(n+1−l)
2 (x) = const(s1, s2), x ∈ [a, b]. (2.4.3)

It follows, in particular, that

G(s1, s2; tν) = G(s1, s2; tN ), (2.4.4)

Notice that due to the null values of s1, s2 on ∆ we can omit in the sum (2.4.3) the terms
corresponding to l = 0 and l = n+ 1, i.e., we have

G(s1, s2; tν) =

n∑

l=1

(−1)ls
(l)
1 (tν) s

(n+1−l)
2 (tν).

Using equalities (2.4.2) we may rewrite the latter expression in terms of the vectors x, y
as

1

(n+ 1)!
G(s1, s2; tν) =

n∑

l=1

(−1)l
(
n+1

l

)−1
x(l)

ν y(n+1−l)
ν . (2.4.5)

With the help of matrices D0 and F one obtains

(−1)l
(
n+1

l

)−1
= (D0F )l,n+1−l.

Hence,
(−1)l

(
n+1

l

)
y(n+1−l)

ν = (D0Fyν)(l),

so that (2.4.5) becomes

1

(n+ 1)!
G(s1, s2; tν) = (xν , D0Fyν).

Now, from (2.4.4) we conclude that

(xν , D0Fyν) = (xN , D0FyN). (2.4.6)

Recall that we defined the matrix C in (2.2.8)-(2.2.9) through the following relations

(−1)N−νxN = Cxν , (−1)N−νyN = Cyν .

Thus, from (2.4.6) it follows that

(xν , D0Fyν) = (Cxν , D0FCyν) = (xν , C
∗D0FCyν).
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Since we have not made any assumptions on xν , yν , the latter equality holds for any
xν , yν ∈ Rn. Hence

D0F = C∗D0FC,

and therefore
C−1 = (D0F )−1C∗(D0F ).

Lemma 2.4.3 For any i, j ∈ Ip,n, we have the equality

C(i′, j′) = f [i, j] · C(i∗, j∗), (2.4.7)

where

f [i, j] :=
F (i, i∗)

F (j, j∗)
:=

∏p
s=1

(
n+1
js

)
∏p

s=1

(
n+1
is

) .

Proof. From
C−1 = (D0F )−1C∗(D0F ) (2.4.8)

it follows that detC = detC∗ = detC−1, and since C is a TP-matrix, we have

detC = 1.

Therefore, by the Inverse Determinants Identity (2.1.2), we obtain

C(i′, j′) = (−1)|i+j|C−1(j, i). (2.4.9)

To estimate the minor C−1(j, i) we apply the CB-formula to the right hand side of (2.4.8).
Since the matrix D0 (resp. F ) is diagonal (resp. anti-diagonal), it follows that

D0(α, β) 6= 0, iff α = β; F (α, β) 6= 0, iff α = β∗.

Thus, the CB-formula gives the equality

C−1(j, i) = F−1(j, j∗)D−1
0 (j∗, j∗)C∗(j∗, i∗)D0(i

∗, i∗)F (i∗, i).

Due to the relations

D0(α
∗, α∗) = (−1)|α

∗| := (−1)(n+1)p−|α|,

F−1(α, α∗) = [F (α, α∗)]−1 = [F (α∗, α)]−1,

C∗(α, β) = C(β, α),

the latter formula for C−1(j, i) is reduced to

C−1(j, i) = (−1)−|i|−|j| F (i, i∗)

F (j, j∗)
C(i∗, j∗).

Combining this expression with (2.4.9) gives (2.4.7).

Lemma 2.4.4 For any p, n ∈ N we have

C(n − p,p′) = C(p,p∗) (2.4.10)

and there exist constants cn, c′n, such that

cn C(p, j∗) ≤ C(n − p, j′) ≤ c′n C(p, j∗) ∀j ∈ Ip,n. (2.4.11)
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Proof. By definition,

p := (1, . . . , p) = (n− p+ 1, . . . , n)∗,

n − p := (1, . . . , n− p) = (n− p+ 1, . . . , n)
′

.

Thus by (2.4.7) we obtain

C(n − p, j′) = f [p, j]C(p, j∗). (2.4.12)

Equality (2.4.10) follows now if we take j = p, since f [p,p] = 1. The inequalities (2.4.11)
follow with

cn := min {f [p, j] : 1 ≤ p ≤ n, j ∈ Ip,n}, c′n := max {f [p, j] : 1 ≤ p ≤ n, j ∈ Ip,n}.

With n = 2p+ 1, Lemma 2.4.4 takes the following form.

Lemma 2.4.5 For any p with n = 2p+ 1 we have

C(p + 1,p′) = C(p,p∗), (2.4.13)

and there exist constants cp, c
′
p, such that

cpC(p, j∗) ≤ C(p + 1, j′) ≤ c′pC(p, j∗), ∀j ∈ J. (2.4.14)

2.5 Second estimates for zν

Theorem 2.5.1 The components of the vector zν satisfy the relations

|z(l)
0 | =

C(p,pl)

C(p,p∗)
, l = p+ 1, . . . , 2p+ 1. (2.5.1)

|z(l)
ν | ≤ cp max

j∈Jl

C(p, jl)

C(p, j∗)
, l = 1, . . . , 2p+ 1. (2.5.2)

Remark. Since for l = p+ 1 we have pl = p∗, it follows that

|z(p+1)
0 | =

C(p,pp+1)

C(p,p∗)
= 1,

in accordance with (1.7.4).

Proof. By Theorem 2.3.4 we have

|z(l)
0 | =

C(p,pl)

C(p + 1,p′)
, l = p+ 1, . . . , 2p+ 1,

and by (2.4.13)
C(p + 1,p′) = C(p,p∗),

which implies the first equality (2.5.1).
Similarly, by Theorem 2.3.5 we have

|z(l)
ν | ≤ max

j∈Jl

C(p, jl)

C(p + 1, j′)
, l = 1, . . . , 2p+ 1;

and by (2.4.14)
C(p + 1, j′) ≥ cpC(p, j∗),

which leads to the second inequality.
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Chapter 3

Proof of Theorem Z:

final estimates for zν

3.1 Preliminary remarks

To estimate the ratio
C(p, i)/C(p, j)

for specific i, j ∈ J, in particular, for those given in (2.5.2), we may split the whole
product

C :=
N−ν∏

r=1

[ADγr
] · A,

into two arbitrary parts

C = KRq, Rq :=

q∏

r=1

[ADγr
] ·A, (3.1.1)

and use the CB-formula keeping the total positivity of the matrices involved in mind.
This gives

C(p, i)

C(p, j)
≤ max

α∈J

Rq(α, i)

Rq(α, j)
, (3.1.2)

so that it is sufficient to estimate Rq(α, i)/Rq(α, j) for some q. It is clear that, the smaller
is the number q of the factors of Rq in (3.1.1), the simpler is the work to be done. It
would be ideal if we could take

q = 0, R0 = A.

Unfortunately, A, though totally positive, is not strictly totally positive, i.e.,

A(α, β) = 0 for quite a lot of indices α, β ∈ J.

But fortunately, A is an oscillation matrix and we prove in the next §3.2 that

A(α, β) > 0, iff αs ≤ βs+1. (3.1.3)

As we show in §3.3 this implies

Rp−1(β, i) > 0, ∀β, i ∈ J.

Thus, it suffices to estimate the ratio

Q(β, i)/Q(β, j), Q := Rp−1 :=

p−1∏

r=1

[ADγr
] ·A.

This will be done in §3.6-§3.8.
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3.2 The matrices S and A

3.2.1 The matrix S

Definition 3.2.1 Set

S := Sn+2 :=

{(
j

i

)}n+1

i,j=0

:=

{(
j − 1

i− 1

)}n+2

i,j=1

. (3.2.1)

Example 3.2.2

S2 =


 1 1

0 1


 , S3 =




1 1 1

0 1 2

0 0 1


 , S4 =




1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1



.

Lemma 3.2.3 The matrix S in (3.2.1) is a TP-matrix, i.e.,

S(α, β) ≥ 0, ∀α, β ∈ Ip,n. (3.2.2)

Moreover, we have
S(α, β) > 0 iff α ≤ β. (3.2.3)

Proof. The first part (3.2.2) of the lemma, that is the total positivity of S, was already
proved by Schoenberg [Sch]. We present an alternative proof by induction which gives
(3.2.3) as well.

1) Let Sn be a TP-matrix (as it is for n = 2). Since

j∑

j′=2

(
j′ − 2

i− 2

)
=

(
j − 1

i− 1

)
,

it follows that

Sn+1 :=

{(
j − 1

i− 1

)}n+1

i,j=1

= S′
n+1 · In+1, (3.2.4)

where

S′
n+1 =




1 0 . . . . . . . . . . . . . . . . . 0

0
... Sn := {

(
j′−2
i−2

)
}n+1

i,j′=2

0



, In+1 =




1 1 . . . 1

0 1 . . . 1

...
. . .

. . .
...

0 . . . 0 1



. (3.2.5)

The matrix In is totally positive (all its minors are either 0 or 1), hence, by the CB-
formula and the induction hypothesis, the total positivity of Sn+1 follows.

2) Let us prove (3.2.3).
A) If

αs > βs for some s ∈ {1, . . . , p},
then the entries of the matrix

T := S[α, β],

which is a (p× p)-submatrix of the lower triangular matrix S, satisfy

T [λ, µ] = S[αλ, jµ] = 0, λ ≥ s ≥ µ.
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Hence the rows {T [λ, :]}p
λ=s are linearly dependent, i.e.,

detT := S(α, β) = 0.

B) Suppose that for any γ, δ ∈ Ip,n we have the equivalence

Sn(γ, δ) > 0 iff γ ≤ δ.

Now let
α, β ∈ Ip,n+1, αs ≤ βs ∀s = 1, . . . , p. (3.2.6)

We assume also that p ≤ n, since for p = n+1 by definition we have detSn+1 = 1. From
(3.2.4)-(3.2.5), by the CB-formula, we conclude that

Sn+1

(
α1, . . . , αp

β1, . . . , βp

)
=

∑

δ

S′
n+1

(
α1, . . . , αp

δ1, . . . , δp

)
In+1

(
δ1, . . . , δp
β1, . . . , βp

)
. (3.2.7)

We distinguish two cases.
1) If α1 > 1, then, by (3.2.6) we also have β1 > 1. Hence

S′
n+1

(
α1, . . . , αp

β1, . . . , βp

)
= Sn

(
α1 − 1, . . . , αp − 1

β1 − 1, . . . , βp − 1

)
.

Taking from the sum (3.2.7) only one term with δ = β we obtain

Sn+1

(
α1, . . . , αp

β1, . . . , βp

)
≥ Sn

(
α1 − 1, . . . , αp − 1

β1 − 1, . . . , βp − 1

)
In+1

(
β1, . . . , βp

β1, . . . , βp

)

= Sn

(
α1 − 1, . . . , αp − 1

β1 − 1, . . . , βp − 1

)

> 0,

where the last inequality holds by the induction hypothesis.
2) If α1 = 1, then

S′
n+1

(
1, α2, . . . , αp

β1, β2, . . . , βp

)
=





0, if β1 > 1;

Sn

(
α2−1,...,αp−1
β2−1,...,βp−1

)
, if β1 = 1.

In this case taking from the sum (3.2.7) the term with

δ1 = 1, δs = βs, s ≥ 2,

we obtain

Sn+1

(
1, α2, . . . , αp

β1, β2, . . . , βp

)
≥ Sn

(
α2 − 1, . . . , αp − 1

β2 − 1, . . . , βp − 1

)
In+1

(
1, β2, . . . , βp

β1, β2, . . . , βp

)

= Sn

(
α2 − 1, . . . , αp − 1

β2 − 1, . . . , βp − 1

)

> 0.
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3.2.2 The matrix A

The matrix A was defined in (2.2.2). We recall this definition.

Definition 3.2.4 Set

A := An := (aij)
n
i,j=1, aij :=

(
n+ 1

i

)
−

(
j

i

)
. (3.2.8)

Example 3.2.5

A2 =


 2 1

3 2


 , A3 =




3 2 1

6 5 3

4 4 3


 , A4 =




4 3 2 1

10 9 7 4

10 10 9 6

5 5 5 4



.

Lemma 3.2.6 The matrix A in (3.2.8) is a TP-matrix, i.e.,

A(α, β) ≥ 0, ∀α, β ∈ Ip,n. (3.2.9)

Moreover,
A(α, β) > 0 iff αs ≤ βs+1 ∀s = 1, . . . , p− 1. (3.2.10)

Proof. The following considerations are due to [BS]. For the matrix S defined in (3.2.1),
consider the matrix S− obtained from S by subtracting the last column of S from all
other columns. We have

S− :=

{(
j

i

)}n+1

i,j=0

−
{(

n+ 1

i

)}n+1

i=0

=




0 0. . . . . . . . . . . . . . . . . . . . . . . .0 1

... {
(
j
i

)
−

(
n+1

i

)
}n

i,j=1 =: −An

...

... . . . . . . . . . . . . . . . . . . . . . . . . . .
...



.

This implies that for α, β ∈ Ip,n

S

(
0, α1, . . . , αp−1, αp

β1, β2 . . . , βp, n+ 1

)
= S−

(
0, α1, . . . , αp−1, αp

β1, β2 . . . , βp, n+ 1

)

= (−1)(p+1)+1 det (−A[α, β])

= (−1)(p+1)+1(−1)pA(α, β)

= A(α, β),

i.e.,

S

(
0, α1, . . . , αp−1, αp

β1, β2 . . . , βp, n+ 1

)
= A

(
α1, . . . , αp

β1, . . . , βp

)
.

By (3.2.2), S is totally positive, and by (3.2.3) one has

S

(
0, α1, . . . , αp−1, αp

β1, β2, . . . , βp, n+ 1

)
> 0 iff





0 ≤ β1,

αs ≤ βs+1 ∀s = 1, . . . , p− 1,

αp ≤ n+ 1.

This is equivalent to (3.2.10), since the condition α, β ∈ Ip,n implies that β1 ≥ 1 and
αp ≤ n.
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3.3 The matrices Q

Definition 3.3.1 Set

Qγ := ADγ1ADγ2 · · ·ADγp−1A =

p−1∏

r=1

[ADγr
] ·A (3.3.1)

where

A = A2p+1, Dγr
:= D(γr) := diag ⌈ |γr|−p, . . . , |γr|p⌋, A,Dγ ∈ R

(2p+1)×(2p+1).
(3.3.2)

In this section we establish a relation between indices β, i, j ∈ J of the form

E[β,i] ⊂ E[β,j],

which implies the estimate

Qγ(β, i) ≤ cpQγ(β, j), ∀γ = (γ1, . . . , γp−1) ∈ R
p−1.

Here cp is a constant that is independent of γ, i.e., independent of the knot-sequence (we
recall that in (3.3.1) γr stands for the local mesh ratio ρν = hν/hν+1 with some ν).

Let
α(r) ∈ J, r = 0, . . . , p,

be a sequence of indices with

α(0) := β, α(p) := i.

From (3.3.1) and the CB-formula, we infer

Qγ(α(0), α(p)) =
∑

α(1),...,α(p−1)∈J

[
p−1∏

r=1

A(α(r−1), α(r))Dγr
(α(r), α(r))

]
× A(α(p−1), α(p)).

(3.3.3)
Since by definition (3.3.2) we have

Dγr
(α(r), α(r)) = γ

Pp
s=1[α

(r)
s −(p+1)]

r = γ−p(p+1)
r · γ|α(r)|

r ,

we may rewrite (3.3.3) as

Qγ(α(0), α(p)) ·
p−1∏

r=1

γp(p+1)
r =

∑

α(1),...,α(p−1)∈J

[
p−1∏

r=1

A(α(r−1), α(r))γ|α
(r)|

r

]
A(α(p−1), α(p))

=
∑

α(1),...,α(p−1)∈J

p∏

r=1

A(α(r−1), α(r))

p−1∏

r=1

γ|α
(r)|

r . (3.3.4)

By Lemma 3.2.6 the condition

A(α(r−1), α(r)) > 0

is equivalent to the inequalities

α(r−1)
s ≤ α

(r)
s+1, s = 1, . . . , p− 1. (3.3.5)

This means that in (3.3.4) we could restrict the sum to the non-vanishing minors of A,
i.e., to the sequence of indices that satisfy (3.3.5) for all r = 1, . . . , p simultaneously.
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Set

cγ :=

p−1∏

r=1

|γr|p(p+1).

This is the factor on the left-hand side of (3.3.4) that is independent of β and i. Then
from (3.3.4) we obtain

c′p
∑

α(1),...,α(p−1)∈J[β,i]

p−1∏

r=1

|γr||α
(r)| ≤ cγQγ(β, i) ≤ c′′p

∑

α(1),...,α(p−1)∈J[β,i]

p−1∏

r=1

|γr||α
(r)|,

(3.3.6)
where for a fixed β =: α(0) and i =: α(p), the sum is taken over the set J[β,i] of sequences

(α(r))p−1
r=1 of indices α(r) ∈ J which satisfy the condition (3.3.5) simultaneously.

Precisely, we formulate the following

Definition 3.3.2 For given β, i ∈ J, we set

α(0) := β, α(p) := i.

Further, we write
α := (α(r))p−1

r=1 ∈ J[β,i],

and we say that the sequence α is admissible for the pair [β, i] if

α(r) ∈ J, r = 1, . . . , p− 1;

α
(r−1)
s−1 ≤ α

(r)
s , r = 1, . . . , p, s = 2, . . . , p.

(3.3.7)

Definition 3.3.3 For given β, i ∈ J, we write

ǫ := (ǫ1, . . . , ǫp−1) ∈ E[β,i],

and we say that the path ǫ is admissible for [β, i], if there exists a sequence of indices

α = (α(1), . . . , α(p−1)) ∈ J[β,i],

such that
ǫr = |α(r)|, r = 1, . . . , p− 1.

With such a definition, (3.3.6) becomes

c′p
∑

ǫ∈E[β,i]

p−1∏

r=1

|γr|ǫr ≤ cγQγ(β, i) ≤ c′′p
∑

ǫ∈E[β,i]

p−1∏

r=1

|γr|ǫr , (3.3.8)

where the sum is taken over all different paths ǫ ∈ E[β,i].
Set

Q[β,i](γ) :=
∑

ǫ∈E[β,i]

p−1∏

r=1

|γr|ǫr . (3.3.9)

The next lemma follows immediately.

Lemma 3.3.4 There exists a constant cp such that if

E[β,i] ⊂ E[β,j], β, i, j ∈ J, (3.3.10)

then for any γ = (γ1, . . . , γp−1) we have

Q[β,i](γ) ≤ Q[β,j](γ),

and consequently
Qγ(β, i) ≤ cpQγ(β, j).
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3.4 A further strategy

1) The function

Q[β,i](γ) :=
∑

ǫ∈E[β,i]

p−1∏

r=1

|γr|ǫr

defined in (3.3.9) is a multivariate polynomial in γ. All the coefficients of this polynomial
are equal to 1. We want to find whether, for special i, j ∈ J, the inequality

Q[β,i](γ) ≤ cpQ[β,j](γ) (3.4.1)

holds for all γ ∈ R
p−1
+ (all γ’s are positive). The condition (3.3.10) in Lemma 3.3.4

provides, of course, this inequality, but we need to find a way to check its validity.
2) A trivial necessary condition for the inequality (3.4.1) to be true is that

(A) the minimal degree of Q[β,i](γ) ≥ the minimal degree of Q[β,j](γ),

(B) the maximal degree of Q[β,i](γ) ≤ the maximal degree of Q[β,j](γ).

This gives rise to the minimal and the maximal paths which we define in §3.5. These
paths are nothing but the corresponding degrees of the monomials in Q[β,i].

As we show in §3.5, the set of admissible paths ǫ ∈ E[β,i] (i.e., the set of monomials
of the polynomial Q[β,i](γ)) has the properties:

a) the minimal path (degree) ǫ[β] depends only on β,

b) the maximal path (degree) ǫ[i] depends only on i.

Hence, among the conditions (A)-(B) only (B) will remain under consideration.
3) For two arbitrary multivariate polynomials, the condition (B) is not sufficient to

provide (3.4.1). For example, for

P1(x, y) := 1 + x2y, P2(x, y) := 1 + x3y2,

P1 can not be bounded by (const ·P2) for all positive values x, y. Therefore, we will prove
in §3.6 that for our particular polynomials the condition (B) for the maximal degrees, or
equivalently the condition

(B′) the maximal path ǫ[i] ≤ the maximal path ǫ[j]

for the maximal paths, implies that

{the set of all monomials of Q[β,i]} ⊂ {the set of all monomials of Q[β,j]}.

In the path terminology it looks like

ǫ[i] ≤ ǫ[j] ⇒ E[β,i] ⊂ E[β,j].

Then, by (3.3.10), the inequality (3.4.1) trivially follows.
4) To prove the last implication, we establish in §3.6 a criterion for the inclusion

γǫ := γǫ1
1 . . . γǫr

r ∈ Q[β,i](γ), or equivalently ǫ ∈ E[β,i].

With Q[β,ω] being the polynomial of the highest maximal degree ω (with the highest

maximal path ǫ[ω]), the criterion is

γǫ ∈ Q[β,ω](γ), ǫ ≤ ǫ[i] ⇔ γǫ ∈ Q[β,i](γ).

In words, a monomial γǫ belongs to the polynomial Q[β,i](γ) if and only if
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i) it belongs to the highest polynomial Q[β,ω](γ),

ii) its degree ǫ does not exceed the maximal degree ǫ[i] of the polynomial Q[β,i](γ).

In the path terminology this can be rephrased as

ǫ ∈ E[β,ω], ǫ ≤ ǫ[i] ⇔ ǫ ∈ E[β,i].

Only sufficiency needs to be proved, i.e. the implication “⇒”.
5) The latter will be proved by the iterative use of the following “elementary” step:

for any i′ which differs from i only in one component im, the same implication holds:

ǫ ∈ E[β,i′], ǫ ≤ ǫ[i] ⇒ ǫ ∈ E[β,i].

All of §3.6 is devoted to the proof of this latter statement.
a) We have a path ǫ′ ∈ E[β,i′] (a monomial γǫ′ ∈ Q[β, i′; γ]) with ǫ′ ≤ ǫ[i].

b) It is defined by a sequence (α′(r)) ∈ J[β,i′] with |α′(r)| = ǫ′r.
c) Since i′ ≥ i, this sequence may not be admissible for [β, i].
d) But we can modify it to a sequence (α′′(r)), such that (α′′(r)) ∈ J[β,i] and |α′′(r)| =

ǫ′r.
These modifications are treated in Lemmas 3.6.1–3.6.3. The statements of these

Lemmas are summarized then in Lemmas 3.6.4–3.6.5.

3.5 Minimal and maximal paths

In this section we define the minimal and the maximal admissible sequences α(r), α(r) ∈
J[β,j], and respectively the minimal and the maximal paths ǫ[β], ǫ[j] ∈ E[β,j].

We start with examples of what the admissible sequences (α(r)) ∈ J[β,i] look like.
According to definition (3.3.7) we have two strings of inequalities

1 ≤ α
(r)
s−1 < α

(r)
s < 2p+ 1, r = 1, . . . , p− 1, s = 2, . . . , p,

α
(r−1)
s−1 ≤ α

(r)
s , r = 1, . . . , p, s = 2, . . . , p.

In order to analyse these strings, we will frequently express them in the following matrix
form.

Example 3.5.1

p = 2, (α(1)) ∈ J[β,i]




α(1)

↓ i1

α
(1)
1 ≤ i2

β1 ≤ α
(1)
2

β2




p = 3, (α(1), α(2)) ∈ J[β,i]




α(2)

↓ i1
α(1)

↓ α
(2)
1 ≤ i2

α
(1)
1 ≤ α

(2)
2 ≤ i3

β1 ≤ α
(1)
2 ≤ α

(2)
3

β2 ≤ α
(1)
3

β3
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arbitrary p, (α(1), . . . , α(p−1)) ∈ J[β,i]




α(p−1)

↓ i1
α(p−2)

↓ α
(p−1)
1 ≤ i2

α(2)

↓ α
(p−2)
1 ≤ α

(p−1)
2 ≤ i3

α(1)

↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
(1)
1 ≤ α

(2)
2 ≤ · · · ≤ α

(p−2)
p−2 ≤ α

(p−1)
p−1 ≤ ip

β1 ≤ α
(1)
2 ≤ α

(2)
3 ≤ · · · ≤ α

(p−2)
p−1 ≤ α

(p−1)
p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βp−2 ≤ α
(1)
p−1 ≤ α

(2)
p

βp−1 ≤ α
(1)
p

βp




In such a representation, each column is an index from J, i.e., the following “vertical”
inequalities are also valid:

1 ≤ α
(r)
1 < · · · < α(r)

p ≤ 2p+ 1. (3.5.1)

In particular, it follows that

s ≤ α(r)
s ≤ p+ 1 + s, s = 1, . . . , p. (3.5.2)

Lemma 3.5.2 For any β, i ∈ J the set J[β,i] is non-empty.

Proof. The following sequence (α(r)) is always admissible:




α(p−1)

↓ i1
α(p−2)

↓ 1 < i2
α(2)

↓ 1 < 2 < i3
α(1)

↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 < 2 < · · · < p− 2 < p− 1 < ip

β1 < p+ 3 < p+ 4 < · · · < 2p < 2p+ 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βp−2 < 2p < 2p+ 1

βp−1 < 2p+ 1

βp




Lemma 3.5.3 For any β, i ∈ J, and any (α(r)) ∈ J[β,i], we have

α(r) ≤ α(r), (3.5.3)
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where

α(r)
s =





min (ip−r+s, p+ 1 + s), s ≤ r;

p+ 1 + s, s > r;
r = 1, . . . , p− 1. (3.5.4)

Proof. In view of (3.5.2), the following table presents the admissible sequence (α(r))
whose entries take the maximal possible values.

The maximal sequence (α(r))



α(p−1)

↓ i1
α(p−2)

↓ min (i2, p+ 2)≤ i2
α(2)

↓ min (i3, p+ 2) ≤min (i3, p+ 3)≤ i3
α(1)

↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

min (ip, p+ 2)≤min (ip, p+ 3)≤ · · ·≤min (ip, 2p− 1)≤ min (ip, 2p) ≤ ip

β1 < p+ 3 < p+ 4 < · · ·< 2p < 2p+ 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βp−2< 2p < 2p+ 1

βp−1< 2p+ 1

βp




Lemma 3.5.4 For any β, i ∈ J, and any (α(r)) ∈ J[β,i], we have

α(r) ≤ α(r), (3.5.5)

where

α(r)
s =





s, s ≤ r;

max (βs−r, s), s > r;
r = 1, . . . , p− 1. (3.5.6)

Proof. In view of (3.5.2), the following table presents the admissible sequence (α(r))
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whose entries take the minimal possible values.

The minimal sequence (α(r))


α(p−1)

↓ i1
α(p−2)

↓ 1 <i2
α(2)

↓ 1 < 2 <i3
α(1)

↓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 < 2 < · · ·< p− 2 < p− 1 <ip

β1 ≤ max (β1, 2) ≤ max (β1, 3) ≤ · · ·≤max (β1, p− 1)≤max (β1, p)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βp−2 ≤max (βp−2, p− 1)≤max (βp−2, p)

βp−1 ≤ max (βp−1, p)

βp




Definition 3.5.5 For β, i ∈ J define the maximal path ǫ[i] and the minimal path ǫ[β]as
follows:

ǫ[i] ∈ E[β,i], ǫ[i]r := |α(r)| =

r∑

s=1

min (ip−r+s, p+ 1 + s) +

p∑

s=r+1

(p+ 1 + s); (3.5.7)

ǫ[β] ∈ E[β,i], ǫ[β]
r := |α(r)| =

r∑

s=1

s+

p∑

s=r+1

max (βs−r, s). (3.5.8)

Lemma 3.5.6 For any β, i ∈ J, we have

ǫ[β] ≤ ǫ ≤ ǫ[i], ∀ǫ ∈ Eβ,i. (3.5.9)

Proof. Follows directly from Lemmas 3.5.3-3.5.4 and Definition 3.5.5.

3.6 Characterization of E[β,i]

Here we will prove the equality

E[β,i] = {ǫ ∈ E[β,ω] : ǫ ≤ ǫ[i]}, ∀β, i ∈ J,

where ω := (p+ 2, . . . , 2p+ 1) is index from J with maximal possible entries. The latter
will be proved by the iterative use of the following “elementary” step: for any i′ that
differs from i only in one component im, the same implication holds:

ǫ ∈ E[β,i′], ǫ ≤ ǫ[i] ⇒ ǫ ∈ E[β,i].

In this section exclusively, for i ∈ J we denote by i′, i′′ ∈ J some modifications of i which
have nothing to do with unfortunately the same notation for the complementary index.
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Lemma 3.6.1 For any given m ∈ {1, . . . , p}, let i, i′ ∈ J be such that

i′s = is, s 6= m;

i′m = im + 1.

If for a given β ∈ J we have
ǫ′ ∈ E[β,i′], ǫ′ ≤ ǫ[i],

then for the same β there exists a path ǫ, and a number l ∈ {1, . . . , p}, such that

ǫ ∈ E[β,i], ǫr =





ǫ′r, r = 1, . . . , l− 1;

ǫ′r − 1, r = l, . . . , p− 1.
(3.6.1)

Proof. Let
ǫ′ ∈ E[β,i′], ǫ′ ≤ ǫ[i].

By definition, there exists a sequence α′ ∈ J[β,i′] which satisfies the inequalities




i1

α
′(p−1)
1 ≤ i2

. . . . . . . . . . . . . . . . . . . . . .

α
′(p−m)
1 ≤ · · · ≤ α

′(p−1)
m ≤ im−1

α
′(p−m+1)
1 ≤ α

′(p−m+2)
2 ≤ · · · ≤ α

′(p−1)
m−1 ≤ im + 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α
′(1)
1 ≤ · · · ≤ α

′(p−m+1)
p−m+1 ≤ α

′(p−m+2)
p−m+2 ≤ · · · ≤ α

′(p−1)
p−1 ≤ ip

β1 ≤ α
′(1)
2 ≤ · · · ≤ α

′(p−m+1)
p−m+2 ≤ α

′(p−m+2)
p−m+3 ≤ · · · ≤ α

′(p−1)
p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

βp−1 ≤ α
′(1)
p

βp




(3.6.2)
and moreover

|α′(r)| = ǫ′ ≤ ǫ[i]r , r = 1, . . . , p− 1.

To produce a required sequence α ∈ J[β,i], we change the values of the components of
α′ ∈ J[β,i′] only in the m-th row:

α
′(p−m+1)
1 ≤ · · · ≤ α′(p−1) ≤ i′m := im + 1.

For α′’s in this row we have two possible relations.
1) The first one is the inequality

α
′(p−1)
m−1 < im + 1.

Then
α
′(p−m+1)
1 ≤ · · · ≤ α

′(p−1)
m−1 ≤ im.

Therefore, α′ ∈ J[β,i], hence
ǫ′ ∈ E[β,i],

and (3.6.1) is satisfied with l = p, i.e., we do not have to do anything.
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2) The second possibility is that for some t ∈ {1, . . . ,m − 1} we have the following
relations

α
′(p−m+1)
1 ≤ · · · ≤ α

′(p−m+t−1)
m−1 < α

′(p−m+t)
t = · · · = α

′(p−1)
m−1 = im + 1. (3.6.3)

In this case we set

α
(p−m+s)
s := α

′(p−m+s)
s − 1 = im, s = t, . . . ,m− 1;

α
(r)
s := α

′(r)
s , otherwise;

(3.6.4)

thus, changing by −1 only the last m− t entries of the m-th row.
2a) By such a definition, the second part of (3.6.1) holds evidently with l = p−m+ t.
2b) To show that ǫ ∈ E[β,i], we need to prove that

α ∈ J[β,i].

Since the changes are restricted to the m-th row we need to care only about the inequal-
ities where the changed values are involved, i.e., about the inequalities

α
(p−m+t)
t−1 · · · α

(p−1)
m−2 im−1,

∧ ∧ ∧
α

(p−m+t−1)
t−1 ≤ α

(p−m+t)
t ≤ · · · ≤ α

(p−1)
m−1 ≤ im.

(3.6.5)

2c) From (3.6.3) and (3.6.4) it follows that in the m-th row we have

α
(p−m+t−1)
t−1 ≤ α

(p−m+t)
t = · · · = α

(p−1)
k−1 = im,

i.e., the “horizontal” inequalities in (3.6.5) are valid.
2d) In the columns (α(p−m+s))m−1

s=t we have

α
(p−m+s)
s−1 := α

′(p−m+s)
s−1 ≤ im−1 < im =: α(p−m+s)

s ,

i.e., the “vertical” inequalities in (3.6.5) are also true.

Lemma 3.6.2 For some l ∈ {1, . . . , p− 1}, let ǫ be a path such that

ǫ ∈ E[β,i], ǫr :=





ǫ′r ≤ ǫ

[i]
r , r = 1, . . . , l − 1;

ǫ′r − 1 < ǫ
[i]
r , r = l, . . . , p− 1.

(3.6.6)

Then there exists an l′′ > l and a path

ǫ′′ ∈ E[β,i], (3.6.7)

such that

ǫ′′r =





ǫ′r ≤ ǫ

[i]
r , r = 1, . . . , l′′ − 1;

ǫ′r − 1 < ǫ
[i]
r , r = l′′, . . . , p− 1.

(3.6.8)

Proof. By definition, there exists a sequence α = {α(r)}, such that

α ∈ J[β,i], |α(r)| = ǫr :=





ǫ′r ≤ ǫ
[i]
r , r = 1, . . . , l − 1;

ǫ′r − 1 < ǫ
[i]
r , r = l, . . . , p− 1.

41



We will change now by +1 a non-zero number q + 1 of successive elements of α ∈ J[β,i]

in a certain row starting from an element α
(l)
s∗ in the l-th column.

A) By such a change the equality (3.6.8) holds automatically.
B) The task is to find a starting element so that the new sequence α′′ would still be

in J[β,i]. Since the changes are restricted to a certain row we need to care only about the
inequalities where the changed values are involved, i.e., about the inequalities

α
′′(l)
s∗ ≤ α

′′(l+1)
s∗+1 ≤ · · · ≤ α

′′(l+q)
s∗+q ≤ α

(l+q+1)
s∗+q+1

∧ ∧ ∧ ∧
α
′′(l)
s∗+1 α

′′(l+1)
s∗+2 · · · α

′′(l+q)
s∗+q+1.

(3.6.9)

Consider the index α(l). Since

α(l)
s ≤ α(l)

s , s = 1, . . . , p,

and by assumption (3.6.6)

p∑

s=1

α(l)
s := |α(l)| < ǫ

[i]
l := |α(l)| :=

p∑

s=1

α(l)
s ,

there exists a number s′, such that

α
(l)
s′ < α

(l)
s′ .

Set
s∗ := max

{
s ∈ {1, . . . , p} : α(l)

s < α(l)
s

}
. (3.6.10)

1) If s∗ = p, then we set
α′′(l)

p = α(l)
p + 1,

and the lemma is proved with l′′ = l+ 1.
2) Let s∗ < p. Then, by definition of s∗,

α
(l)
s∗ < α

(l)
s∗ < α

(l)
s∗+1 = α

(l)
s∗+1,

i.e.,

α
(l)
s∗ + 1 < α

(l)
s∗+1. (3.6.11)

Set
l′′ = max

{
l+ t ∈ {l, . . . , p− 1} : α

(l)
s∗ = α

(l+t)
s∗+t

}
+ 1,

and let
l′′ =: l + q + 1, q ∈ {0, . . . , p− 1 − l}.

Then we have the following three possibilities for the position of l′′ in the table.
a) The case (l + q) < (p− 1), s∗ + q < p.




· · · ≤ α
(l)
s∗ = α

(l+1)
s∗+1 = · · · = α

(l+q)
s∗+q < α

(l+q+1)
s∗+q+1 ≤ · · ·

· · · ≤ α
(l)
s∗+1 ≤ α

(l+1)
s∗+2 ≤ · · · ≤ α

(l+q)
s∗+q+1 ≤ · · ·




b) The case (l + q) < (p− 1), s∗ + q = p.




· · · ≤ α
(l)
s∗ = α

(l+1)
s∗+1 = · · · = α

(l+q−1)
p−1 = α

(l+q)
p

· · · ≤ α
(l)
s∗+1 ≤ α

(l+1)
s∗+2 ≤ · · · ≤ α

(l+q−1)
p
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c) The case (l + q) = (p− 1) (then s∗ + q = m− 1 < p).




· · · ≤ α
(l)
s∗ = α

(l+1)
s∗+1 = · · · = α

(p−1)
m−1 ≤ im

· · · ≤ α
(l)
s∗+1 ≤ α

(l+1)
s∗+2 ≤ · · · ≤ α

(p−1)
m




Set

α
′′(l+t)
s∗+t = α

(l+t)
s∗+t + 1, t = 0, . . . , q;

α
′′(r)
s = α

(r)
s , otherwise;

(3.6.12)

thus, increasing by +1 the elements in the upper row of the above subtables.
2.1) Let us verify the “vertical” inequalities in (3.6.9). Since, by (3.6.11),

α
(l)
s∗ + 1 < α

(l)
s∗+1,

and since, for the upper and lower row of the above subtables, the relations

α
(l+t)
s∗+t + 1 = α

(l)
s∗ + 1, α

(l)
s∗+1 ≤ α

(l+t)
s∗+t+1, t = 0, . . . , q

are valid, we have

α
(l+t)
s∗+t + 1 = α

(l)
s∗ + 1 < α

(l)
s∗+1 ≤ α

(l+t)
s∗+t+1,

i.e.,

α
(l+t)
s∗+t + 1 < α

(l+t)
s∗+t+1,

According to the definition (3.6.12), this gives

α
′′(l+t)
s∗+t := α

(l+t)
s∗+t + 1 < α

(l+t)
s∗+t+1 =: α

′′(l+t)
s∗+t+1, t = 0, . . . , q,

i.e.,

α
′′(l+t)
s∗+t < α

′′(l+t)
s∗+t+1, t = 0, . . . , q.

This proves the “vertical” inequalities in (3.6.9).
2.2) Let us prove the “horizontal” inequalities in (3.6.9). It is clear that, due to the

equalities

α
(l)
s∗ = α

(l+1)
s∗+1 = · · · = α

(l+q)
s∗+q ,

the definition (3.6.12) implies

α
′′(l)
s∗ = α

′′(l+1)
s∗+1 = · · · = α

′′(l+q)
s∗+q .

Also in the case (a) we have

α
′′(l+q)
s∗+q := α

(l+q)
s∗+q + 1 ≤ α

(l+q+1)
s∗+q+1 =: α

′′(l+q+1)
s∗+q+1

and that completes the “horizontal” part of (3.6.9) for this case.
Further, since by definition (3.6.10) we have

α
(l)
s∗ + 1 < α

(l)
s∗ ,

it follows that
α

(l+t)
s∗+t + 1 = α

(l)
s∗ + 1 ≤ α

(l)
s∗ ≤ α

(l+t)
s∗+t .

This implies

α
′′(l+t)
s∗+t := α

(l+t)
s∗+t + 1 ≤ α

(l+t)
s∗+t .

i.e., the values of the modified α′′ lie in the admissible intervals. In particular, in the
case (b)

α′′(l+q)
p ≤ α(l+q)

p = 2p+ 1,
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and in the case (c)

α
′′(p−1)
m−1 ≤ α

(p−1)
m−1 = min (p+m, im) ≤ im.

This finishes the proof of the “horizontal” part of (3.6.9) and of the lemma.

Lemma 3.6.3 For some l ∈ {1, . . . , p− 1}, let ǫ be a path such that

ǫ ∈ E[β,i], ǫr :=





ǫ′r ≤ ǫ

[i]
r , r = 1, . . . , l − 1;

ǫ′r − 1 < ǫ
[i]
r , r = l, . . . , p− 1.

Then
ǫ′ ∈ E[β,i].

Proof. An iterative use of Lemma 3.6.2.

We summarize Lemmas 3.6.1-3.6.3 in the following two statements.

Lemma 3.6.4 For any given m ∈ {1, . . . , p}, let i, i′ ∈ J be such that

i′s = is, s 6= m;

i′m = im + 1.

If ǫ′ is a path such that
ǫ′ ∈ E[β,i′], ǫ′ ≤ ǫ[i],

then
ǫ′ ∈ E[β,i]. (3.6.13)

Proof. By Lemma 3.6.1, for such a path ǫ′, there exists a path ǫ, and a number l ∈
{1, . . . , p− 1}, such that

ǫ ∈ E[β,i], ǫr =





ǫ′r, r = 1, . . . , l − 1;

ǫ′r − 1, r = l, . . . , p− 1.

And, by Lemma 3.6.3, we have then the inclusion (3.6.13).

Lemma 3.6.5 For any given m ∈ {1, . . . , p}, let i, i′ ∈ J be such that

i′s = is, s 6= m;

i′m = im + 1.

Then
E[β,i] = {ǫ ∈ E[β,i′] : ǫ ≤ ǫ[i]} .

Proof. For i, i′ so defined, the inclusion

{ǫ ∈ E[β,i′] : ǫ ≤ ǫ[i]} ⊂ E[β,i]
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is just a reformulation of Lemma 3.6.4. On the other hand, since i ≤ i′, it is clear that

E[β,i] ⊂ E[β,i′],

and it remains to recall that, by (3.5.9), for ǫ ∈ E[β,i] we have ǫ ≤ ǫ[i].

Set
ω := (p+ 2, . . . , 2p+ 1), ω ∈ J.

Then ω is the index of J with the maximal possible entries, i.e.,

i ≤ ω, ∀i ∈ J.

Proposition 3.6.6 For any β, i ∈ J, we have

E[β,i] = {ǫ ∈ E[β,ω] : ǫ ≤ ǫ[i]}.

Proof. Since i ≤ ω, i.e.,
is ≤ ωs, s = 1, . . . , p− 1,

there exists a number N , a sequence of indices (i(ν))N
ν=0, and a sequence of numbers

(mν)N
ν=1, such that

i(0) = i, i(N) = ω,

and

i
(ν)
s = i

(ν−1)
s , s 6= mν ;

i
(ν)
s = i

(ν−1)
s + 1, s = mν .

Since
i ≤ i(1) ≤ · · · ≤ i(N−1) ≤ ω,

we have
ǫ[i] ≤ ǫ[i

(1)] ≤ · · · ≤ ǫ[i
(N−1)] ≤ ǫ[ω],

and, by iterative use of Lemma 3.6.5, we obtain

E[β,i] = {ǫ ∈ E[β,i(1)] : ǫ ≤ ǫ[i]}
= {ǫ ∈ E[β,i(2)] : ǫ ≤ ǫ[i

(1)], ǫ ≤ ǫ[i]}
= {ǫ ∈ E[β,i(2)] : ǫ ≤ ǫ[i]}
= · · ·
= {ǫ ∈ E[β,i(N−1)] : ǫ ≤ ǫ[i]}
= {ǫ ∈ E[β,ω] : ǫ ≤ ǫ[i]}.

Proposition 3.6.7 If
ǫ[i] ≤ ǫ[j], i, j ∈ J,

then
E[β,i] ⊂ E[β,j] ∀β ∈ J.

Proof. By Proposition 3.6.6, we have

E[β,i] = {ǫ ∈ E[β,ω] : ǫ ≤ ǫ[i]}, E[β,j] = {ǫ ∈ E[β,ω] : ǫ ≤ ǫ[j]},
and it is clear that

ǫ[i] ≤ ǫ[j] ⇒ {ǫ ∈ E[β,ω] : ǫ ≤ ǫ[i]} ⊂ {ǫ ∈ E[β,ω] : ǫ ≤ ǫ[j]}.
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3.7 Relation between the minors of Q and C

Definition 3.7.1 For i, j ∈ J, we write

i � j ⇔ ǫ[i] ≤ ǫ[j], (3.7.1)

or, equivalently,

i � j ⇔
p−t∑

s=1

min (is+t, p+1+s) ≤
p−t∑

s=1

min (js+t, p+1+s), t = 1, . . . , p−1. (3.7.2)

Let us show the equivalence. By Definition 3.5.7,

ǫ[i] ≤ ǫ[j] ⇔
r∑

s=1

min (ip−r+s, p+1+s) ≤
r∑

s=1

min (jp−r+s, p+1+s), r = 1, . . . , p−1.

(3.7.3)
To see that inequalities (3.7.2) and (3.7.3) are equivalent, one should set r = p− t.

Proposition 3.7.2 For any p ∈ N, there exists a constant cp, such that if

i, j ∈ J, i � j,

then
Q(β, i) ≤ cpQ(β, j), ∀β ∈ J . (3.7.4)

Proof. By Definition 3.7.1, by Lemma 3.6.7, and by Lemma 3.3.4, we have the implica-
tions

i � j ⇒ ǫ[i] ≤ ǫ[j] ⇒ E[β,i] ⊂ E[β,j] ⇒ Q(β, i) ≤ cpQ(β, j) ∀β ∈ J.

Proposition 3.7.3 For any p ∈ N, there exists a constant cp, such that if

i, j ∈ J, i � j, (3.7.5)

then for any ν ≤ N − p+ 1 we have

CN−ν(p, i) ≤ cpCN−ν(p, j).

Proof. If ν ≤ N − p+ 1, then N − 1 ≥ ν + p− 2 and we find that

CN−ν :=
N−1∏

s=ν

[AD(ρs)] · A = K ·
ν+p−2∏

s=ν

[AD(ρs)] · A = K ·
p−1∏

s=1

[AD(ρν+s−1] · A =: K ·Q,

with some totally positive matrix K. By the CB-formula, making use of (3.7.4), we
obtain

CN−ν(p, i) =
∑

β∈J

K(p, β)Q(β, i)

≤ cp
∑

β∈J

K(p, β)Q(β, j)

= cpCN−ν(p, j).
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3.8 Index relations

3.8.1 The statement

Recall definitions from §2.1:

2p + 1 := (1, . . . , 2p+ 1), J := {j ⊂ 2p + 1 : #j = p},

Jl := {j ∈ J : {l} /∈ j}, l = 1, . . . , 2p+ 1.

For i ∈ Jl we defined its l-complement il and its conjugate index i∗ as

il ∈ J
l, il = 2p + 1 \ {l} \ i,

i∗ ∈ J, i∗ = (2p+ 2 − ip, . . . , 2p+ 2 − i1).

In this section we will prove the following.

Proposition 3.8.1 Let i ∈ Jl. Then

il2 � i∗ � il1 , l1 ≤ p+ 1 ≤ l2,

or, equivalently,

p−t∑

s=1

min (ils+t, p+ 1 + s) ≤
p−t∑

s=1

min (i∗s+t, p+ 1 + s), t = 1, . . . , p− 1, l ≥ p+ 1;(3.8.1)

p−t∑

s=1

min (ils+t, p+ 1 + s) ≥
p−t∑

s=1

min (i∗s+t, p+ 1 + s), t = 1, . . . , p− 1, l ≤ p+ 1.(3.8.2)

We will prove this statement in another equivalent formulation. It is clear that we
may compare the sums of the shifted values

min (ĵs+t, s), ĵs := js − (p+ 1).

We define, therefore, the sets of the shifted indices

πp := (−p, . . . , p), Jp := {j ⊂ πp : #j = p},

Jl
p := {j ∈ J : {l} /∈ j}, l = −p, . . . , p.

For j ∈ Jl
p its l-complement and conjugate index are defined respectively as

jl ∈ J
l
p, jl := πp \ {l} \ j; (3.8.3)

j∗ ∈ Jp, j∗ := −j.
For j ∈ Jp we set also

|j| :=

p∑

s=1

js. (3.8.4)

Thus, Proposition 3.8.1 follows from

Proposition 3.8.2 Let i ∈ Jl
p. Then

il2 � i∗ � il1 , l1 ≤ 0 ≤ l2,

or, equivalently,

p−t∑

s=1

min (ils+t, s) ≤
p−t∑

s=1

min (i∗s+t, s), t = 0, . . . , p− 1, l ≥ 0; (3.8.5)

p−t∑

s=1

min (ils+t, s) ≥
p−t∑

s=1

min (i∗s+t, s), t = 0, . . . , p− 1, l ≤ 0. (3.8.6)

Remark 3.8.3 We have added also the inequalities with t = 0.

Now we start with the proof of Proposition 3.8.2.
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3.8.2 Proof: The case l = 0

Definition 3.8.4 Let any p ∈ N and any j ∈ Jp be given. For t = 0, . . . , p− 1 define the
indices

j[t] ∈ Jp−t, j
[t]
s := min (js+t, s), s = 1, . . . , p− t;

j[−t] ∈ Jp−t, j
[−t]
s := max (js,−(p− t) + (s− 1)), s = 1, . . . , p− t.

(3.8.7)

Since the components of j ∈ Jp satisfy

−p+ (s− 1) ≤ js ≤ s, (3.8.8)

we have
j[−0] = j[0] = j.

For s = 1, . . . , p− t, due to (3.8.8), we also have

−(p− t) ≤ min (js+t, s) ≤ p− t,

−(p− t) ≤ max (js,−(p− t) + (s− 1)) ≤ p− t,

i.e., the inclusion j[t], j[−t] ∈ Jp−t in (3.8.7) really takes place.
The following tables show what the indices j[t], j[−t] look like.

The indices j[t]



j[0] :=
(

j1, j2, . . . , jp−2, jp−1, jp
)

j[1] :=
(
min (j2, 1)︸ ︷︷ ︸

j
[1]
1

, min (j3, 2)︸ ︷︷ ︸
j
[1]
2

, . . . , min(jp−1, p− 2)︸ ︷︷ ︸
j
[1]
p−2

, min(jp, p− 1)︸ ︷︷ ︸
j
[1]
p−1

)

j[2] :=
(
min (j3, 1)︸ ︷︷ ︸

j
[2]
1

, min (j4, 2)︸ ︷︷ ︸
j
[2]
2

, . . . , min(jp, p− 2)︸ ︷︷ ︸
j
[2]
p−2

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j[p−1] :=
(
min (jp, 1)︸ ︷︷ ︸

j
[p−1]
1

)




The indices j[−t]




j[0] :=
(
j1, j2, j3, . . . , jp−1, jp

)

j[−1] :=
(
max (j1,−p+ 1)︸ ︷︷ ︸

j
[−1]
1

, max (j2,−p+ 2)︸ ︷︷ ︸
j
[−1]
2

, . . . , max (jp−2,−2)︸ ︷︷ ︸
j
[−1]
p−2

, max (jp−1,−1)︸ ︷︷ ︸
j
[−1]
p−1

)

j[−2] :=
(
max (j1,−p+ 2)︸ ︷︷ ︸

j
[−2]
1

, . . . , max (jp−3,−2)︸ ︷︷ ︸
j
[−2]
p−3

, max (jp−2,−1)︸ ︷︷ ︸
j
[−2]
p−2

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

j[−p] :=
(
max (j1,−1)︸ ︷︷ ︸

j
[−p]
1

)




In notation (3.8.7), (3.8.4), we have the equality

p−t∑

s=1

min(js+t, s) =: |j[t]|,
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so that (for l = 0) the statement (3.8.5) to be proved is

|(i0)[t]| = |(i∗)[t]|, t = 0, . . . , p− 1, ∀i ∈ J
0
p. (3.8.9)

Lemma 3.8.5 For any j ∈ Jp,

j[t+1] = (j[t])[1], j[−t−1] = (j[−t])[−1], t = 0, . . . , p− 2. (3.8.10)

Proof. Clear from the tables.

Lemma 3.8.6 For any given p and any i ∈ J0
p, we have

(a) i[−1] ∈ J
0
p−1, (b) (i[−1])0 = (i0)[1], (c) (i[−1])∗ = (i∗)[1]. (3.8.11)

Proof. We prove first Equalities (3.8.11.a)-(3.8.11.b). By definition, for i ∈ J0
p we have

#i = #i0 = p, i ∪ i0 = πp \ {0}, i ∩ i0 = ∅.

Let
ip =: q, i01 + p =: r.

Then we have two cases
(1) ip = −1, (2) ip > 0.

Case 1: ip = −1. In this case i01 = 1 and the only possible entries of i and i0 are
the following

i1 i2 · · · ip i01 · · · i0p−1 i0p

−p −p+ 1 · · · −1 0 1 · · · p− 1 p
.

In this case we have

i[−1] = (−p+ 1, . . . ,−1), (i0)[1] = (1, . . . , p− 1)

and Equalities (3.8.11.a)-(3.8.11.b) are evident.
Case 2: ip > 0. In this case i01 < 0 and the entries of i, i0 are located as follows

i1 · · · ir i01 · · · · · · ip i0q+1 · · · i0p

−p · · · −p+ r − 1 −p+ r · · · 0 · · · q q + 1 · · · p
.

In this case

i[−1]
s := max (is,−p+ s) =





−p+ s, s = 1, . . . , r,

is, s = r + 1, . . . , p− 1;

(i0)[1]s := min (is+1, s) =





i0s+1, s = 1, . . . , q − 1,

s, s = q, . . . , p− 1.

Briefly, it can be written as

i[−1] = i ∪ {i01} \ {−p} \ {ip}, (i0)[1] = i0 ∪ {ip} \ {p} \ {i01} .

It follows that
i[−1] ∩ (i0)[1] = ∅, i[−1] ∪ (i0)[1] = πp−1 \ {0},

what is equivalent to (3.8.11.a)-(3.8.11.b).
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Equality (3.8.11.c) is straightforward:

(i[−1])∗s := −i[−1]
p−s := −max(ip−s,−(p− 1) + (p− s− 1)) = −max (ip−s,−s)

= min (−ip−s, s) = min (−ip+1−(s+1), s) =: min (i∗s+1, s)

=: (i∗)[1]s .

Lemma 3.8.7 For any p ∈ N, any i ∈ J0
p, and any t = 0, . . . , p− 1, we have

(a) i[−t] ∈ J
0
p−t, (b) (i[−t])0 = (i0)[t], (c) (i[−t])∗ = (i∗)[t].

Proof. Follows from Lemmas 3.8.5-3.8.6.

Lemma 3.8.8 For any p ∈ N, and any j ∈ J0
p,

|j0| = |j∗|.

Proof. Since j ∪ j0 = πp \ {0}, and j∗ = −j, we have

|j| + |j0| = |πp| = 0, |j| + |j∗| = 0,

i.e., |j0| = |j∗|.

Now we are ready to prove the case l = 0 of Proposition 3.8.2.

Lemma 3.8.9 For any i ∈ J0
p

i0 ≍ i∗, (3.8.12)

or, equivalently,

p−t∑

s=1

min(i0s+t, s) =

p−t∑

s=1

min(i∗s+t, s). t = 0, . . . , p− 1. (3.8.13)

Proof. By Lemma 3.8.7, for any i ∈ J0
p and any t = 0, . . . , p − 1, the index j := i[−t]

satisfies the relations

(i0)[t] = j0, (i∗)[t] = j∗, j ∈ J
0
p−t.

By Lemma 3.8.8, we have
|j∗| = |j0|, ∀ j ∈ J

0
p−t.

Thus
|(i0)[t]| = |(i∗)[t]|, t = 0, . . . , p− 1,

and that is equivalent to (3.8.13).

This finishes the proof of Proposition 3.8.2 for l = 0.
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3.8.3 Proof: The case l 6= 0

It is clear that the following implications are valid:

(a) i ≤ j ⇒ i � j (b) i = j ⇒ i ≍ j.

Case 1: i ∈ {Jl
p

∩ J0
p
}. This is the case if {0} /∈ i. Since for i ∈ Jl

p by definition
(3.8.3) we have

il := πp \ i \ {l},
it is easy to see that

il2 ≤ i0 ≤ il1 , if l1 < 0 < l2,

and respectively
il2 ≺ i0 ≺ il1 , if l1 < 0 < l2.

Since i ∈ J0
p, we have by Lemma 3.8.9

i0 ≍ i∗,

therefore,
il2 ≺ i∗ ≺ il1 , if l1 < 0 < l2, i ∈ {J

0
p ∩ J

lν
p }.

Case 2: i ∈ Jl
p
, i /∈ J0

p
. This is the case if {0} ∈ i. Then we have the inclusions

il ∈ J
l
p, il ∈ J

0
p.

Set
j := i \ {0} ∪ {l}

Then

(1)





j ∈ J0

p,

j0 = il;
(2)





j < i, l < 0,

i < j, l > 0.
(3.8.14)

From the first part of these relations, by Lemma 3.8.9, it follows that

il ≍ j0 ≍ j∗.

From the second part one obtain




i∗ < j∗, if l < 0,

j∗ < i∗, if l > 0.
⇒





i∗ � j∗, if l < 0,

j∗ � i∗, if l > 0.

Thus,
il2 � i∗ � il1 , if l1 < 0 < l2, i ∈ J

lν
p , i /∈ J

0
p.

Proposition 3.8.2, hence Proposition 3.8.1 are proved.

3.9 Completion of the proof of Theorem Z

Theorem Z [§1.9]. There exists a constant cp depending only on p such that the in-
equalities

1

l!
|σ(l)(tν)| =: |z(l)

ν | ≤ cp, l = p+ 1, . . . , 2p+ 1, ν = 0, . . . , N − p+ 1

hold uniformly in ν, l.
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Proof. By Theorem 2.5.1, we have

|z(l)
ν | ≤ max

j∈Jl

CN−ν(p, jl)

CN−ν(p, j∗)
, l = 1, . . . , 2p+ 1.

By Proposition 3.8.1,
jl � j∗, if l ≥ p+ 1, j ∈ J

l,

and by Proposition 3.7.3, this implies

CN−ν(p, jl) ≤ cpCN−ν(p, j∗), if ν ≤ N − p+ 1.

3.10 Last but not least

In [B2] C. de Boor wrote:

“I offer the modest sum of m− 1972 ten dollar bills to the first person who
communicates to me a proof or a counterexample (but not both) of his or her
making of the following conjecture (known to be true when k = 2 or k = 3):

Conjecture. For a given n and t, let (λiφj) be the n×n matrix whose entries
are given by λiφj = k

∫
NikNjk/(ti+k − ti). Then

sup
n,t

‖(λiφj)
−1‖∞ <∞.

Here m is the year (A.D.) of such communication.”

Added in proof. The cheque has been received. With m = 1999, and, to a nice surprise,

doubled, the modest sum turned out to be not that modest. Regarding the origin of the factor 2,

C. de Boor replied: “... well, about 5-6 years ago, I stated at some occasion that, given inflation

and all that, I was doubling that rate. In fact, Jia was kind enough to remind me of that.”
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Chapter 4

Comments

4.1 A survey of earlier and related results.

4.1.1 Earlier results

Earlier the mesh-independent bound (0.2.1) was proved for k = 2, 3, 4 (the case k = 1 is
trivial). For k > 4 all previously known results proved boundedness of ‖PS‖∞ only under
certain restrictions on the mesh ∆. This included, in particular, meshes with multiple
knots which correspond to the spline spaces

Sk,m(∆) := Pk(∆) ∩ Cm−1[a, b], Sk(∆) := Sk,k−1(∆)

We summarize these results in two theorems. The number in the square brackets indicates
the year of the result.

Theorem A. Let K be one of the mesh classes given below. Then

sup
∆⊂K

sup
m

‖PSk,m(∆)‖∞ < ck(K), ∀k ∈ N.

(K1) quasi-uniform
hmax

hmin
≤M or like

Domsta [72],

Douglas,Dupont, Wahlbin [751],

deBoor [763], Demko [77]

(K ′
1) quasi-geometric

hi±1

hi
< 1 + ǫk deBoor [763]

(K2) strictly geometric
hi+1

hi
= ρ, ρ > 0

Feng,Kozak [81], Höllig [81],

Mityagin [83], Jia [87]

Theorem B. If k,m are as given below, then

sup
∆

‖PSk,m(∆)‖∞ < ck.

m = k − 1 k = 2 Ciesielski [63]

m = k − 1 k = 3, 4 de Boor [68],[79]

m = 0 k ≥ 1 trivial

m = 1 k ≥ 2 de Boor [763], Zmatrakov,Subbotin [83]

m = 2, 3 k > (m+ 1)2 Shadrin [98]
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4.1.2 L2-projector onto finite element spaces.

The arguments used by Douglas, Dupont, Wahlbin [DDW1], de Boor [B3] and Demko
[De] for proving the boundedness of ‖PS‖∞ for the quasi-uniform meshes revealed that
such a boundedness has nothing to do with the particular spline nature. The essential
structural requirements on a subspace S needed for these proofs can be summarized as
follows:

(B0) S = span {φi},
(B1) suppφi <∞, #{φj : φjφi 6≡ 0} ≤ k ,

(B2) the local condition number κ(Φ) of Φ := {φi} is bounded,

i.e., κ(Φ) ≤ d for some d,

(B3) partition of the domain is quasi-uniform.

A general result (for quasi-uniform partitions) including also the multivariate case was
proved by Douglas, Dupont & Wahlbin in [DDW2], and in fact in an earlier paper by
Decloux [Dc].

To this end, a natural question is whether the mesh-independent bound of PS could
be extended to (and perhaps more simply derived for) general finite element spaces. The
answer is “no”.

More precisely, denote by Sk,d the set of all finite element spaces S that satisfy (B0)-
(B2). Then, for k = 2 and any d > 36, we have

sup
S∈Sk,d

‖PS‖p = ∞, |1/p− 1/2| > 3√
d
.

This result shows that the mesh-independent L∞-boundedness of the L2 spline projector
is based on some peculiarities of the spline nature.

On the other hand, one can show that, for any k ∈ N, d ∈ R, d > k,

sup
S∈Sk,d

‖PS‖p < c(k, d), |1/p− 1/2| < 1

2kd2 ln d
,

i.e., the Lp-boundedness of the spline projector PS for p in some neighbourhood of p = 2
(proved earlier in [S2]) is not something extraordinary.

See [S5] for details.

4.1.3 A general spline interpolation problem

C.de Boor’s problem is a particular case of a general problem concerned with spline
interpolation.

For p ∈ [1,∞], and f from the Sobolev space W l
p[a, b], let s := s2k,∆(f) be a spline of

the odd degree 2k − 1 which interpolates f on ∆, i.e.,

s ∈ S2k(∆), s
∣∣
∆

= f
∣∣
∆
.

To obtain uniqueness, one should add some boundary conditions, e.g.,

s(l)(x)
∣∣∣
x=a,b

= f (l)(x)
∣∣∣
x=a,b

, l = 1, . . . , k − 1.

A general problem is to estimate the Lq-norm of such a spline-interpolation operator,
i.e. to find

L(k, l,m, p, q,K) := sup
∆⊂K

sup
‖f(l)‖p≤1

‖f (m) − s
(m)
2k,∆(f)‖q,

where K is a class of meshes, see [B7],[Hö],[S1],[Ma].
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A particular problem is to determine whether the value

L∗(k, l, p) := sup
∆

sup
‖f(l)‖p≤1

‖s(l)2k,∆(f)‖p (4.1.1)

is bounded (independently of the mesh). A necessary condition was found to be

L∗(k, l, p) <∞ ⇒ W l
p ∈ {W k−1

∞ ,W k
p ,W

k+1
1 }. (4.1.2)

It was conjectured that this is also a sufficient condition. For l = k this particular
problem is known to be equivalent to de Boor’s conjecture, since

s
(k)
2k,∆(f) = PSk(∆)[f

(k)]. (4.1.3)

Now, by our Theorem I, due to (4.1.3), a particular converse of (4.1.2) follows:

W l
p = W k

p ⇒ L∗(k, l, p) <∞.

The question, whether such a converse is also true for two other cases in (4.1.2)

W l
p ∈ {W k−1

∞ ,W k+1
1 } ?⇒ L∗(k, l, p) <∞

remains open.

4.1.4 A problem for the multivariate Dk-splines

The univariate splines can be defined through a variational approach. Now the ques-
tion is that perhaps the variational nature of splines determines the mesh-independent
boundedness of the spline orthoprojector. The answer is “no”, too.

For another class of variational splines, the so-called multivariate Dk-splines on a
domain of Rn, the analogue of de Boor’s conjecture is false, see [S4], [Ma]. In particular,
in terms of the previous subsection, we have

L∗(k, l, p) <∞ ⇔ l = k, p = 2, if n > 4.

4.2 On de Boor’s Lemma 1.2.4

4.2.1 Gram-matrix and de Boor’s Lemma 1.2.4

A simple intermediate estimate

‖PS‖∞ ≤ ‖G−1‖∞,

stated in Lemma 1.2.1 is kind of folklore and has been used in most (but not all) papers
on the subject cited in Theorems A-B above. C. de Boor [B2] proved that the converse
(not so simple) inequality

‖G−1‖∞ ≤ ck ‖PS‖∞
is also valid, i.e., to quote [B6], “in bounding ‖PS‖ in the uniform norm, we are bounding
‖G−1‖∞, whether we want to or not”.

For k = 2, G is strictly diagonally dominant, and the direct estimate by Ciesielski
[Ci] was

‖G−1‖∞ ≤ 3. (4.2.1)

For k > 2, G fails to be diagonally dominant, so a different argument has to be used.
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For k = 3, 4, de Boor [B1],[B6] proved the boundedness of G−1 making use of his
Lemma 1.2.4. Namely, he found that the following “comparatively simple ” choice of the
vector (ai) works:

k = 3, (−1)iai := 1 +
(ti+2 − ti+1)

2

(ti+2 − ti)(ti+3 − ti+1)
, suppMi = [ti, ti+3]

k = 4, (−1)iai := 3 + 4
(ti+3 − ti+1)

2

(ti+3 − ti)(ti+4 − ti+1)
, suppMi = [ti, ti+4].

(4.2.2)
This choice clearly provides the fulfillment of

(a3) ‖a‖∞ < cmax ,

but makes the verification of (a1)–(a2) “comparatively” problematic. (The proof of k = 4
announced in 1979 has never been published.)

In this sense our proof is of an opposite nature. We offer a construction which gives
a simple proof of (A1)-(A2), but encounter the problems with (A3) instead.

4.2.2 On the choice of the null-spline σ

The main difficulty in using Lemma 1.2.4 for estimating ‖G−1‖∞ is the problem of finding
a vector a = (ai) satisfying the condition (a1) of this lemma, or, respectively, the problem
of finding a spline φ =

∑
aiNi satisfying the condition (A1) of Lemma 1.3.1

1) Since the Gram-matrix G is an oscillation matrix, a candidate for the vector a
could be the eigenvector corresponding to the minimal eigenvalue. (By a theorem of
Gantmacher-Krein such an eigenvector is sign-alternating.)

2) Consider

δ(k) = {t−k+1 = · · · = t0 = 0 < 1 = t1 = · · · = tk},

the mesh with the so-called Bernstein knots. In this case the B-spline basis reduces to
the polynomials

(
k−1

i

)
xi(1 − x)k−1−i.

For the Bernstein Gramian Gδ the explicit expression for the “minimal” eigenvector
is available, namely

a = (ai)
k
i=1, ai = (−1)i

(
k − 1

i− 1

)
.

Also, it is known that the corresponding polynomial ψ(x) :=
∑
aiNi(x) is the Legendre

polynomial
ψ = cΨ(k−1), Ψ(x) := [x(1 − x)]k−1,

i.e., the (k − 1)-st derivative of the null-spline Ψ of degree 2k − 2.
Our null-spline σ may be viewed as a generalization of Ψ.
3) However, it turned out that the coefficients of the spline φ := σ(k−1) have nothing

to do (and could not have something to do, see below) with the “minimal” eigenvector.
Nevertheless, this choice provides the fulfillment of (A1) in a simple and natural way.

4) Remark in retrospect. The “minimal” eigenvector (ai) of G can not be used in
deBoor’s lemma. Recall that in order to use this lemma, one should have the following
relations

b = Ga, max
i,j

|ai/bj| < ck.

For the “minimal” eigenvector (ai) of G they should be therefore

|amax/amin|
?
< c′k.

It is, however, not true, as the following lemma shows.
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Lemma 4.2.1 Let (ai) be the eigenvector of G∆ corresponding to the minimal eigen-
value. Then, for k > 2,

sup
∆

|amax/amin| = ∞

Proof. Let ∆ = (ti)
N
i=0 and hi = ti+1 − ti. Then, e.g., for k = 3,

G∗ := lim
hN−1→0

lim
hN−2→0

· · · lim
h1→0

G∆ =
1

10




6 4

. . .
. . .

6 4

6 3 1

3 4 3

1 3 6




,

the limit minimal eigenvalue is λ∗min = 1/10, and the corresponding limit eigenvector is

a∗ =
(
(−x)N−1, (−x)N−2, . . . , x2,−x, 1,−2, 1

)
, 6x− 4 = x, x = 4/5.

Thus,
sup

#∆=N
|amax/amin| ≥ 2 · (5/4)N−1.

4.3 Simplifications in particular cases

The most elaborate part of the proof of Theorem I, viz Chapter 3, is concerned with the
estimate

max
α∈J

Rq(α, i)

Rq(α, j)
< cp, Rq :=

q∏

r=1

[ADγr
] · A,

with q = p− 1. The analysis would be simpler if we could take

q = 0, R0 = A, (4.3.1)

but we were forced to take q = p− 1, since A in general has vanishing minors.
We indicate here the cases when considerations from Chapter 3 starting with §3.3-§3.5

can be omitted.
In the Cases 1 and 2 below, the choice (4.3.1) works. The Case 3 uses q = p− 1 but

the only ingredient taken from Chapter 3 is non-emptiness of the set J[β,i] proved in §3.5.
1. Knots with multiplicity k −m with m ≤ (k + 1)/2. Consider

Sk,m(∆) := Pk(∆) ∩ Cm−1[a, b],

the spline space with the B-spline basis defined on the knot-sequence ∆ with knot mul-
tiplicity k−m. The following particular case of Theorem I does not rely on the analysis
made in §3.3-§3.6.

Proposition 4.3.1 If m ≤ (k + 1)/2, then

sup
∆

‖PSk,m(∆)‖∞ < ck.
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The last step of the proof. For this space, the null spline σ is a spline with
(k −m)-multiple zeros on ∆. The matrix A which connects the vectors zν of the non-
zero derivatives of σ at tν by the rule zν+1 = Azν has the lower order

A ∈ R
(2m−1)×(2m−1).

It could be obtained from the matrix S by k −m successive transformations similar to
those in §3.2.2. This gives the following criterion

A

(
α1, . . . , αq

β1, . . . , βq

)
> 0, iff αs ≤ βs+k−m, s = 1, . . . , q − (k −m). (4.3.2)

Here α, β are indices from Iq,2m−1, in particular, we have

s ≤ αs ≤ (2m− 1) − (q − s). (4.3.3)

If k −m ≥ q, then the condition on α, β in (4.3.2) is void. Now let

(i) k −m ≤ q − 1

(
(ii) m ≤ k + 1

2

)
.

Then

αs

(4.3.3)

≤ (2m− 1) − (q − s)
(ii)

≤ k − q + s
(i)

≤ s+m− 1
(ii)

≤ s+ k −m
(4.3.3)

≤ βs+k−m,

i.e., condition on α, β in (4.3.2) is fulfilled. Thus,

A(α, β) > 0 ∀α, β, if m ≤ k + 1

2
,

and accordingly,

|z(l)
ν | ≤ max

i∈J

C(p, il)

C(p, i∗)
≤ max

α,β,γ,δ

A(α, β)

A(γ, δ)
≤ cp.

2. The estimate of z0. For ν = 0, the estimate |z(l)
0 | < cp of Theorem Z (see §3.9)

also can be proved without analysis of §3.3-§3.8, but with making use of properties of
the matrix A only.

Lemma 4.3.2 There exist a constant cp depending only on p, such that the inequalities

1

l!
|σ(l)(tν)| =: |z(l)

ν | ≤ cp, l = p+ 1, . . . , 2p+ 1, ν = 0

hold uniformly in l.

Proof. From 2.5.1, making use of the CB-formula we obtain

|z(l)
0 | =

C(p,pl)

C(p,p∗)
≤ max

α∈J

A(α,pl)

A(α,p∗)
, l = p+ 1, . . . , 2p+ 1. (4.3.4)

The criterion (see Lemma 3.2.9)

A(α, i) > 0 iff αs ≤ is+1 ∀s,

easily gives the implication

i ≤ j ⇒ A(α, i) ≤ cpA(α, j), ∀α ∈ J. (4.3.5)
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It is not hard to see that, for two different l-complements of i ∈ J, we have

il2 ≤ il1 , if l1 < l2,

in particular,
pl ≤ pp+1 = p∗, if l ≥ p+ 1. (4.3.6)

Altogether, (4.3.4)–(4.3.6) proves

|z(l)
0 | ≤ cp, l = p+ 1, . . . , 2p+ 1.

3. The estimate in terms of a local mesh ratio. The next particular case of
Theorem I does not need more than non-emptiness of the set J[β,i] proved in §3.5.

Proposition 4.3.3 Let L(M) be the class of meshes with the bounded local mesh ratio,
i.e.,

L(M) := {∆ : max
|ν−µ|=1

hν/hµ ≤M}. (4.3.7)

Then
sup

∆∈L(M)

‖PSk(∆)‖∞ < ck(M).

The last step of the proof. In §3.3 we proved the inequalities (3.3.6)

cp
∑

α∈J[β,i]

p−1∏

r=1

|γr||α
(r)| ≤ cγ Qγ(β, i) ≤ c′p

∑

α∈J[β,i]

p−1∏

r=1

|γr||α
(r)|.

We recall that γr stands for the local mesh ratio ρν with some ν, i.e.,

γr := ρν := hν/hν+1,

cγ is a constant independent of β and i, and that the set J[β,i] is always non-empty (see
§3.5). On account of (4.3.7), this yields the estimate

c1(M,p) ≤ cγ Qγ(β, i) ≤ c2(M,p) ∀β, i ∈ J,

i.e.,

max
α∈J

Q(α, i)

Q(α, j)
< cp(M) ∀i, j ∈ J.

4.4 Additional facts

Here we present some additional facts which we have not used at all in our proof of
Theorem I but which could be useful in finding a simpler proof.

4.4.1 Orthogonality of φ ∈ Sk(∆) to Sk−1(∆)

For the Bernstein knots, φ being the Legendre polynomial of degree k − 1 is orthogonal
to the polynomials of smaller degree. The following lemma generalizes this property to
any ∆.
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Lemma 4.4.1 The spline φ of degree k−1 on ∆ defined via (1.4.1)–(1.4.5) is orthogonal
to all splines of degree k − 2 on ∆, i.e.,

(φ, s) = 0, ∀s ∈ Sk−1(∆).

Up to a constant factor, φ is the unique spline from Sk(∆) which possesses this property.

Proof. It can be shown (e.g., by integration by parts) that if any function f ∈W k−1
1 [a, b]

satisfies the following conditions

f(tν) = 0, ν = 0, . . . , N,

f (l)(t0) = f (l)(tN ) = 0, l = 1, . . . , k − 2,
(4.4.1)

then
(f (k−1), s) = 0, ∀s ∈ Sk−1(∆).

Since σ satisfies (4.4.1) (they are the same as (1.4.2)-(1.4.3)), and since φ := σ(k−1), the
statement follows.

4.4.2 Null-splines with Birkhoff boundary conditions at t0

Let i ∈ J be any index, and let σ̂ ∈ S2k−1(∆) be the null-spline that satisfies the following
conditions:

σ̂(tν) = 0, ν = 0, . . . , N ;

σ̂(is)(t0) = σ̂(s)(tN ) = 0, s = 1, . . . , k − 2;

1
(k−1)! σ̂

(k−1)(tN ) = 1.

(4.4.2)

In comparison with the null-spline σ defined in (1.4.2)-(1.4.4) we have changed at the left
endpoint t0 the Hermite boundary conditions (1.4.3) into Birkhoff boundary conditions.
Spline σ̂ also exists and is unique.

Lemma 4.4.2 We have the equalities

1

l!
|σ̂(l)(t0)| · |h0|l−k+1 =: ẑ

(l)
0 =

C(p, il)

C(p + 1, i′)
, {l} 6∈ i. (4.4.3)

Proof. Let p := k − 2, and let
i := (i1, . . . , ip)

be the index whose components are the orders of the derivatives involved in (4.4.2). Then
we can find ẑ0 as a solution to the system of linear equations similar to (2.2.11), and, as
in the proof of Theorem 2.3.5, one obtain

|ẑ(l)
0 | =

C(p, il)

C(p + 1, i′)
.

Lemma 4.4.2 is of some interest for the following reasons. In Theorem 2.3.5 we
established that

|z(l)
ν | ≤ max

i∈Jl

C(p, il)

C(p + 1, i′)
.
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Therefore, by (4.4.3), we have the estimate

|z(l)
ν | ≤ max

bσ
|ẑ(l)

0 |

where the maximum is taken over all null-splines σ̂ with various Birkhoff boundary
conditions in (4.4.2). Maybe it is possible to obtain an easier proof of the inequality

|ẑ(l)
0 | < cp, l ≥ p+ 1,

for the left endpoint as was the case for |z(l)
0 | in Lemma 4.3.2.

4.4.3 Further properties of the matrices C

For x = (x(l)) ∈ Rn, S−(x) and S+(x) denote the minimal, respectively maximal, number
of sign changes in the sequence x.

Lemma 4.4.3 For any ν, the matrix C := CN−ν is similar to its inverse.

Proof. By 2.4.1, we have C−1 = (D0F )−1C∗(D0F ).

The fact that C is an oscillation matrix permits the following conclusion.

Lemma 4.4.4 For any ν, the spectrum of CN−ν ∈ R2p+1 consists of 2p + 1 different
positive numbers

0 < λ1 < · · · < λ2p+1,

moreover, by Lemma 4.4.3,

λs = 1/λ2p+2−s, λp+1 = 1.

If {uν,s} is a corresponding sequence of eigenvectors of CN−ν , then

S−(uν,s) = S+(uν,s) = s− 1, s = 1, . . . , 2p+ 1.

The fact that, for any ν, a solution zν of the equations

CN−νzν = zN

remains bounded at least in the second half of its components indicates that in the
expansion

zν =

2p+1∑

s=1

asuν,s

the eigenvector uν,p+1 corresponding to the eigenvalue 1 dominates in a sense. Here is
one more evidence for this “dominance”.

Lemma 4.4.5 For any ν, we have

S−(zν) = S+(zν) = p [= S(uν,p+1)].

Proof. By the Budan-Fourier Theorem for Splines [BS], with p := k − 2 we obtain

Zσ(a, b) ≤ Zσ(2p+2)(a, b) + S−[σ(a+), . . . , σ(2p+2)(a+)] − S+[σ(b−), . . . , σ(2p+2)(b−)],
(4.4.4)

where Zf (a, b) stands for the number of zeros of f on the interval (a, b) counting multi-
plicities. Also, by Lemma 1.6.1,

Zσ(tν , tµ) = Zσ(2p+2)(tν , tµ) ∀ν, µ,
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and the boundary conditions (1.4.2)-(1.4.3) say that

S−[σ(t0+), . . . , σ(2p+2)(t0+)] ≤ p+ 1 ≤ S+[σ(tN−), . . . , σ(2p+2)(tN−)].

Taking now (4.4.4) with

1) a = t0, b = tN ; 2) a = t0, b = tν ; 3) a = tν , b = tN

successively, we obtain

S+[σ(tν − 0), . . . , σ2p+2(tν − 0)] = S−[σ(tν + 0), . . . , σ2p+2(tν + 0)] = p+ 1 ∀ν.

Since
σ(l)(tν − 0) = σ(l)(tν + 0), l = 1, . . . , 2p+ 1,

and since

σ(tν − 0) = σ(tν + 0) = 0, signσ(2p+2)(tν − 0) = −signσ(l)(tν + 0),

we conclude that
S[σ′(tν), . . . , σ2p+1(tν)] = p ∀ν.

This, in view of the relations

z(l)
ν = const · σ(l)(tν), l = 1, . . . , 2p+ 1,

proves the statement.

4.5 On the constant ck

There are two constants in de Boor’s problem:
1) the norm of the orthoprojector

ck[P ] := sup
∆
ck,∆[P ], ck,∆[P ] := ‖PSk(∆)‖∞ ,

2) the norm of the inverse of the B-spline Gramian

ck[G] := sup
∆
ck,∆[G], ck,∆[G] := ‖G−1

∆ ‖∞ .

Our method based on properties of the spline φ := φ∆ :=
∑

j aj(φ∆)Nj provides also
3) the constant

ck[φ] := sup
∆
ck,∆[φ], ck,∆[φ] := max

i,j

|aj(φ∆)|
|(Mi, φ∆)| .

These constants are related by the inequalities

ck[P ] ≤ ck[G] ≤ ck[φ], (4.5.1)

and we proved in Theorem I that
ck[φ] ≤ ck.

It is possible of course to estimate all the constants involved in the proof, hence, the final
constant ck, but we find it more useful to give a comparative analysis of the constants in
(4.5.1).

1. Lower bounds for ck[G] and ck[φ]. Consider

δ(k) := {t−k+1 = . . . = t0 = 0 < 1 = t1 = . . . = tk},
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the mesh δ with the Bernstein knots. In this case the corresponding B-splines are simply
the polynomials

Ni(x) =

(
k − 1

i

)
xi(1 − x)k−1−i, Mi(x) = kNi(x),

and the Gram matrix Gδ is given by

Gδ := {(Mi, Nj)} = (gij)
k−1
i,j=0, gij =

k

2k − 1

(
k−1

i

)(
k−1

j

)
(
2k−2
i+j

) .

The first values for the constants are as follows

k 2 3 4 5 6 7 8 9

ck,δ[G] 3 13 41 2
3 171 583 4

5 2, 364 1
5 8, 373 6

7 33, 737 2
7

ck,δ[φ] 3 20 105 756 4, 620 34, 320 225, 225 1, 701, 700

(4.5.2)

They satisfy the relations

ck,δ[G] ∼ k−1/24k, 1
2

(
2k
k

)
< ck,δ[G] <

(
2k
k

)
,

ck,δ[φ] ∼ k−18k, ck,δ[φ] =
(
2k−1
k−1

)
·
(

k−1
[(k−1)/2]

)
.

To find ck,δ[φ], we have used the formula

ck,δ[φ] = λ−1
min · max

i,j
ai/aj,

where λmin is the minimal eigenvalue ofGδ, and (ai) := ((−1)i
(
k−1
i−1

)
) is the corresponding

eigenvector.
The first values and the two-sided estimates for ck,δ[G] were obtained with the help

of the MAPLE-package. It is possible to find an explicit expression for this constant,
too.

2. Lower bound for ck[P ]. For the Bernstein knots, PS is simply the orthoprojector
onto the space Pk of polynomials, and in this case

c2,δ[P ] = 1 2
3 , ck,δ[P ] ∼

√
k.

For k = 2, K. Oskolkov [Os] improved the lower bound 1 2
3 , and showed that

c2[P ] ≥ 3. (4.5.3)

His method is easily extended for arbitrary k.

Lemma 4.5.1 For any k
ck[P ] ≥ 2k − 1. (4.5.4)

Proof. For f ∈ L∞, let its orthoprojection PS(f) onto Sk(∆N ) have the expansion

PS(f, x) =

N ′∑

j=1

aj(f,∆N )Nj(x).

Then, the value of P (f, x) at the left endpoint x = t1 of ∆N is equal to the first coefficient
of this expansion, i.e.,

PS(f, t1)) = a1(f,∆N ).
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Therefore,
‖PS(f)‖∞ ≥ |a1(f,∆N )|,

and it follows that

‖PSk(∆N )‖ ≥ K(∆N ), K(∆N ) := sup
‖f‖∞≤1

|a1(f,∆N )| .

Now let
∆N = (ti)

N
1 , ∆N+1 = {t0} ∪ ∆N , h := t1 − t0.

Then, for the corresponding Gramians GN and GN+1 we have the following relation

lim
h→0

GN+1 =




b1 b2 0 . . . 0

0
... GN

0



.

In the same way as in [Os], one can prove the inequality

lim
h→0

K(∆N+1) ≥ 1/b1 + (b2/b1)K(∆N ).

This implies the estimate

KN+1 ≥ 1/b1 + (b2/b1)KN , KN := sup
#∆N=N

K(∆N) ,

and as a consequence

lim
N→∞

KN ≥ 1/b1

∞∑

s=0

(b2/b1)
s =

1/b1
1 − b2/b1

=
1

b1 − b2
.

For any k, the corresponding values b1, b2 are easily computed as

b1 = k

∫ 1

0

xk−1xk−1 dx =
k

2k − 1
, b2 = 1 − b1 =

k − 1

2k − 1
,

so that
lim

N→∞
KN ≥ 2k − 1.

3. Upper bounds. For k = 2, the exact values of all constants are known

k = 2, c2[P ] = c2[G] = c2[φ] = 3.

Two further estimates of de Boor are available:

k = 3, c3[G] ≤ 30,

k = 4, c4[G] ≤ 81 2
3 .

4. Expectations. Symbolic computations with MAPLE for k,N ≤ 5 give evidence
that

ck[G] = ck,δ[G], ck[φ] = ck,δ[φ].

These relations are also supported by theoretical estimates for the classes

∆ρ := {∆ : hν/hν+1 = ρ, ∀ν ∈ N}
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of strictly geometric meshes. They are [Hö]

2k − 1 = lim
ρ→∞

ck,∆ρ
[G] < ck,∆ρ

[G] ≤ lim
ρ→1

ck,∆ρ
[G] ∼ (π/2)2k

In view of these inequalities and (4.5.4) it is plain to make the following
Conjecture. For any k ∈ N,

sup
∆

‖PSk(∆)‖∞ = inf
∆

‖G−1
Sk(∆)‖∞ = 2k − 1.
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