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Department of Applied Mathematics and Theoretical Physics

Centre for Mathematical Sciences
University of Cambridge

Wilberforce Rd, Cambridge CB3 0WA, UK

Arieh Iserles
Department of Applied Mathematics and Theoretical Physics

Centre for Mathematical Sciences
University of Cambridge

Wilberforce Rd, Cambridge CB3 0WA, UK

August 1, 2008

Abstract

In this paper, we consider linear ordinary equations originating in electronic engineer-
ing, which exhibit exceedingly rapid oscillation. Moreover, the oscillation model is com-
pletely different from the familiar framework of asymptotic analysis of highly oscillatory
integrals.

Using a Bessel-function identity, we expand the oscillator into asymptotic series, and
this allows us to extend Filon-type approach to this setting. The outcome is a time-stepping
method that guarantees high accuracy regardless of the rate of oscillation.

1 Introduction

The focus of our attention in this paper is the discretization of ordinary differential equations
of the form

y′ = Ay + E(t)g(t), t ≥ 0, y(0) = y0 ∈ R
d, (1.1)

whereA is ad × d matrix, g is ad-vector of functions whileE is ad × d matrix function,
Ek,l(t) = χk,le

τk,l sin ωk,lt, k, l = 1, . . . , d. While we may assume that the eigenvalues ofA
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are of moderate size, the terms ofE are highly oscillatory, since we allow formaxωk,l ≫ 1.
Moreover, it is perfectly possible for different frequenciesωk,l to differ in size by many orders
of magnitude.

The equation (1.1) is a model of more complicated, in generalnonlinear, differential equa-
tions originating in electronic engineering. High-frequency signals abound in Radio Fre-
quency (RF) communication systems. This is a consequence ofthe need for modulation: the
imposition of a lower-frequency information signal onto a high-frequency carrier. The goal is
to enable antennae of a manageable size to be employed for audio transmission. Antennae of
the order of several miles to several thousand miles would berequired if modulation was not
performed. In RF communication systems, signals in the MHz frequency range and higher
are common. Furthermore, nonlinearities abound in RF transmission systems owing to the
presence of solid-state amplifiers, mixers and so on (Jeruchim, Balaban & Shanmugan 2000).

Most RF systems involve a linear part and a nonlinear part with the linear part due to the
presence of linear resistors, inductors and capacitors andthe nonlinear part due to amplifiers,
mixers or nonlinear and controlled resistors and capacitors. The equations (1.1) are a sim-
plified model with many of the nonlinearities approximated by linear terms. The occurrence
of the eτk,l sin ωk,lt is due to the input of sine-waves to terminals of circuits with diodes or
transistors.

The recent explosion of developments in the RF and telecommunications industry has
put pressure on circuit designers for faster simulations, faster designs and faster product out-
put and the existing Computer Aided Design (CAD) tools have struggled to keep pace. In
addition, the growing complexity of the modulation formatsis rendering the software tools
unacceptably slow and consequently, unsatisfactory. There is therefore, an urgent need for
a complete revamp and update of the fundamental numerical processes within these CAD
packages taking into account the modern developments and formats.

Some recent work in this direction is that by e.g. (Roychowdhury 2001) and subsequent
work by Pulch (2005) and Dautbegovic, Condon & Brennan (2005). However, much more
work is required to generate algorithms that are well-suited and effective for the application
areas in hand.

On the face of it, solving (1.1) is trivial, because we can write the solution of this linear
system explicitly as variation of constants,

y(tn+1) = ehAy(tn) +

∫ tn+1

tn

e(tn+1−ξ)AE(ξ)g(ξ) dξ, (1.2)

wheretn+1 = tn+h. This, however, is not a very helpful observation because ofthe presence
of highly oscillatory terms inside the integral. Specifically, rewriting (1.2) component-wise,
we have

yk(tn+1) =

d
∑

i=1

Fk,i(h)yi(tn) +

d
∑

i=1

d
∑

j=1

χi,j

∫ tn+1

tn

Fk,i(tn+1 − ξ)eτi,j sin ωi,jξgj(ξ) dξ

for k = 1, . . . , d, whereF (t) = etA. While the computation of the matrix exponential is
standard, the intrinsic difficulty is represented by practical computation of integrals of the
form

∫ tn+1

tn

Fk,i(tn+1 − ξ)eτi,j sin ωi,jξgj(ξ) dξ
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Figure 1.1: The numerical (top, withRelTol = 10−4) and true (bottom) solution of (1.4) in
the first two periods.

= 1
2h

∫ 1

−1

Fk,i(
1
2h(1 − x))gj(tn + 1

2h(1 + x))e
τi,j sin ωi,j

(

tn+
1
2h(1+x)

)

dx (1.3)

for ωi,j ≫ 1. Since classical numerical methods for non-oscillatory integrals, e.g. Gaus-
sian quadrature, require the decomposition of the integration interval intoO(ω) sub-panels
(Davis & Rabinowitz 1984), and recalling that we haved3 such intervals in each step, they
are completely unfit for purpose.

An alternative is provided by contemporary methods for highly oscillatory quadrature, an
area that has undergone significant developments in the lastfew years. The problem, though,
is that the integral (1.3) does not fit into the framework of traditional asymptotic theory for
highly oscillatory integrals (Wong 2001): the latter is concerned with integrals of the form
∫

Ω
f(x)eiωg(x) dx, whereω ≫ 1 while neitherf nor g are oscillatory. This is also the

case with the methods for numerical calculation of highly oscillatory integrals that have been
developed recently (Huybrechs & Vandewalle 2006, Iserles &Nørsett 2005, Olver 2006).

Yet another approach is to disregard the explicit formula (1.2) and useexponential integra-
tors to solve the system (1.1). This is not very promising either.Most exponential integrators
designed to cope with high oscillations do this in a Hamiltonian setting, which does not fit
the paradigm of (1.1) (Grimm & Hochbruck 2006). Moreover, they are not designed to deal
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Figure 1.2: A close-up ony′ within a narrow window, exhibiting rapid small-amplitude oscil-
lations.

with the multiscale nature of (1.1) and with truly huge frequenciesωi,j therein. An exception
to the Hamiltonian setting is provided in (Khanamirian 2008), but this does not advance us
much since it takes us to the very same highly oscillatory quadrature methods which we have
already deemed unsuitable in the last paragraph.

Finally, we can disregard the special structure of (1.1) andjust use an all-purpose ODE
solver, placing our trust in its error-control and variable-step strategies. Thus, we have solved
the system

y′′ + y = 2esin ωt, t ≥ 0, y(0) = 1, y′(0) = 0, (1.4)

with the MATLAB routine ode45, employing different error tolerances and settingω =
10000. The solution of (1.4) is periodic with period2π and we have examined a numeri-
cal solution across two periods. We have set different values of the relative error tolerance
parameterRelTol, setting in each caseAbsTol = 10−3 × RelTol.

In Fig. 1.1 we present a numerical solution (admittedly, with the least relative error,
RelTol = 10−4, yet tenfold smaller than the MATLAB default) of (1.4), comparing it with
the exact solution. It is evident that the quality of the numerical solution deteriorates fairly
rapidly. Cursory examination of the exact solution might bemisleading, since it appears to be
a very ‘nice’ function, varying in a sedate manner. However,once we magnify the solution
within a short window, as in Fig. 1.2, we note that it exhibitsvery rapid, small-amplitude
oscillations. Such oscillations are bound to inhibit the step size in any standard error-control
mechanism in all-purpose software and this, perhaps unsurprisingly, is reflected in Table 1.
Another important observation is that the numerical (absolute) error falls substantially short
of either relative or absolute error-tolerance parameters. This breakdown in error control has
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Table 1: The performance ofode45 in the interval[0, 4π] for different relative error toler-
ances for the system (1.4) withω = 104.

RelTol number of steps numerical error
in y(4π) in y′(4π)

10−4 61441 −6.42−01 −8.57−01

10−5 123405 9.61−04 −2.19−02

10−6 240645 −1.01−04 4.57−04

10−7 377057 1.94−06 5.17−05

been already reported for other highly oscillatory ODE systems (Iserles 2002). Note that (1.4)
is a toy problem, not just because we are interested in largersystems with many frequencies,
but also becauseω = 104 is a fairly small frequency within our framework. Realisticelec-
tronic circuits are likely to exhibit fast oscillations in the range of≈ 108. This, clearly, is
beyond the scope of any standard ODE software.

The solution that we propose in this paper is to analyse the asymptotic behaviour of the
integral (1.3), thereby creating the right tools for the extension of Filon-type quadrature (Iser-
les & Nørsett 2005) to this setting. This will lead not just toa practical algorithm for the
calculation of (1.1) with arbitrarily large frequenciesωi,j (indeed, the higher the frequency,
the better!) but will also serve us in future generalizationof this equation to full nonlinear
setting. Finally, asymptotic expansion and numerical computation of the highly oscillatory
integral (1.3) and, in future publication, of its generalisations is of an independent mathemat-
ical interest.

2 The asymptotics of the ExpSin integral

Mindful of (1.3), we are concerned with the asymptotic behaviour of the integral

I[f ] =

∫ 1

−1

f(x)eτ sin ω(αx+β) dx, (2.1)

whereα, β ∈ R, τ ∈ C \ {0} andω ≫ 1. For a want of a better name, we call (2.1) the
ExpSin integral.

Even the briefest examination of (2.1) highlights a crucialdifference between the ExpSin
integral and the ‘standard model’ of asymptotic theory of highly oscillatory integrals. Thus,
suppose that we move theω to front of the sine function. It follows at once from the method
of stationary phase (Wong 2001) that

∫ 1

−1

f(x)eτω sin(αx+β) dx = O
(

ω− 1
2

)

, ω ≫ 1,

provided that[−β + (m+ 1
2 )π]/α ∈ [−1, 1] for somem ∈ Z,

∫ 1

−1

f(x)eτω sin(αx+β) dx = O
(

ω−1
)

, ω ≫ 1,
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otherwise. On the other hand, forτ ∈ R andf(x) > 0, x ∈ [−1, 1], it follows at once that

0 < 2e−1 min
x∈[−1,1]

f(x) ≤ I[f ] ≤ 2e max
x∈[−1,1]

f(x)

and the integral is bounded away from zero uniformly inω ∈ R. This is demonstrated in
Fig. 2.1.
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Figure 2.1: The integralI[ex] for α = 1, β = 0 and0 ≤ ω ≤ 100.

The key step toward the analysis of the ExpSin integral is theidentity

eτ sin θ = I0(τ) + 2

∞
∑

k=0

(−1)kI2k+1(τ) sin(2k + 1)θ + 2

∞
∑

k=1

(−1)kI2k(τ) sin 2kθ, (2.2)

whereIk is thekth modified Bessel function(Abramowitz & Stegun 1964, p. 376, formula
(9.6.35)). Lettingθ = ω(αx+ β) in (2.1), we thus obtain

I[f ] = I0(τ)

∫ 1

−1

f(x) dx+ 2

∞
∑

k=0

(−1)kI2k+1(τ)

∫ 1

−1

f(x) sin((2k + 1)ω(αx+ β)) dx

+ 2

∞
∑

k=1

(−1)kI2k(τ)

∫ 1

−1

f(x) cos(2kω(αx+ β)) dx. (2.3)
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We thus expressI[f ] as an infinite sum of integrals, all of which (except for the first)
are themselves highly oscillatory. Before we expand these integrals in turn, it is useful to
comment further about this sum. Since all oscillatory integrals areo(1) for ω ≫ 1, we deduce
that

lim
ω→∞

I[f ] = I0(τ)

∫ 1

−1

f(x) dx.

Moreover, we can deduce at once from (Abramowitz & Stegun 1964, p. 365, formula (9.3.1))
that

Ik(τ) ∼
1

2πk

( eτ

2k

)k

, k ≫ 1.

Since the highly oscillatory integrals are small (as we willsee soon, they areO
(

ω−1
)

, we
conclude that the infinite series converge very rapidly, at aspectral speed.

Let

Cσ,ρ[f ] =

∫ 1

−1

f(x) cos(σx+ ρ) dx, Sσ,ρ[f ] =

∫ 1

−1

f(x) sin(σx+ ρ) dx,

therefore (2.3) becomes

I[f ] = I0(τ)

∫ 1

−1

f(x) dx+ 2

∞
∑

k=0

(−1)kI2k+1(τ)S(2k+1)ωα,(2k+1)ωβ [f ] (2.4)

+ 2

∞
∑

k=1

(−1)kI2k(τ)C2kωα,2kωβ [f ].

Let us assume thatf ∈ C∞[−1, 1]. It is fairly straightforward, although laborious, to
expandCσ,ρ[f ] andSσ,ρ[f ] asymptotically in inverse powers ofσ 6= 0. The obvious route,

lettingCσ,ρ[f ]+iSσ,ρ[f ] =
∫ 1

−1
f(x)ei(σx+ρ) dx and using an explicit expansion from (Iserles

& Nørsett 2005), is probably less transparent than direct expansion. IntegratingSσ,ρ, σ 6= 0,
twice by parts we obtain

Sσ,ρ[f ] = −
1

σ

∫ 1

−1

f(x)
d

dx
cos(σx+ ρ) dx

= −
1

σ
[f(1) cos(σ + ρ) − f(−1) cos(σ − ρ)] +

1

σ

∫ 1

−1

f ′(x) cos(σx+ ρ) dx

= −
1

σ
[f(1) cos(σ + ρ) − f(−1) cos(σ − ρ)] +

1

σ2

∫ 1

−1

f ′(x)
d

dx
sin(σx+ ρ) dx

= −
1

σ
[f(1) cos(σ + ρ) − f(−1) cos(σ − ρ)]

+
1

σ2
[f ′(1) sin(σ + ρ) + f ′(−1) sin(σ − ρ)] −

1

σ2
Sσ,ρ[f

′′].

Iterating this expression yields the asymptotic expansionof Sσ,ρ[f ] in inverse powers ofσ,

Sσ,ρ[f ] ∼ −

∞
∑

m=0

(−1)m

σ2m+1
[f (2m)(1) cos(σ + ρ) − f (2m)(−1) cos(σ − ρ)] (2.5)
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+
∞
∑

m=0

(−1)m

σ2m+2
[f (2m+1)(1) sin(σ + ρ) + f (2m+1)(−1) sin(σ − ρ)], σ ≫ 1.

Likewise, using (2.5), we have

Cσ,ρ[f ] =
1

σ

∫ 1

−1

f(x)
d

dx
sin(σx+ ρ) dx

=
1

σ
[f(1) sin(σ + ρ) + f(−1) sin(σ − ρ)] −

1

σ
Sσ,ρ[f

′]

∼

∞
∑

m=0

(−1)m

σ2m+1
[f (2m)(1) sin(σ + ρ) + f (2m)(−1) sin(σ − ρ)] (2.6)

+

∞
∑

m=0

(−1)m

σ2m+2
[f (2m+1)(1) cos(σ + ρ) − f (2m+1)(−1) cos(σ − ρ)], σ ≫ 1.

Substituting (2.5) and (2.6) into (2.4) results in

I[f ] ∼ I0(τ)

∫ 1

−1

f(x) dx

+ 2

∞
∑

k=0

(−1)kI2k+1(τ)

{

−

∞
∑

m=0

(−1)m

[(2k + 1)ωα]2m+1
[f (2m)(1) cos((2k+1)ω(α+β))

− f (2m)(−1) cos((2k+1)ω(α−β))]

+
∞
∑

m=0

(−1)m

[(2k + 1)ωα]2m+2
[f (2m+1)(1) sin((2k+1)ω(α+β))

+ f (2m+2)(−1) sin((2k+1)ω(α−β))]

}

+ 2
∞
∑

k=1

(−1)kI2k(τ)

{ ∞
∑

m=0

(−1)m

(2kωα)2m+1
[f (2m)(1) sin(2kω(α+β))

+ f (2m)(−1) sin(2kω(α−β))]

+

∞
∑

m=0

(−1)m

(2kωα)2m+2
[f (2m+1)(1) cos(2kω(α+β))

− f (2m+1)(−1) cos(2kω(α− β))]

}

= I0(τ)

∫ 1

−1

f(x) dx

+ 2

∞
∑

m=0

(−1)m

(αω)2m+1

[

−f (2m)(1)

∞
∑

k=0

(−1)kI2k+1(τ)

(2k + 1)2m+1
cos((2k+1)ω(α+β))

+ f (2m)(1)

∞
∑

k=1

(−1)kI2k(τ)

(2k)2m+1
sin(2kω(α+β))
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+ f (2m)(−1)
∞
∑

k=0

(−1)kI2k+1(τ)

(2k + 1)2m+1
cos((2k+1)ω(α−β))

+ f (2m)(−1)

∞
∑

k=1

(−1)kI2k(τ)

(2k)2m+1
sin(2kω(α−β))

]

+ 2

∞
∑

m=0

(−1)m

(αω)2m+2

[

f (2m+1)(1)

∞
∑

k=0

(−1)kI2k+1(τ)

(2k + 1)2m+2
sin((2k+1)ω(α+β))

+ f (2m+1)(1)

∞
∑

k=1

(−1)kI2k(τ)

(2k)2m+2
cos(2kω(α+β))

+ f (2m+1)(−1)
∞
∑

k=0

(−1)kI2k+1(τ)

(2k + 1)2m+2
sin((2k+1)ω(α−β))

− f (2m+1)(−1)

∞
∑

k=1

(−1)kI2k(τ)

(2k)2m+2
cos(2kω(α−β))

]

.

Let

Θ[1]
m (ψ, τ) = 2

∞
∑

k=0

(−1)kI2k+1(τ)

(2k + 1)2m+1
cos((2k+1)ψ)

Θ[2]
m (ψ, τ) = 2

∞
∑

k=1

(−1)kI2k(τ)

(2k)2m+1
sin(2kψ),

Φ[1]
m (ψ, τ) = 2

∞
∑

k=0

(−1)kI2k+1(τ)

(2k + 1)2m+2
sin((2k+1)ψ),

Φ[2]
m (ψ, τ) = 2

∞
∑

k=1

(−1)kI2k(τ)

(2k)2m+2
cos(2kψ).

Note that the four functions are analytic inψ, τ for all m ∈ Z+ and their convergence is
assured. They are periodic inψ of period2π for Θ[1] andΦ[1], of periodπ otherwise.

In Fig. 2.2 we display the functionsΘ[i]
0 andΦ

[i]
0 for i = 1, 2. Note that the differences

betweenΘ[i]
m for m ≥ 1 andΘ

[i]
0 (likewise, betweenΦ[i]

m andΦ
[i]
0 ) are very small, thus this

figure is typical of allms.
The four functions are infinite series. Yet, the speed of their convergence is so rapid that

it is enough to restrict the range of summation tok ≤ 6 to attain machine accuracy.
Using Θ

[i]
m andΦ

[i]
m we can write conveniently the asymptotic expansion of the ExpSin

integralI[f ].

Lemma 1 Letαω ≫ 1. Then

I[f ] ∼ I0(τ)

∫ 1

−1

f(x) dx (2.7)

+

∞
∑

m=0

(−1)m

(αω)2m+1

{

f (2m)(1)[Θ[2]
m (ω(α+ β)) − Θ[1]

m (ω(α+ β))]
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Figure 2.2: The functionsΘ[i]
0 (ψ, 1) andΦ

[i]
0 (ψ, 1) for i = 1, 2 and0 ≤ ψ ≤ 2π.

+ f (2m)(−1)[Θ[2]
m (ω(α− β)) + Θ[1]

m (ω(α− β))]
}

+

∞
∑

m=0

(−1)m

(αω)2m+2

{

f (2m+1)(1)[Φ[2]
m (ω(α+ β)) + Φ[1]

m (ω(α+ β))]

− f (2m+1)(−1)[Φ[2]
m (ω(α− β)) − Φ[1]

m (ω(α− β))]
}

.

An immediate application of the expansion (2.7) is to the numerical calculation ofI[f ].
Truncating the series results fors ∈ N in theasymptotic method

I[f ] ≈ As[f ] = I0(τ)

∫ 1

−1

f(x) dx (2.8)

+

⌊(s−1)/2⌋
∑

m=0

(−1)m

(αω)2m+1

{

f (2m)(1)[Θ[2]
m (ω(α+ β)) − Θ[1]

m (ω(α+ β))]

+ f (2m)(−1)[Θ[2]
m (ω(α− β)) + Θ[1]

m (ω(α− β))]
}
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Table 2: Absolute errors|As[e
x] − I[ex]| for s = 1, 2, 3.

s ω = 10 ω = 50 ω = 100 ω = 200

1 2.14−02 3.96−04 1.81−04 7.39−05

2 1.92−03 2.02−05 2.22−06 1.53−07

3 2.11−04 1.44−07 1.76−08 1.89−09

+

⌊s/2⌋−1
∑

m=0

(−1)m

(αω)2m+2

{

f (2m+1)(1)[Φ[2]
m (ω(α+ β)) + Φ[1]

m (ω(α+ β))]

− f (2m+1)(−1)[Φ[2]
m (ω(α− β)) − Φ[1]

m (ω(α− β))]
}

.

and it is trivial to verify that

As[f ] = I[f ] + O
(

(αω)−s−1
)

, |αω| ≫ 1.

In a way of an example, we have used (2.8) to compute the integral I[ex] from Fig. 2.1.
The results are displayed in Fig. 2.3 and they confirm the theoretical expectations on asymp-
totic behaviour. Indeed, they exceed it, because apparently the asymptotic regime sets already
for very small|αω|, rather then only for large frequencies. However, the figuredoes not ex-
hibit transparently the actual absolute error and for this we refer to Table 2. It is clear that,
while for large|αω| we need relatively modest values ofs, moderate frequencies call for large
s and the method becomes expensive: this is only to be expected, because of the asymptotic
nature of the method (2.8).

There are two obvious problems associated with the asymptotic method (2.8). Firstly,
we said nothing about the numerical evaluation of the leading integral. This, however, can
be accomplished easily using classical quadrature, since it is non-oscillatory. Secondly, as
demonstrated in Table 2, the formula is useful only for sufficiently large value of|αω|. Al-
though, in our experience, asymptotic behaviour sets surprisingly rapidly, this is an undoubted
shortcoming. In principle, not all theωi,js in (1.1) need be large and we do not wish to employ
different quadrature rules for differentωi,js, something that unduly complicates things.
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Fortunately, a major lesson of recent advances in numericalquadrature of highly oscil-
latory integrals is that the main role of asymptotic formulælike (2.7) is as a gateway to
Filon-type (Iserles & Nørsett 2005) and Levin-type (Olver 2006) techniques. An important
advantage of these methods is that they segue seamlessly into classical quadrature for small
ω, hence are uniformly effective throughout the entire rangeof frequencies. They are also
typically significantly more accurate that the asymptotic method (2.8).

3 A Filon-type method

An alternative to the asymptotic method (2.8) is aFilon-type method.Thus, letν ≥ 2, nodes
−1 = c1 < c2 < · · · < cν = 1 andmultiplicitiesm1,m2, . . . ,mν ∈ N. We interpolate the
functionf in a Hermite sense at the nodesc by a polynomialp of degree

∑ν
i=1mi − 1,

p(j)(ck) = f (j)(ck), j = 0, . . . ,mk − 1, k = 1, 2, . . . , ν. (3.1)

TheFilon-type methodfor the highly oscillatory integral (2.1) is defined as

F [f ] =

∫ 1

−1

p(x)eτ sin ω(αx+β) dx. (3.2)

Theorem 2 Lets = min{m1,mν}. Then for everyf ∈ C∞[−1, 1]

F [f ] − I[f ] ∼ I0(τ)E[f ] + O
(

ω−s−1
)

, ω ≫ 1, (3.3)

whereE[f ] =
∫ 1

−1
[p(x) − f(x)] dx.

Proof We use the method of proof from (Iserles & Nørsett 2005). Since bothF andI

are linear operators,F [f ] − I[f ] = I[p − f ] and the theorem follows at once from letting
p − f in (2.8) and noting that the interpolation conditions (3.1)annihilate asymptotic terms
for m = 0, 1, . . . , ⌊(s − 1)/2⌋ in the first sum in (2.7) andm = 0, 1, . . . , ⌊s/2⌋ − 1 in the
second. 2

Note that the internal nodesc2, . . . , cν−1 have no influence upon the asymptotic order
of the error. However, they have three important functions.Firstly, good choice of such
points minimizes the non-oscillatory quadrature errorE[f ], one of the two components of the
quadrature error in (3.3). Secondly, intuitively speaking, the method (3.2) is nothing but the
asymptotic quadratureAs, applied to the interpolation errorp− f rather than to the original
functionf . Thus, the smaller we make the interpolation error, the better. Thirdly, unlike (2.8),
the Filon-type method is relevant throughout the range of frequenciesω ∈ R. In particular,
when|ω| is small thenF [f ] = E[f ]+O(ω), the reason being thatI[f ] =

∫ 1

−1
f(x) dx+O(ω)

andF [f ] = I[p] =
∫ 1

−1
p(x) dx + O(ω) = Q[f ] + O(ω). Thus, rendering|E[f ] small is

vital also in this regime.

3.1 Implementation of the Filon-type method

The implementation of (3.2) is based on the premise that we can integrate (2.1) exactly once
f is a polynomial. Thus, let

p(x) =

q
∑

r=0

prx
r, where q =

ν
∑

i=1

mi − 1.



13

Then

F [f ] =

q
∑

r=0

pr

∫ 1

−1

xreτ sin ω(αx+β) dx =

q
∑

r=0

prµr(ω). (3.4)

The momentsµr can be calculated directly from the asymptotic expansion (2.7) since the
latter terminates in that case,

µr(ω) =
1 + (−1)r

r + 1
I0(τ)

+

⌊r/2⌋
∑

m=0

(−1)m

(αω)2m+1

r!

(r − 2m)!

{

[Θ[2]
m (ω(α+ β)) − Θ[1]

m (ω(α+ β))]

+ (−1)r[Θ[2]
m (ω(α− β)) + Θ[1]

m (ω(α− β))]
}

+

⌊(r−1)/2⌋
∑

m=0

(−1)m

(αω)2m+2

r!

(r − 2m− 1)!

{

[Φ[2]
m (ω(α+ β)) + Φ[1]

m (ω(α+ β))]

+ (−1)r[Φ[2]
m (ω(α− β)) − Φ[1]

m (ω(α− β))]
}

, r ∈ Z+.

Note that (3.4) is not a practical means to calculateF [f ]. Like in the case of non-
oscillatory quadrature, it is advantageous to expressp in terms ofcardinal polynomials,

p(x) =
ν

∑

k=1

mk−1
∑

j=0

ℓk,j(x)f
(j)(ck),

where eachℓk,j is a polynomial of degreeq such that

ℓ
(i)
k,j(cn) =

{

1, k = n, i = j,
0, otherwise

(3.5)

for i = 0, 1, . . . ,mn − 1, j = 0, 1, . . . ,mk − 1, k, n = 1, 2, . . . , ν. Letting

bk,j = I[ℓk,j ] =

∫ 1

−1

ℓk,j(x)e
τ sin(ω(αx+β)) dx, j = 0, 1, . . . ,mk − 1, k = 1, 2, . . . , ν

(which we can do once-for-all in terms of the momentsµr) we obtain

F [f ] =

ν
∑

k=1

mk−1
∑

j=0

bk,jf
(j)(ck), (3.6)

a form reminiscent of classical quadrature (Davis & Rabinowitz 1984).
To illustrate our construction by few simple examples, let us assume (mostly to render

notation more transparent) thatα = 1 andβ = 0, whereby

µ0(ω) = 2I0(τ) +
2

ω
Θ

[2]
0 (ω),

µ1(ω) = −
2

ω
Θ

[1]
0 (ω) +

2

ω2
Φ

[1]
0 (ω),
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µ2(ω) = 2
3I0(τ) +

2

ω
Θ

[2]
0 (ω) +

4

ω2
Φ

[2]
0 (ω) −

4

ω3
Θ

[2]
1 (ω),

µ3(ω) = −
2

ω
Θ

[1]
0 (ω) +

6

ω2
Φ

[1]
0 (ω) +

12

ω3
Θ

[1]
1 (ω) −

12

ω4
Φ

[1]
1 (ω),

µ4(ω) = 2
5I0(τ) +

2

ω
Θ

[2]
0 (ω) +

8

ω2
Φ

[2]
0 (ω) −

24

ω3
Θ

[2]
1 (ω) −

48

ω4
Φ

[2]
1 (ω) +

48

ω5
Θ

[2]
2 (ω).

(Note that we have supressed the dependence ofΦ
[i]
m andΘ

[i]
m on τ .)

We commence fromν = 2, c = [−1, 1] and m = [1, 1], wherebyp(x) = 1
2 (1 −

x)f(−1) + 1
2 (1 + x)f(1). This results in the method

F [f ] = 1
2 [µ0(ω) − µ1(ω)]f(−1) + 1

2 [µ0(ω) + µ1(ω)]f(1).

Next, we considerc = [−1, 1] andm = [2, 2], whereby

p(x) = 1
4 (1 + x)(2 + x− x2)f(1) + 1

4 (1 − x)(2 − x− x2)f(−1)

− 1
4 (1 − x)(1 + x)2f ′(1) + 1

4 (1 − x)2(1 + x)f ′(−1)

and

F [f ] = 1
4 (2µ0 + 3µ1 − µ3)f(1) + 1

4 (2µ0 − 3µ1 + µ3)f(−1)

− 1
4 (µ0 + µ1 − µ2 − µ3)f

′(1) + 1
4 (µ0 − µ1 − µ2 + µ3)f

′(−1).

As our final example, we letν = 3, c = [−1, 0, 1] andm = [2, 1, 2]. We now have

p(x) = 1
4x(1 + x)2(3 − 2x)f(1) + (1 − x2)2f(0) − 1

4x(1 − x)2(3 + 2x)f(−1)

− x(1 − x)(1 + x)2f ′(1) − x(1 − x)2(1 + x)f ′(−1),

therefore

F [f ] = 1
4 (3µ1 + 4µ2 − µ3 − 2µ4)f(1) + (µ0 − 2µ2 + µ4)f(0)

+ 1
4 (−3µ1 + 4µ2 + µ3 − 2µ4)f(−1) + 1

4 (−µ1 − µ2 + µ3 + µ4)f
′(1)

+ 1
4 (−µ1 + µ2 + µ3 − µ4)f

′(−1).

3.2 Hermite–Birkhoff quadrature

Wishing to minimise the non-oscillatory errorE[f ], we have the freedom of choosing nodes
and weights, subject toc1 = −1, cν = 1 ands = min{m1,mν}, a procedure that has been
already considered in (Iserles & Nørsett 2006). Let

b̃k,j =

∫ 1

−1

ℓk,j(x) dx, j = 0, 1, . . . ,mk − 1, k = 1, 2, . . . , ν,

where theℓk,js were defined in (3.5), and

Q[f ] =

ν
∑

k=1

mk−1
∑

j=0

b̃k,jf
(j)(ck), (3.7)

we haveE[f ] = Q[f ] −
∫ 1

−1
f(x) dx. ThereforeQ is aHermite–Birkhoff quadrature(Mic-

chelli & Rivlin 1973) for the computation of a non-oscillatory integral.



15

Theorem 3 Letm1 = mν = s andm2 = m3 = · · · = mν−1 ≡ 1. The quadrature (3.7) is of
maximal order2ν+2s− 4 (in other words, is exact for all polynomials of degree2ν+2s− 5

whenc2, c3, . . . , cν−1 are the zeros of the Jacobi polynomialP (s,s)
ν−2 .

Proof A straightforward generalisation of the familiar proof on the order of Gauss–
Christoffel quadrature (Davis & Rabinowitz 1984). Let

Pν+2s−2[x] ∋ u(x) = (1 − x2)sP
(s,s)
ν−2 (x),

wherePn[x] is the set ofnth-degree polynomials. Given anyw ∈ P2ν+2s−5[x], it follows
by the Euclidean algorithm that there existp ∈ Pν−3[x] andq ∈ Pν+2s−3[x] such thatw =

pu + q. Recalling thatP (s,s)
ν−2 is orthogonal in(−1, 1) with respect to the weight function

(1 − x2)s (Abramowitz & Stegun 1964), we have

∫ 1

−1

p(x)u(x) dx =

∫ 1

−1

p(x)P
(s,s)
ν−2 (x)(1 − x2)s dx = 0,

while Q[pu] = 0 becauseu(ck) = 0, k = 1, 2, . . . , ν andu(j)(±1) = 0, j = 0, 1, . . . , s− 1.
Therefore

E[w] = Q[w] −

∫ 1

−1

w(x) dx = Q[q] −

∫ 1

−1

q(x) dx.

The right-hand side vanishes because the weights are interpolatory. This is standard argument
in classical quadrature and follows in a Hermite–Birkhoff setting by countingν + 2s degrees
of freedom and observing that the underlying linear system (ensuring thatQ is at least of
orderν + 2s) is nonsingular, being a limiting case of Lagrangian interpolation withν + 2s
nodes. We deduce thatE[w] = 0 for everyw ∈ P2ν+2s−5[x], hence order2ν + 2s− 4.

It remains to prove that no other choice of internal nodesc2, c3, . . . , cν−1 may increase
the order. To this end it is sufficient to single out one polynomial v ∈ P2ν+2s−4[x] such that
E[v] 6= 0 for anychoice of internal nodes. We thus choose

v(x) = (1 − x2)s
ν−1
∏

k=2

(x− ck)2,

wherec2, c3, . . . , cν−1 ∈ (−1, 1) are arbitrary. Trivially,
∫ 1

−1
v(x) dx > 0. On the other

hand,v(ck) = 0, k = 1, 2, . . . , ν andv(j)(±1) = 0, j = 0, 1, . . . , s−1, imply thatQ[v] = 0.
It thus follows thatE[v] < 0 and the maximal order is indeed2(ν + s− 2). 2

To flesh out numbers, herewith few explicit quadratures (3.7):

ν = 2, s = 2 : Q[f ] = f(1) + f(−1) −
1

3
[f ′(1) − f ′(−1)],

ν = 2, s = 3 : Q[f ] = f(1) + f(−1) −
2

3
[f ′(1) − f ′(−1)] +

1

15
[f ′′(1) + f ′′(−1)],

ν = 3, s = 2 : Q[f ] =
1

15
[7f(1) + 16f(0) + 7f(−1)] −

1

15
[f ′(1) − f ′(−1)],

ν = 4, s = 2 : Q[f ] =
1

135
[37f(1) + 98f(

√
7

7 ) + 98f(−
√

7
7 ) + 37f(−1)]
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Table 3: Absolute errors in approximating
∫ 1

−1
ex dx by Q[ex] with s = m1 = mν = 2 (top),

s = m1 = mν = 3 (bottom),m2 = m3 = . . . = mν−1 = 1 andν = 2, . . . , 7.

ν 2 3 4 5 6 7

s = 2 4.77−02 2.21−04 7.42−07 1.74−09 2.93−12 3.71−15

s = 3 1.34−03 2.61−06 4.65−09 6.61−12 7.43−15 6.77−18

−
1

45
[f ′(1) − f ′(−1)],

ν = 3, s = 3 : Q[f ] =
1

35
[19f(1) + 32f(0) + 19f(−1)] −

4

35
[f ′(1) − f ′(−1)]

+
1

105
[f ′′(1) + f ′′(−1)],

ν = 4, s = 3 : Q[f ] =
1

1120
[391f(1) + 729f( 1

3 ) + 729f(− 1
3 ) + 391f(−1)]

−
13

280
[f ′(1) − f ′(−1)] +

1

420
[f ′′(1) + f ′′(−1)].

The order, in each case, is2(ν + s− 2).
Of course, there is nothing to prevent us from using higher multiplicities with internal

nodes, except that we might lose the attractive feature of Theorem 3, reminiscent of the Gauss–
Christoffel quadrature, namely that maximal order exceedsby ν the number of degrees of
freedom. Thus, for example, choosingν = 3, c = [−1, 0, 1] andmk ≡ 2, the coefficient of
f ′(0) is nil and we recover the sixth-order formula withν = 3, s = 1, above. On the other
hand, once we letm = [2, 3, 2], we obtain

Q[f ] =
1

35
[11f(1) + 48f(0) + 11f(−1)] −

1

35
[f ′(1) − f ′(−1)] +

8

105
f ′′(0),

of order 8.
In Table 3 we display errorsE[f ] committed by Hermite–Birkhoff methods consistent

with the conditions of Theorem 3, withs = 2 and increasing values ofν, applied to the
functionf(x) = ex. The decrease in error is consistent with Theorem 3.

3.3 Numerical examples for Filon-type methods

According to (3.3), the error of Filon-type methods has two components. The asymptotic
component decays with increasingω but I0(τ)E[f ] is independent ofω. Thus, unlike in the
case of Filon-type methods for ‘classical’ highly oscillatory integrals (Iserles & Nørsett 2005)
and in variance with the asymptotic methodA[f ], the error does not tend to zero forω → ∞.
This is demonstrated in Fig. 3.4, where we display the absolute errorF [f ] − I[f ] for the
Filon-type method withc = [−1, 0, 1], m = [2, 1, 2] and the functionf(x) = ex. Forω ≫ 1
the error asymptotes to≈ −2.7904 = I0(1)E[ex] (cf. Table 3,ν = 3, forE[ex]).

In Fig. 3.5 we display the asymptotic error componentF [f ] − I[f ] − I0(τ)E[f ], scaled
by ω3, for two different Filon-type methods of an asymptotic order two. In both cases, con-
sistently with Theorem 2, the scaled error asymptotes to a constant.
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Figure 3.4: The errorF [ex] − I[ex] for c = [−1, 0, 1], m = [2, 1, 2] andω ∈ [0, 200].
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Figure 3.5: Scaled errorsω3|F [ex] − I[ex] − I0(1)E[ex]| for c = [−1, 0, 1], m = [2, 1, 2]

(left), c = [−1,−
√

7
7 ,

√
7

7 , 1], m = [2, 1, 1, 2] (right) andω ∈ [0, 200].

It is instructive to compare absolute errors at different values ofω for asymptotic and
Filon-type methods. In an important aspect, this comparison is heavily weighed against Filon-
type methods, because the asymptotic method (2.8) assumes that

∫ 1

−1
f(x) dx is calculated

exactly: in practice we need to replace the integral by quadrature. Nonetheless, and even
bearing in mind thatE[f ] makes up the major share of error in (3.2), Filon-type methods are
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Table 4: Absolute errors|F [ex] − I[ex]| for different Filon-type methods.

Methods ω = 10 ω = 50 ω = 100 ω = 200

c = [−1, 0, 1], m = [2, 1, 2] 2.18−04 2.80−04 2.79−04 2.79−04

c = [−1,−
√

7
7 ,

√
7

7 , 1], m = [2, 1, 1, 2] 2.75−06 9.63−07 9.43−07 9.40−07

c = [−1, 0, 1], m = [3, 1, 3] 9.22−07 3.31−06 3.31−06 3.31−06

c = [−1,− 1
3 ,

1
3 , 1], m = [3, 1, 1, 3] 7.97−09 5.88−09 5.88−09 5.88−09

c = [−1,−
√

33
11 , 0,

√
33

11 , 1], m = [3, 1, 1, 1, 3] 9.83−09 1.40−11 7.66−12 8.28−12

c = [−1,−
√

65
11 , 0,

√
65

11 , 1], m = [3, 1, 3, 1, 3] 1.18−10 1.09−13 9.16−15 1.21−14

evident superior.
The error for asymptotic methods is displayed in Table 2 and,predictably, it starts un-

acceptably high but becomes increasingly small, tending tozero forω ≫ 1. Not so for
Filon-type methods, exhibited in Table 4. Theuniform errorof (3.2) is considerably smaller,
because the performance for small and moderateωs is considerably better. On the other hand,
the error forω ≫ 1 does not tend to zero, as we have already repeatedly observed. Over-
all, it is clear that Filon-type methods significantly decrease the error at the cost of few extra
function evaluations, even when the integral inAs[f ] is computed exactly.

We note in passing that the fixed error componentE[f ] assumes significantly smaller
importance in the setting of ordinary differential equations and the solution of the integral
(1.2). In that caseE[f ] is scaled byhq, whereh = tn+1 − tn is the length of the integration
interval andq is the order of the Hermite–Birkhoff quadrature. In this setting Filon-type
methods are likely to outperform asymptotic methods by a large margin, since the latter are
largely insensitive to the length of integration integral.

4 Numerical examples

We bring the equation (1.2) into a form appropriate for the application of Filon-type methods
in the interval[−1, 1],

y(tn+1) = ehAy(tn) +
h

2

∫ 1

−1

e
1
2
h(1−x)AE(h(n+ 1

2 + 1
2x))g(h(n+ 1

2 + 1
2x)) dx. (4.1)

Our time-stepping routine is obtained by replacing integrals with appropriate Filon-type meth-
ods.

In the specific context of equation (1.4), the time-steppingformula (4.1), combined with
a Filon-type solver, becomes

yn+1,1 = yn,1 cosh+ yn,2 sinh+ hF [sin(1
2h(1 − x))],

yn+1,2 = −yn,1 sinh+ yn,2 cosh+ hF [cos( 1
2h(1 − x))],

where the Filon-type methods are applied withα = 1
2 , β = n+ 1

2 andω replaced byhω.
The pointwise error for two Filon-type methods is displayedin Fig. 4.1 for step-sizes

h ∈ { π
100 ,

π
200 ,

π
400 ,

π
800}. (We have used there the more precise Filon-type method withstep-

sizeh = π
1600 as our ‘true’ solution.) The first Filon-type method uses only function values
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Figure 4.1: Pointwise absolute error for two Filon-type methods.
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at the endpoints, the second uses both function values and derivatives there. (We did not use
any internal points but note in passing that their incorporation would have further reduced the
error.) A comparison with Table 1 is striking: at the cost of just 400 steps with the plain-
vanilla Filon-type method (requiring just one new functionevaluation per step!) we produce
better accuracy thanode45 with 240645 steps.

Note that the errors in Fig. 4.1 appear to be the same periodicfunction, scaled by suitable
powers ofh (except for the second method withh = π

800 , but this is likely to be a machine-
precision artefact). So is the exact solution (cf. bottom ofFig. 1.1) but these two functions are
different. The reason for perodicity can tell us something about the properties of our method,
hence it bears some elaboration. Recall that for largeω the major source for the error is the
classical quadrature error (scaled by a suitable Bessel function). Leten = yn − y(tn) and
consider just the error originating in classical quadrature. It readily follows that

en+1 = ehAen + hq, (4.2)

where the vectorq contains the contribution of classical quadrature error for the different
components. For example, in the present case, for ‘plain-vanilla’ Filon we have

q = I0(1)

[

h sinh− 2 + 2 cosh
h+ h cosh− 2 sinh

]

=

[

O
(

h4
)

O
(

h3
)

]

.

Bearing in mind thate0 = 0, the solution of (4.2) is

en = h(I − ehA)−1(I − enhA)q,

which in the present case becomes

en =
h

2(1 − cosh)

[

1 − cosh sinh
− sinh 1 − cosh

] [

1 − cosnh − sinnh
sinnh 1 − cosnh

]

q.

Periodicity is clear, as is the fact that in Fig. 4.1 the erroris a linear combination of just two
harmonics,sinnh andcosnh.

Be it as may, it is crystal clear that even the most elementaryFilon-type methods enjoy
tremendous advantage in comparison to state-of-the-art general ODE software likeode45
when applied with high frequencies. Another important advantage of Filon-type methods,
which is not apparent from our comparison, is that both the error and the computational effort
are roughly uniform in frequency, while classical ODE solvers deteriorate with increasing
frequency. Note that we have implemented Filon-type methods in the most straightforward
manner, with constant step size and without any error control. (cf. (Iserles & Nørsett 2004)
for error control for Filon-type methods.) It is highly likely that more sophisticated imple-
mentation would have resulted in even more striking outcome.
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