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Abstract

In this paper, we consider linear ordinary equations originating in eléctemgineer-
ing, which exhibit exceedingly rapid oscillation. Moreover, the oscillatiordetds com-
pletely different from the familiar framework of asymptotic analysis ofiygoscillatory

integrals.
Using a Bessel-function identity, we expand the oscillator into asymptoticsseariel

this allows us to extend Filon-type approach to this setting. The outcome is at@ppeing
method that guarantees high accuracy regardless of the rate of ogtillatio

1 Introduction

The focus of our attention in this paper is the discretizatibordinary differential equations

of the form
y' =Ay+E(t)g(t), t>0, y(0)=y, R’ (1.1)

where A is ad x d matrix, g is ad-vector of functions whiley is ad x d matrix function,
Ey(t) = xg e ismerit k1 =1,... d. While we may assume that the eigenvaluesiof



are of moderate size, the termsfare highly oscillatory, since we allow fenax wy ; > 1.
Moreover, it is perfectly possible for different frequeemiy, ; to differ in size by many orders
of magnitude.

The equation (1.1) is a model of more complicated, in gemeralinear, differential equa-
tions originating in electronic engineering. High-freqag signals abound in Radio Fre-
quency (RF) communication systems. This is a consequertte ofeed for modulation: the
imposition of a lower-frequency information signal ontoighifrequency carrier. The goal is
to enable antennae of a manageable size to be employed forteartsmission. Antennae of
the order of several miles to several thousand miles woulegeired if modulation was not
performed. In RF communication systems, signals in the Midguency range and higher
are common. Furthermore, nonlinearities abound in RF tnéwson systems owing to the
presence of solid-state amplifiers, mixers and so on (Jeny&alaban & Shanmugan 2000).

Most RF systems involve a linear part and a nonlinear pat thi¢ linear part due to the
presence of linear resistors, inductors and capacitorshendonlinear part due to amplifiers,
mixers or nonlinear and controlled resistors and capacitdhe equations (1.1) are a sim-
plified model with many of the nonlinearities approximatgdibear terms. The occurrence
of the e™sinwk.it s due to the input of sine-waves to terminals of circuitshwdfodes or
transistors.

The recent explosion of developments in the RF and telecanwations industry has
put pressure on circuit designers for faster simulaticastefr designs and faster product out-
put and the existing Computer Aided Design (CAD) tools haveggled to keep pace. In
addition, the growing complexity of the modulation formé&gendering the software tools
unacceptably slow and consequently, unsatisfactory. eTtsetherefore, an urgent need for
a complete revamp and update of the fundamental numerioaepses within these CAD
packages taking into account the modern developments amafe.

Some recent work in this direction is that by e.g. (Roychowgt2001) and subsequent
work by Pulch (2005) and Dautbegovic, Condon & Brennan (200f%wever, much more
work is required to generate algorithms that are well-su@ed effective for the application
areas in hand.

On the face of it, solving (1.1) is trivial, because we cantevthe solution of this linear
system explicitly as variation of constants,

tn41

Y(tni1) =" y(t,) + / elin1=OAE(£)g(€) d, (1.2)
t’!l

wheret,, .1 = t,+h. This, however, is not a very helpful observation becauseepresence

of highly oscillatory terms inside the integral. Specifigatewriting (1.2) component-wise,

we have

d d d
Yk (tns1) = ZFk,i(h)yi(tn) +> D Xij /

(20NN
i=1j=1 tn
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for k = 1,...,d, whereF(t) = 4. While the computation of the matrix exponential is
standard, the intrinsic difficulty is represented by pieadticomputation of integrals of the
form

tnt1 .
/ Fiei(tng1 — §)eTa @it g (€) dg
t

n



Figure 1.1: The numerical (top, wiRel Tol = 10~*) and true (bottom) solution of (1.4) in
the first two periods.

. 1
Ti,jsinw; j | tn+5h 1+m))
’ ( 2 dz  (1.3)

1
_ %h/ Fa(3h(1 = 2))gy (6 + h(1+ 2)e
for w; ; > 1. Since classical numerical methods for non-oscillatotggrals, e.g. Gaus-
sian quadrature, require the decomposition of the integranterval intoO(w) sub-panels
(Davis & Rabinowitz 1984), and recalling that we hatfesuch intervals in each step, they
are completely unfit for purpose.

An alternative is provided by contemporary methods for higiscillatory quadrature, an
area that has undergone significant developments in théelastears. The problem, though,
is that the integral (1.3) does not fit into the framework aflitional asymptotic theory for
highly oscillatory integrals (Wong 2001): the latter is cemed with integrals of the form
Jo f(x)e9® dz, wherew > 1 while neither f nor g are oscillatory. This is also the
case with the methods for numerical calculation of highlgiltegtory integrals that have been
developed recently (Huybrechs & Vandewalle 2006, Iserlég¢gfsett 2005, Olver 2006).

Yet another approach is to disregard the explicit formul2)(@nd usexponential integra-
torsto solve the system (1.1). This is not very promising eitMwst exponential integrators
designed to cope with high oscillations do this in a Hamilonsetting, which does not fit
the paradigm of (1.1) (Grimm & Hochbruck 2006). Moreovegtlare not designed to deal
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Figure 1.2: A close-up og’ within a narrow window, exhibiting rapid small-amplitudsail-
lations.

with the multiscale nature of (1.1) and with truly huge frequiesw; ; therein. An exception
to the Hamiltonian setting is provided in (Khanamirian 2))d&ut this does not advance us
much since it takes us to the very same highly oscillatorydeatare methods which we have
already deemed unsuitable in the last paragraph.

Finally, we can disregard the special structure of (1.1) jastiuse an all-purpose ODE
solver, placing our trust in its error-control and variabtep strategies. Thus, we have solved
the system

Y 4y =25 >0, y(0) =1, (0)=0, (1.4)

with the MATLAB routine ode45, employing different error tolerances and setting=
10000. The solution of (1.4) is periodic with peridzir and we have examined a numeri-
cal solution across two periods. We have set different wabfehe relative error tolerance
parameteRel Tol , setting in each cas&bsTol = 1072 x Rel Tol .

In Fig. 1.1 we present a numerical solution (admittedly,hwithe least relative error,
Rel Tol = 1074, yet tenfold smaller than the MtLAB default) of (1.4), comparing it with
the exact solution. It is evident that the quality of the nuica solution deteriorates fairly
rapidly. Cursory examination of the exact solution mighttisleading, since it appears to be
a very ‘nice’ function, varying in a sedate manner. Howewaice we magnify the solution
within a short window, as in Fig. 1.2, we note that it exhibiesy rapid, small-amplitude
oscillations. Such oscillations are bound to inhibit thepssize in any standard error-control
mechanism in all-purpose software and this, perhaps urisungly, is reflected in Table 1.
Another important observation is that the numerical (aligdlerror falls substantially short
of either relative or absolute error-tolerance paramefBngs breakdown in error control has



Table 1: The performance @ide45 in the interval[0, 47| for different relative error toler-
ances for the system (1.4) with= 10%.

Rel Tol number of stepsg numerical error
iny(4m) \ iny'(4m)
1077 61441 | —6.42_¢; | —8.57_¢1
107° 123405| 9.61_q4 | —2.19_¢2
10~6 240645 —1.01_q4 4.57 _o4
10-7 377057 1.94_q 5.17_o5

been already reported for other highly oscillatory ODE eyst (Iserles 2002). Note that (1.4)
is a toy problem, not just because we are interested in lagggems with many frequencies,
but also because = 10* is a fairly small frequency within our framework. Realistitec-
tronic circuits are likely to exhibit fast oscillations ihe range ot 108. This, clearly, is
beyond the scope of any standard ODE software.

The solution that we propose in this paper is to analyse thmptetic behaviour of the
integral (1.3), thereby creating the right tools for thesmsion of Filon-type quadrature (Iser-
les & Ngrsett 2005) to this setting. This will lead not justagractical algorithm for the
calculation of (1.1) with arbitrarily large frequencies; (indeed, the higher the frequency,
the better!) but will also serve us in future generalizatidrthis equation to full nonlinear
setting. Finally, asymptotic expansion and numerical catajon of the highly oscillatory
integral (1.3) and, in future publication, of its generafiens is of an independent mathemat-
ical interest.

2 The asymptotics of the ExpSin integral
Mindful of (1.3), we are concerned with the asymptotic bébarof the integral
1
I[f] = / flx)ersinelorth) qy, (2.1)
-1
wherea, 5 € R, 7 € C\ {0} andw > 1. For a want of a better name, we call (2.1) the
ExpSin integral.
Even the briefest examination of (2.1) highlights a crudiéference between the ExpSin
integral and the ‘standard model’ of asymptotic theory @iy oscillatory integrals. Thus,

suppose that we move theto front of the sine function. It follows at once from the math
of stationary phase (Wong 2001) that

1
/ f(x)erwsin(az+5) dr = O(w—%) , w> 1,
—1
provided tha{—3 + (m + 1)x]/a € [-1,1] for somem € Z,

1
/ fz)e™ sin(az+0) 1, = O(w_l) ’ w1,
—1



otherwise. On the other hand, fere R andf(z) > 0, x € [—1, 1], it follows at once that

0< 2 ! mi <I[f]<2
e xéfil?,uf(x)— [f] < 2e I?af(l]f()

and the integral is bounded away from zero uniformlyvine R. This is demonstrated in
Fig. 2.1.
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Figure 2.1: The integral[e”] for « = 1, 8 = 0 and0 < w < 100.

The key step toward the analysis of the ExpSin integral isdastity

eTsingd _ +2Z Ve Iog g1 (7) sin(2k + 1) 9—1—22 V¥ Loy (7) sin 2k, (2.2)
k=1

wherel}, is the kth mOdIerd Bessel functioffbramowitz & Stegun 1964, p. 376, formula
(9.6.35)). Letting = w(ax + B) in (2.1), we thus obtain

0 [ st dx+zz Praar) [ @) sin(@h+ etz +9) s

+2 Z(—l)klgk(r) / f(x) cos(2kw(ax + () da. (2.3)
k=1 -1



We thus expresg[f] as an infinite sum of integrals, all of which (except for thetjir
are themselves highly oscillatory. Before we expand thesegrials in turn, it is useful to
comment further about this sum. Since all oscillatory irtgjareo(1) for w > 1, we deduce

that
lim I[f / flx

Moreover, we can deduce at once from (Abramowitz & Stegurt1p6365, formula (9.3.1))
that

1 rser\*

Since the highly oscillatory integrals are small (as we wa@e soon, they ar@(w‘l), we
conclude that the infinite series converge very rapidly, siectral speed.
Let

1 1
fl= [1 f(x) cos(ox + p) da, Soplf] = [1 f(z)sin(ox + p) dz,

therefore (2.3) becomes

= Ip(r / f(z)dr +2 Z ¥ o1 (T) S 2h 4 1)war, 2k 1) ] (2.4
+2 Z Ve Lo (7) Cokwer 2k [ f]-

Let us assume thagt € C>[—1,1]. It is fairly straightforward, although laborious, to
expandC, ,[f] andS, p[f] asymptotically in inverse powers of # 0. The obvious route,

lettingCy, o[ f1+1S0., [ f f f(z)ele*+P) 4z and using an explicit expansion from (Iserles
& Ngrsett 2005), is probably Iess transparent than diregaesion. Integrating,, ,, o # 0,
twice by parts we obtain

Soplf ——*/f —cos(aﬂc+p)d

= —l[f(l) cos(o + p) — f(—=1)cos(o — p)] + %/ f'(z) cos(ox + p) dz

g —1

1
=~ () costo + ) = F(=1)costo = p)l + =5 [ (o) sinfoa+ p)do
=~ [f()cos(s + p) — F(~1) cos(o — p)]
S W)sinGo 4 p) + £/ (~1)sin(o — p)] ~ 25 Salf"]

Iterating this expression yields the asymptotic expansio$i, ,[f] in inverse powers of,

+
g

Z ( Qm_z ™) (1) cos(o + p) — fFP™ (=1) cos(o — p)] (2.5)



£ 3 CU” nn (1) sino 1 p) + £ (~1)sin(o — o))

2m+
(2
m=0

Likewise, using (2.5), we have
Coplfl =2 [ 1) L s+ p)a
o,p = o), dx 1n(ocxr P X

= L[ (0)sin(o + p) + F(-D)sin(o — )] ~ S0l

~ Z 2;,1111 [f®™) (1) sin(o + p) + @™ (1) sin(o — p)]

—+ Z 2—;7}1)—:2 [f(2m+1)(1) COS(O’ 4 ,0) _ f(2m+1)(_1) COS(O’ _ p)]’

Substituting (2.5) and (2.6) into (2.4) results in

107~ o) [ fGe)da

o0

o> 1.

(2.6)

o> 1.

+2) (-1 Do (7 { > 2k+1wa2m+1[f(Qm)(l)cos((2k+1)w(a+ﬁ))
k=0 0

— fE™ (1) cos((2k+1)w(a—F))]

+m2::0 [(2k J:;inmw [F@m D (1) sin((2k+1)w(a+03))

+ (1) Sin((2k+1)w(a—5)>]}

" zz e {Z Gl (1) sin(2hlact )

m:O

+ f 2m)( 1) sin(2kw(a—03))]

+ 3 Gl eos@hola)

( kwa)2m+2

— fCmHD (1) cos(2kw (o — 5))}}

) | ) de

+2 Z 2m+1[ Fem Z 2k+1ik;,ll(+1) os((2k+1)w(a+3))

=0
00

m I k
+ [ L) Z o) 231+1 sin(2kw(a+03))
k=1



oo

)1
£ kz 2“2";}1“) 0s((2k+1)w(a—B))
0

oo

I
+ (- Z 27721]11 sin(2kw(a—p))
k=1
2 ( 1)m 2m+1) = I2k+1 ) 2k 11
+ Z aw 2m+2 Z 2k‘—|—1 2m—+2 Sln(( + )w(a+/8))

m=0 k=0

(2m-+1)( S F Lok (7) i
+ 27% Sk cos(2kw(a+3))

2m+1 S I2k+1 ) 2%k 11 o

Z M Ttz sin((2k+Dwa—5))
=0

_ f(2m+1) (_1) Z (2212)2[:1(27) cos(?kw(a—ﬁ»

Let

o0

(. 1) — (=1)*Ioppa (1) cos
O =20 gy os(@hH1))

Nk -
ey, 1) =2 ((21]1)2{1’1(1) sin(2k1)),

k=1
e o] _1\k .
ofiw.r) =23 Ll (e ),
k=0
[ee] _1\k .
Bly,ry=2>" M cos(2ka).
k=1

Note that the four functions are analytic in ~ for all m € Z., and their convergence is
assured. They are periodicinof period2r for 1 and®!!l, of periodr otherwise.

In Fig. 2.2 we display the functior@g] andég] fori = 1,2. Note that the differences

between@ﬁﬁ form > 1 and @([)i] (likewise, betweer{)ﬁﬁ and @{fl) are very small, thus this
figure is typical of allms.

The four functions are infinite series. Yet, the speed ofrtb@nvergence is so rapid that
it is enough to restrict the range of summatiorktg. 6 to attain machine accuracy.

Using @,[ﬁ and @Lﬁ we can write conveniently the asymptotic expansion of thpSx
integral I'[f].

Lemmal Letaw > 1. Then

I[f] ~ Io(7) / f(z)da 2.7)

+Z o) 2m+1{ ™ ()02 (w(a+ 8)) — Ol (w(a + )]

m=0
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Figure 2.2: The function@E] (1, 1) andtﬁg] (¢,1)fori=1,2and0 < ¢ < 27.

+ e (1) (w(a - 8)) + O (wla — B)]}

+ Z (05512)7::’2 {f(Q'rrL-l-l)(l)[(I)gL] (w(a + ﬁ)) + (I)Lll] (w(Oé + 6))]

m=0

= e (1)@ w(a - #) - el (w(a - A}

An immediate application of the expansion (2.7) is to the edoal calculation off [ f].
Truncating the series results fore N in theasymptotic method

I[f]%As[f]ZIO(T)/_lf(x)dx 2.8)
[(s—1)/2] (_1)‘!n (2m) ) @[2] @[1]
+ g (OB + 0) - O wla + )

m=0

+ 1 (-1)[0l (w(a - 8)) + O (wle — A}
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Figure 2.3: Scaled errapstt| A fe*] — I[e?]| (with a = 1, 8 = 0) for s = 1,2,3 for
w € [0,200].

Table 2: Absolute errorsd[e”] — I'e”]| for s = 1,2, 3.

w=10 w=50 w=100 w =200
214_go 3.96_g4 1.81_g4 7.39_05
1.92_g3 2.02_95 2.22_95 1.53_¢p7
211_94 1.44_o7 1.76_g8 1.89_g9

WN R ©®

ls/2]—1 m
+ > (Cf;)”w {Fem D @) (@B (w(a + 8)) + @l (w(a + 6)]
m=0

= e ()0 w(a - #) - el (w(a - 8)]}.
and it is trivial to verify that
A =T+ O((aw)™7Y),  Jaw| > 1.

In a way of an example, we have used (2.8) to compute the alté@”] from Fig. 2.1.
The results are displayed in Fig. 2.3 and they confirm ther#imal expectations on asymp-
totic behaviour. Indeed, they exceed it, because appgithietisymptotic regime sets already
for very small|aw|, rather then only for large frequencies. However, the figloes not ex-
hibit transparently the actual absolute error and for thesrafer to Table 2. It is clear that,
while for large|aw| we need relatively modest valuesspimoderate frequencies call for large
s and the method becomes expensive: this is only to be expdmeduse of the asymptotic
nature of the method (2.8).

There are two obvious problems associated with the asymoptwthod (2.8). Firstly,
we said nothing about the numerical evaluation of the legditegral. This, however, can
be accomplished easily using classical quadrature, strisenbn-oscillatory. Secondly, as
demonstrated in Table 2, the formula is useful only for sigfity large value ofaw|. Al-
though, in our experience, asymptotic behaviour sets simgty rapidly, this is an undoubted
shortcoming. In principle, not all the; ;s in (1.1) need be large and we do not wish to employ
different quadrature rules for differeat ;s, something that unduly complicates things.



12

Fortunately, a major lesson of recent advances in numegjicadirature of highly oscil-
latory integrals is that the main role of asymptotic formuike (2.7) is as a gateway to
Filon-type (Iserles & Ngrsett 2005) and Levin-type (Olv@08B) techniques. An important
advantage of these methods is that they segue seamlesslyldssical quadrature for small
w, hence are uniformly effective throughout the entire ranfjrequencies. They are also
typically significantly more accurate that the asymptotitihod (2.8).

3 A Filon-type method

An alternative to the asymptotic method (2.8) iBilon-type methodThus, letv > 2, nodes

—1=c¢ <cy < -+ < ¢, =1andmultiplicitiesmy, mo, ..., m, € N. We interpolate the
function f in a Hermite sense at the nodeby a polynomial of degree>""_, m; — 1,
pD(ex) = f9), F=0,....mp—1, k=12..,u (3.1)

TheFilon-type methodor the highly oscillatory integral (2.1) is defined as

F[f] = / 1 p(a)e” smelerth) qy, (3.2)

-1
Theorem 2 Lets = min{my, m, }. Then for everyf € C>[—1,1]
Flf] = I[f] ~ L()E[f] + O(w™7"),  w>1, 3.3)

whereE[f] = [*,[p(z) — f(2)] dz.

Proof We use the method of proof from (Iserles & Ngrsett 2005). Sinath F' and T
are linear operator’[f] — I[f] = I[p — f] and the theorem follows at once from letting
p — f in (2.8) and noting that the interpolation conditions (Jahpihilate asymptotic terms
form = 0,1,...,[(s — 1)/2] in the first sum in (2.7) anch = 0,1,...,|s/2] — 1 in the
second. O

Note that the internal nodes, ..., c,_, have no influence upon the asymptotic order
of the error. However, they have three important functioR&stly, good choice of such
points minimizes the non-oscillatory quadrature ey, one of the two components of the
quadrature error in (3.3). Secondly, intuitively speakitihge method (3.2) is nothing but the
asymptotic quadraturd ,, applied to the interpolation errop — f rather than to the original
function f. Thus, the smaller we make the interpolation error, the bettardly, unlike (2.8),
the Filon-type method is relevant throughout the range exjienciess € R. In particular,
when|w| is small thenF'[f] = E[f]+O(w), the reason being thif f] = f_ll f(z) dz+0O(w)

andF[f] = I[p] = filp(x) dz + O(w) = Q[f] + O(w). Thus, renderingE[f] small is
vital also in this regime.

3.1 Implementation of the Filon-type method

The implementation of (3.2) is based on the premise that wertagrate (2.1) exactly once
fis apolynomial. Thus, let

q v
p(z) = ZpTxT, where ¢= Zmi - 1.
r=0 i=1
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Then . .
1
F[f] = ZPT / LreTsinw(er+p) 4, — Zpr,ur(w)- (3.4)
r=0 -1 r=0

The momentsu,. can be calculated directly from the asymptotic expansio)(2ince the
latter terminates in that case,

I+ (=1
41
R
£ 2 o o LR e+ 8) - el + )]
m=0

pr (W) Io(7)

+ (-1 [0 (w(a - 8)) + Ol (w(a - )]}
[(r—1)/2] (_l)m rl
(aw)?m+2 (r —2m — 1)

+ (10 wla - B) - oW -8)]}, ez

+ ! {[@g(w(a—kﬁ))+‘I>L11](W(a+ﬁ))]

m=0

Note that (3.4) is not a practical means to calculBig]. Like in the case of non-
oscillatory quadrature, it is advantageous to exppeagerms ofcardinal polynomials,

v mrp—1

pa) = 3" (@) f9 (er),

k=1 j=0
where eacltfy, ; is a polynomial of degree such that

(i) _ )L k=mn,i=j,
Ui j(en) = { 0, otherwise (3.5)

fori=0,1,...,m,—1,7=0,1,...,mp — 1, k,n=1,2,...,v. Letting
1 .

bk,sz[zk,j]zf Uy, ()T sm@@z+0)) qg j=0,1,....,mp—1, k=12...,v
—1

(which we can do once-for-all in terms of the momemnt$ we obtain

v mp—1

Flf1=Y" 3" biifP(ew), (3.6)

k=1 j=0

a form reminiscent of classical quadrature (Davis & Rabiitwd984).
To illustrate our construction by few simple examples, letagsume (mostly to render
notation more transparent) that= 1 and = 0, whereby

1o(w) = 200(7) + %@E] (),

2 2
mw) = ==6 ) + S8l w),

w
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2 4 4
p2(w) = 310(r) + =05 (@) + — 87 (w) — O (W),

2 41 6 ~n 12 12 -
pa(w) = =0y (W) + 58 (W) + —5O1 (W) = 1 (w),

2 8 24 48 48
_ 2 (2] [2] (2] 2] (2]
pa(w) = £1o(T) + ;@0 (W) + 2 Q5 (w) — w3®1 (w) — w4<1)1 (w) + » 05 (w).

(Note that we have supressed the dependenééi]oand@m onr.)
We commence from = 2, ¢ = [-1,1] andm = [1,1], wherebyp(z) = 3(1 —
z)f(—1) + (1 +z)f(1). This results in the method

F[f] = 3luo(w) — pa ()] f(=1) + 5luo(w) + p(w)]f(1).
Next, we considee = [—1, 1] andm = [2, 2], whereby
pe) =11 +2)2+z—2")f(1) + 31— 2)2 -2 —2?)f(-1)
— 11— 2)(1+2)*f' (1) + (1 - 2)*(L + 2)f(-1)
and
F[f] = §(2p0 + 31 — p3) f(1) + 5 (200 — 3p1 + p3) f(—1)

— 3o+ 1 — p2 — pa) f'(1) + (o — pr — pa + p3) f/(=1).

As our final example, we let = 3, ¢ = [-1,0, 1] andm = [2, 1, 2]. We now have
p(r) = jo(l+2)(3 = 22) f(1) + (1 = 2%)°f(0) — g2(1 — 2)*(3 + 22) f(-1)
—a(l—2)(1+2)2f(1) —2(1 - 2)*’(1+2) ' (-1),

therefore
F[f] = i(3”1 +Aps — g — 2pa) f(1) + (o — 2p2 + 114) £(0)
+ 2(=3p1 +4pe + ps — 2ua) f(—1) + T(—p1 — po + ps + pa) f/(1)
+ %(*ul + po + p3 — /14)f/(*1)~

3.2 Hermite-Birkhoff quadrature

Wishing to minimise the non-oscillatory errd#|f], we have the freedom of choosing nodes
and weights, subjectto, = —1, ¢, = 1 ands = min{my, m, }, a procedure that has been
already considered in (Iserles & Ngrsett 2006). Let

1
bk,j:/ Uy, i(z) dz, i=0,1,....mp,—1, k=12...,1,
1

where the/;, ;s were defined in (3.5), and

v mp—1

QUI=Y_ > biifP(ck), (3.7)

k=1 j=0

we haveE|[f] = Q|[f] — ffl f(x) dx. ThereforeQ is aHermite—Birkhoff quadraturéMic-
chelli & Rivlin 1973) for the computation of a non-oscillayantegral.
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Theorem 3 Letm; = m, = sandmy = mg = --- =m,_1 = 1. The quadrature (3.7) is of
maximal orderv + 2s — 4 (in other words, is exact for all polynomials of degthe+ 2s — 5
whencs, cs, . . ., ¢, are the zeros of the Jacobi polynom}ajq 09).

Proof A straightforward generalisation of the familiar proof dmetorder of Gauss—
Christoffel quadrature (Davis & Rabinowitz 1984). Let

Py y0s_a[z] 3 u(z) = (1 — 22)* P> (@),

whereP, [z] is the set ofnth-degree polynomials. Given any € Py, o5 5[], it follows
by the Euclidean algorithm that there exist P, _3[z] andq € P, 2s_3[z] such thatw =
pu + ¢. Recalling thatP(S s is orthogonal in(—1, 1) with respect to the weight function
(1 — 22)® (Abramowitz & Stegun 1964), we have

/ p(z)u(z)dz = / p({L)PlEi;) (z)(1— xQ)S dx =0,
-1 -1

while Q[pu] = 0 because:(cy) =0,k =1,2,...,vandul)(+1) =0, =0,1,...
Therefore

s — 1.

3

The right-hand side vanishes because the weights aredtadopy. This is standard argument
in classical quadrature and follows in a Hermite—Birkhe&fitsng by counting’ + 2s degrees
of freedom and observing that the underlying linear systensiiring that) is at least of
orderv + 2s) is nonsingular, being a limiting case of Lagrangian intdsion withv + 2s
nodes. We deduce th&[w] = 0 for everyw € Py, 1 24_5[x], hence order + 2s — 4.

It remains to prove that no other choice of internal nodgss, . .., c,_1 may increase
the order. To this end it is sufficient to single out one polyined v € Py, y25—4[z] Such that
Ev] # 0 for anychoice of internal nodes. We thus choose

v—1
o(@) = (1-2?)° [[ (= — ),
k=2
wherecy, cs,...,c,—1 € (—1,1) are arbitrary. Tr|V|aIny z)dx > 0. On the other
handw(cy) =0,k = 1,2,...,vandv¥) (£1) =0, = 0,1,...,s— 1, imply thatQ[v] =
It thus follows thatE/[v] < 0 and the maximal order is inde@¢v + s — 2). D

To flesh out numbers, herewith few explicit quadratures)(3.7

v=25=2: QU= )+ [(-1) - 5lF'() - (1),

v=2s=3: Q[fl=f1)+f(-1)— §[f’<1> — F'(-1)] + %[f (1) + £ (~1)),
v=3 s=2: Qm=i[7f<1>+16f<o>+7f<—1>] %[ £~ f' (-1,
v=d,5=2: QU= —[37/(1) + 98(L) + 98f(~ L) + 37f(~1)]

135
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Table 3: Absolute errorsin approximati[fd1 e® dz by Q[e*] with s = m; = m,, = 2 (top),
s =my =m, = 3 (bottom),ms =mz=...=m,_;=1landv=2,...,7.
v | 2 3 4 5 6 7

—2 [ 47702 221 04 74297 17499 293 12 3.71_15
=3 | 134_03 2.6l_05 4.65_09 6.61_12 T7.43_15 6.77_1s

1

ORI}
v=35=3: QI = 5 [19(1) +32(0) + 19f(~1)] = (1) — f/(~1)]
+ gl + D),
v=4,s=3: Q[f] = T120[391f(1) +729f(3) + 729f(— %) + 391 f(—1)]

— el () = PN+ (W) + £ D),

The order, in each case,4év + s — 2).

Of course, there is nothing to prevent us from using higheltiplicities with internal
nodes, except that we might lose the attractive feature ebiigm 3, reminiscent of the Gauss—
Christoffel quadrature, namely that maximal order excdgds the number of degrees of
freedom. Thus, for example, choosing= 3, ¢ = [—1, 0, 1] andm;, = 2, the coefficient of
17(0) is nil and we recover the sixth-order formula with= 3, s = 1, above. On the other
hand, once we letn = [2, 3, 2], we obtain

L) - P+ (),

Qlf] = 3—15[11f(1) +487(0) + 11/ (=1)] - o= o

of order 8.

In Table 3 we display error&|f] committed by Hermite—Birkhoff methods consistent
with the conditions of Theorem 3, with = 2 and increasing values of, applied to the
function f(z) = e”. The decrease in error is consistent with Theorem 3.

3.3 Numerical examples for Filon-type methods

According to (3.3), the error of Filon-type methods has twmponents. The asymptotic
component decays with increasiadout I (1) E[f] is independent ab. Thus, unlike in the
case of Filon-type methods for ‘classical’ highly oscitigtintegrals (Iserles & Ngrsett 2005)
and in variance with the asymptotic methddlf], the error does not tend to zero for— oc.
This is demonstrated in Fig. 3.4, where we display the absdor F[f] — I[f] for the
Filon-type method witle = [—1,0, 1], m = [2, 1, 2] and the functiorf (z) = . Forw > 1
the error asymptotes to —2.79¢4 = Iy(1)E[e”] (cf. Table 3,v = 3, for E[e?]).

In Fig. 3.5 we display the asymptotic error compon&ty] — I[f] — Io(7)E]f], scaled
by w3, for two different Filon-type methods of an asymptotic artieo. In both cases, con-
sistently with Theorem 2, the scaled error asymptotes tanateat.
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Figure 3.4: The erroF'[e”] — I[e”] for ¢ = [-1,0,1], m = [2,1,2] andw € [0, 200].
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Figure 3.5: Scaled errots®|F[e*] — I[e*] — Io(1)E[e?]| for ¢ = [-1,0,1], m = [2,1,2]

(left), ¢ = [1,— ¥, 7 1], m = [2,1,1,2] (right) andw € [0,200].

It is instructive to compare absolute errors at differertiga ofw for asymptotic and
Filon-type methods. In an important aspect, this comparisbeavily weighed against Filon-
type methods, because the asymptotic method (2.8) asstna{tef;1 t f(z) dx is calculated
exactly: in practice we need to replace the integral by catade. Nonetheless, and even
bearing in mind that’[f] makes up the major share of error in (3.2), Filon-type methare
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Table 4: Absolute errorg'[e”] — I[e”]| for different Filon-type methods.

Methods | w=10 w=50 w=100 w=200
c=[-1,0,1,m=[2,1,2] 218 01 2.80_01 279 o1 2.79 o4
c=[-1,-¥ ¥ 1], m=[2,1,1,2| 2.75_06  9.63_97 9.43_gr  9.40_¢7
=[- 1 0,1, m = [3,1,3] 9.22_0r 331_06 3.31_06 3.31_06
c=[-1,-1,41,m=[3,1,1,3] 797 09 5.8%_09 5.88_09 5.88_g9
c=[-1,-¥33 0¥ 1] m =[3,1,1,1,3] | 9.83_g9 1.40_;; T7.66_15 828
c=[-1,-¥05 0 ¥05 1] m=1[3,1,3,1,3] | L18 1y 1.09 13 9.16_;5 121

evident superior.

The error for asymptotic methods is displayed in Table 2 gmnddictably, it starts un-
acceptably high but becomes increasingly small, tendingeto forw > 1. Not so for
Filon-type methods, exhibited in Table 4. Theiform errorof (3.2) is considerably smaller,
because the performance for small and modesatis considerably better. On the other hand,
the error forw > 1 does not tend to zero, as we have already repeatedly obseDxet-
all, it is clear that Filon-type methods significantly dexse the error at the cost of few extra
function evaluations, even when the integraldn[f] is computed exactly.

We note in passing that the fixed error compongif] assumes significantly smaller
importance in the setting of ordinary differential equaticand the solution of the integral
(1.2). In that casé’[f] is scaled byx?, whereh = t¢,,1 — t,, is the length of the integration
interval andgq is the order of the Hermite—Birkhoff quadrature. In thistisgt Filon-type
methods are likely to outperform asymptotic methods by gelanargin, since the latter are
largely insensitive to the length of integration integral.

4 Numerical examples

We bring the equation (1.2) into a form appropriate for thpligption of Filon-type methods
in the interval[—1, 1],
ho [t .
Y(tni1) = ey(t,) + 5/ ezh1=DAR(h(n + 14+ 1a))g(h(n+ L1+ Lz))dz. (4.1)
—1

Our time-stepping routine is obtained by replacing inteynath appropriate Filon-type meth-
ods.

In the specific context of equation (1.4), the time-stepgorgwula (4.1), combined with
a Filon-type solver, becomes

Yn+1,1 = Yn,1 COSh + yp 2 sinh + hF[bln( h(1 —x))],
Ynt1,2 = —Yn,1Sinh + yp 2 cos h + hF [cos($h(1 — z))],
where the Filon-type methods are applied witk= 1, 3 = n + 5 andw replaced byhw.
The pointwise error for two Filon-type methods is displayed-ig. 4.1 for step-sizes

h € {1555 50 300" 105 5001+ (We have used there the more precise Filon-type methodstéfh
sizeh = 1555 as our ‘true’ solution.) The first Filon-type method usesydminction values
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at the endpoints, the second uses both function values aivatilees there. (We did not use
any internal points but note in passing that their incorporawvould have further reduced the
error.) A comparison with Table 1 is striking: at the cost @$tj400 steps with the plain-
vanilla Filon-type method (requiring just one new functmraluation per step!) we produce
better accuracy thamde45 with 240645 steps.

Note that the errors in Fig. 4.1 appear to be the same peffiodation, scaled by suitable
powers ofh (except for the second method with= 75, but this is likely to be a machine-
precision artefact). So is the exact solution (cf. bottorfigf 1.1) but these two functions are
different. The reason for perodicity can tell us somethibgud the properties of our method,
hence it bears some elaboration. Recall that for larglee major source for the error is the
classical quadrature error (scaled by a suitable Bessetifum). Lete,, = y,, — y(t,) and
consider just the error originating in classical quadmtulirreadily follows that

€ni1 = eMle, + hq, (4.2)

where the vectog contains the contribution of classical quadrature errortlie different
components. For example, in the present case, for ‘planiltaaFilon we have
_ hsinh —242cosh | _ O(h4)
9= 10 | )4 heosh —2sinh } = [ o(n?)

Bearing in mind thate, = 0, the solution of (4.2) is
en = h(I — )71 —enh)g,

which in the present case becomes
o _ h 1—cosh  sinh 1—cosnh —sinnh
" 2(l—cosh)| —sinh 1—cosh sinnh  1—cosnh | T

Periodicity is clear, as is the fact that in Fig. 4.1 the ersaa linear combination of just two
harmonicssin nh andcos nh.

Be it as may, it is crystal clear that even the most elemeridon-type methods enjoy
tremendous advantage in comparison to state-of-the-agrgeODE software likede45
when applied with high frequencies. Another important adage of Filon-type methods,
which is not apparent from our comparison, is that both theremd the computational effort
are roughly uniform in frequency, while classical ODE so$véeteriorate with increasing
frequency. Note that we have implemented Filon-type methndhe most straightforward
manner, with constant step size and without any error cbnfch (Iserles & Ngrsett 2004)
for error control for Filon-type methods.) It is highly likethat more sophisticated imple-
mentation would have resulted in even more striking outcome
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