
Noname manuscript No.
(will be inserted by the editor)

A new algorithm for computing the Geronimus
transformation with large shifts

M. I. Bueno · A. Deaño · E. Tavernetti

Received: date / Accepted: date

Abstract A monic Jacobi matrix is a tridiagonal matrix which contains the parame-

ters of the three-term recurrence relation satisfied by the sequence of monic polynomials

orthogonal with respect to a measure. The basic Geronimus transformation with shift

α transforms the monic Jacobi matrix associated with a measure dµ into the monic Ja-

cobi matrix associated with dµ/(x−α)+Cδ(x−α), for some constant C. In this paper

we examine the algorithms available to compute this transformation and we propose

a more accurate algorithm, estimate its forward errors, and prove that it is forward

stable. In particular, we show that for C = 0 the problem is very ill-conditioned, and

present a new algorithm that uses extended precision.

Keywords Geronimus transformation · accuracy · roundoff error analysis · orthogonal

polynomials · three-term recurrence relations.

Mathematics Subject Classification (2000) 15A21 · 15A23 · 05A05 · 05B25

The first author’s work was supported by Dirección General de Investigación (Ministerio de
Ciencia y Tecnoloǵıa) of Spain under grant MTM2006-06671. The third author’s work was
funded by EAF during the UCSB Summer Research Program for Undergraduates in 2007. A.
Deaño acknowledges financial support from the Spanish Ministry of Education and Science,
under the program of postdoctoral grants (Programa de becas postdoctorales) and project
MTM2006-09050.

Maria I. Bueno
Department of Mathematics and College of Creative Studies.
University of California, Santa Barbara, CA.
E-mail: mbueno@math.ucsb.edu

Alfredo Deaño
DAMTP, Centre for Mathematical Sciences.
University of Cambridge, UK.
E-mail: ad495@cam.ac.uk

Edward Tavernetti
Department of Mathematics
University of California, Davis, CA.
E-mail: etavernetti@math.ucdavis.edu

2

1 Introduction

Given a measure µ, with supp µ ⊂ R, one can define a linear functional L on the space

P of polynomials with real coefficients in the following way:

L (p) =

Z
p(x)dµ(x), p ∈ P, (1)

which is well defined provided that the moments Ln := L (xn) are finite, n = 0, 1, 2, . . .

In that case, we say that L is a moment functional. Moreover, if the leading principal

submatrices of the Hankel matrix M = (Li+j)
∞
i,j=0 are nonsingular, then L is said to

be quasi-definite, and there exists a sequence of polynomials {Pn}∞n=0 orthogonal with

respect to µ, that is, [4]

1. deg(Pn) = n for all n ≥ 0.

2. L (PnPm) = Knδn,m, where Kn 6= 0 and δn,m is the “Kronecker delta” defined by

δn,m =

0, if m 6= n,

1, if m = n.

In particular, {Pn}∞n=0 is said to be a monic sequence of orthogonal polynomials

(MOPS) if the leading coefficient of each polynomial is equal to one. Every MOPS

satisfies a three-term recurrence relation (TTRR):

xPn(x) = Pn+1(x) +Bn+1Pn(x) +GnPn−1(x), (2)

P−1(x) ≡ 0, P0(x) ≡ 1, Bn, Gn ∈ R, G0 = L0, Gn 6= 0 for all n ≥ 0.

The previous set of equations can be written in matrix notation as

xp = Jp,

where p = [P0(x), P1(x), P2(x), . . .]T and

J =

26664
B1 1 0 ...

G1 B2 1 ...

0 G2 B3 ...
...

...
...

. . .

37775 .
This semi-infinite tridiagonal matrix J is called the monic Jacobi matrix associated

with the functional L . It is very unusual to denote the entries of a matrix by capital

letters, but since the algorithms to compute the Geronimus transformation involve two

monic Jacobi matrices, for the sake of clarity, we denote by capital letters the entries

in the input matrix and by the same lowercase letters the entries in the output matrix.

For a moment functional L , a polynomial π, and a real number α, let πL and

(x− α)−1L be the moment functionals defined by

(πL) (p) = L (πp),“
(x− α)−1L

”
(p) = L

„
p(x)− p(α)

x− α

«
.

In the literature there are numerous results studying the connection between the

recurrence relations of polynomials orthogonal with respect to two allied measures [1,

2,6,14,22]. This relationship can be extended to the corresponding Jacobi matrices.

Two examples stand out as particularly important:

3

– Given L and α ∈ R, the transformation that gives the monic Jacobi matrix asso-

ciated with (x − α)L in terms of the monic Jacobi matrix associated with L is

called the Christoffel transformation or Darboux transformation.

– Given L , we consider the linear functional G := (x−α)−1L +Mδ(x−α), where α ∈
R is out of the support of the measure that defines L and M is a nonzero constant.

This transformation performs a rational modification of the measure that defines

the functional L and add a Dirac mass in α. Notice that M = G0, the first moment

of G . The transformation that gives the monic Jacobi matrix associated with G
in terms of the monic Jacobi matrix associated with L is called the Geronimus

transformation or Darboux transformation with free parameter.

These transformations can be considered as reciprocal in the following sense:

Lemma 1 [23] Let L and G be two linear functionals and α a real number. Then,

(x− α)G = L if and only if G = (x− α)−1L + G0δ(x− α).

If the functional L is expressed in integral form as in (1), then

G (p(x)) =
h
(x− α)−1L + G0δ(x− α)

i
(p(x)) =

Z
p(x)

dµ

x− α + Cp(α),

where C = G0 − µ0 and µ0 =
R dµ
x−α . Therefore, this transformation depends on two

free parameters α and C. From now on we call the transformation that gives the monic

Jacobi matrix associated with the functional G in terms of the monic Jacobi matrix

associated with L the Geronimus transformation with shift α and parameter C.

The Geronimus transformation was first studied by Geronimus in 1940. Among

numerous papers by Geronimus on orthogonal polynomials there are two [12,13] which

contain ideas that anticipated many investigations in modern mathematical physics.

The main contribution by Geronimus was a deep investigation of both Darboux trans-

formations. The first non-trivial application of these transformations was proposed by

Geronimus himself in [13]. This application is connected to the problem of classifying

all sequences of orthogonal polynomials such that its derivatives form another set of

orthogonal polynomials. In the last two decades, these transformations have attracted

the interest of various specialists in different branches of mathematics and mathemati-

cal physics for their applications to different topics such as Discrete Integrable Systems

[19–21], Quantum Mechanics, Bispectral Transformations in Orthogonal Polynomials

[15–17], and Numerical Analysis [5–7,10,11].

The problem of the numerical computation of the Geronimus transformation with

shift α and parameter C of a Jacobi matrix J has been extensively studied when C = 0

and the shift α is close to the support of the measure µ [5,11,7]. However, we have not

found any papers on the case C 6= 0, or when C = 0 and the shift is not close to the

support of the measure.

The objective of this paper is to investigate the numerical behavior of different

algorithms to compute the Geronimus transformation, and to show that the numerical

results are essentially different when C = 0 and when C 6= 0.

The paper is structured as follows: In Section 2 we give a brief account of the

main theoretical results needed. In Section 3 we analyze the available forward and

backward algorithms, and in Section 4 we introduce a new algorithm which is more

accurate and stable than the previous ones. We present a backward error analysis

of this algorithm and provide a condition number for the problem that allows us to

4

estimate the forward errors produced by the new algorithm in O(n) flops. Finally, we

show several numerical experiments to illustrate the performance of this new method.

In Section 5, we prove that the new algorithm is componentwise forward stable which

means that the magnitude of the errors produced by the new algorithm is the best one

can expect because it reflects the sensitivity of the problem to perturbations in the

input data.

2 Theoretical results on the Geronimus transformation

Throughout this section, L is a quasi-definite moment functional, {Pn} the sequence of

monic polynomials orthogonal with respect to L , J the monic Jacobi matrix associated

with {Pn}, and α a real number out of the support of the measure that defines L .

Let J − αI = UL denote a decomposition of J − αI as a product of an upper

triangular matrix U and a unit lower triangular matrix L, where

U =

0BBB@
u1 1 0 . . .

0 u2 1 . . .

0 0 u3 . . .
...

...
...

. . .

1CCCA , L =

0BBB@
1 0 0 . . .

l1 1 0 . . .

0 l2 1 . . .
...

...
...

. . .

1CCCA , (3)

whenever it is possible. It is easy to check that whenever the UL factorization of J−αI
exists, it is not unique. In fact, the entry u1 can be considered a free parameter. Then,

given α and u1, we say that J̃ = LU + αI is the Geronimus transform of J with shift

α and parameter u1.

Necessary and sufficient conditions for the existence of the Geronimus transform

with shift α and parameter u1 of a monic Jacobi matrix J are given in [1] and [23].

It is also clear that J̃ is a tridiagonal semi-infinite matrix. By Favard’s theorem [4],

J̃ generates a new sequence of monic orthogonal polynomials if and only if the entries

of J̃ in positions (i+ 1, i) for i ≥ 1 are all nonzero. In this case, the MOPS associated

with J and J̃ , respectively, can be related through the matrix L, as we next show.

Lemma 2 Let J be a monic Jacobi matrix and let α ∈ R be such that J − αI has an

UL factorization. Let u1 ∈ R and let J̃ be the Geronimus transform with shift α and

parameter u1 of J . Assume that {Pn} and {Qn} are, respectively, the MOPS associated

with J and J̃ . If J−αI = UL is the UL factorization of J−αI such that J̃ = LU+αI,

then L is the change of basis matrix from {Pn} to {Qn}, i.e. Q = LP , where Q and P

are, respectively, the column vectors containing the polynomials in {Pn} and {Qn}.

Proof. Multiply J − αI = UL by L on the left to get

L(J − αI) = (LU)L. (4)

Replace LU by J̃ − αI in (4) and multiply by L−1 on the right to get

L(J − αI)L−1 = J̃ − αI

Thus, J − αI is similar to J̃ − αI. Considering the relation xQ = J̃Q, we have

(x− α)Q = (J̃ − αI)Q = L(J − αI)L−1Q

5

and multiplying by L−1 on the left we have

(x− α)L−1Q = (J − αI)L−1Q

and hence x(L−1Q) = J(L−1Q), and L−1Q is a MOPS p satisfying xp = Jp. By

uniqueness L−1Q = P , which implies the result.

It can be proven [1,23] that if the matrix J − αI = UL, with U and L as in (3),

then the Geronimus transform with shift α and parameter u1 is the Jacobi matrix

associated with a functional G given by

G = (x− α)−1L + G0δ(x− α),

where G0 is the first moment of the functional G . Next we show the relationship between

G0 and the parameter u1 involved in the UL factorization of J .

Lemma 3 Let L be a quasi-definite moment functional, and J the corresponding Ja-

cobi matrix. Then, the Geronimus transform of J with shift α and parameter u1 is

associated with the moment functional

G = (x− α)−1L +
L0

u1
δ(x− α),

where L0 is the first moment of the functional L . Moreover, if the integral represen-

tation of L is given by

L (p) =

Z
p(x)dµ(x),

then the Geronimus transform of J is associated with the moment functional with

integral representation

G (p) =

Z
p(x)

dµ(x)

x− α +

„
L0

u1
− µ0

«
p(α),

where µ0 =
R dµ(x)

x−α and p ∈ P.

Proof. By Lemma 1, (x − α)G = L . Let {Pn}∞n=0 and {Qn}∞n=0 be the MOPS

with respect to L and G , respectively. Then, if we denote P = [P1(x), P2(x),]t, and

Q = [Q1(x), Q2(x),]t, we get

((x− α)G)
“
QQt

”
= L

“
QQt

”
.

Taking into account Lemma 2,

G
“

(x− α)QQt
”

= L
“
LPP tLt

”
.

Considering the recurrence relation that {Qn} satisfies and the linearity of L and G ,

G
“

(J̃ − αI)QQt
”

= LL
“
PP t

”
Lt

(J̃ − αI)G
“
QQt

”
= LDpL

t

where Dp is the diagonal matrix whose diagonal elements are given by (Dp)ii = L (P 2
i)

for all i. Thus,

(J̃ − αI) = L
“
DpL

tD−1
q

”
= LU,

6

where Dq is defined similarly to Dp. Notice that Dp and Dq are invertible matrices by

definition of orthogonal polynomials.

Finally, this implies that u1 = L0/G0, and the result follows. The last part of the

lemma is obtained by considering the integral representation of L , that is,

G (p) =

Z
p(x)

dµ(x)

x− α − p(α)

Z
dµ(x)

x− α +
L0

u1
p(α).

The different numerical behavior of the Geronimus transformation when C = 0 and

when C 6= 0 can be partially explained by using the following result. Notice that the

parameter u1 can be seen as a function of α.

Lemma 4 Let µ be a measure with finite moments, and let J be the corresponding

monic Jacobi matrix. Consider the moment functional

G (p) =

Z
p(x)

dµ

x− α + Cp(α),

where C is a fixed constant and α /∈ supp µ. Let J̃ be the monic Jacobi matrix associated

with G . Assume that J −αI = UL is the UL factorization such that J̃ = LU +αI and

let u1 = U(1, 1). Then,

lim
|α|→∞

u1

α
=

−1, when C = 0

0, when C 6= 0.

Proof. Observe that

lim
|α|→∞

αµ0 = lim
|α|→∞

α

Z
dµ

x− α = −L0.

The limit and the integral can be interchanged if α /∈ supp µ, because α/(x − α) is a

continuous function. Since u1 = L0
C+µ0

, we get

lim
|α|→∞

u1

α
= lim
|α|→∞

L0

αC + αµ0
,

and the result follows in a straightforward way.

3 Algorithms for computing the Geronimus transformation and numerical

experiments

In this section we examine the currently available algorithms for numerically generating

a Geronimus transform of a monic Jacobi matrix J . First we present the standard algo-

rithm which can be derived from the matrix version of the Geronimus transformation

given in (8). Then, we present other algorithms used in the literature.

When C = 0 and the shift α is close to the support of the measure, researchers [5,

11] recommend a split strategy, that is, to use a “forward algorithm” when the shift

α approaches the support of the measure, and a “backward algorithm” when the shift

moves away from the support.

When C 6= 0, we can still use the “forward algorithm”. However, the “backward

algorithm” does not converge and is not useful as we explain below. In this section, we

7

also show, through numerical experiments, that the available forward algorithms and

the “backward algorithm” (when available) become less accurate as the shift moves

away from the support of the measure.

Next we present some theoretical background that will help understand the differ-

ence between the backward and the forward algorithms and why the backward algo-

rithm is not a good choice when C 6= 0.

Consider the TTRR of the form

yn+1 + bnyn + anyn−1 = 0, n = 1, 2, 3, ..., (5)

where an, bn are given sequences of real numbers, and bn 6= 0. The general solution of

(5) can be spanned by any pair fn, gn of linearly independent solutions. A solution fn
is said to be minimal if

lim
n→∞

fn
gn

= 0, for any gn independent of fn.

Otherwise, the solution is called dominant.

Let us consider a measure µ with finite moments that defines a quasi-definite linear

functional L . Assume that the corresponding sequence of monic polynomials satisfies

the TTRR given in (2).

Let α ∈ R be outside the support of the measure µ and consider the TTRR given

by

yn+1 = (α−Bn+1)yn −Gnyn−1, n ≥ 0. (6)

It is easy to show that the sequence {ρn(α,C)}∞n=−1, where

ρn(α,C) = −
„Z

Pn(x)
dµ

x− α + CPn(α)

«
, n ≥ 0, ρ−1(α,C) = 1.

is a solution of the TTRR given in (6) for every value of C. In particular, it is the

minimal solution if C = 0, see [11]. When C 6= 0, the solution is dominant.

If C = 0, it is not recommended to use the three-term recurrence relation in the

forward direction (for increasing n) to generate {ρn(α,C)}∞n=−1, but the TTRR can

be used in the backward direction. This process can be reformulated in terms of the

associated continued fraction

yn
yn−1

=
Gn

α−Bn+1−
Gn+1

α−Bn+2−
Gn+2

α−Bn+3−
..., n = 0, 1, 2, ...

which converges to the ratio of minimal solutions according to Pincherle’s theorem [8].

Let us define the following quantities:

rn−1 :=
ρn(α,C)

ρn−1(α,C)
=

Gn
α−Bn+1−

Gn+1

α−Bn+2−
Gn+2

α−Bn+3−
..., n = 0, 1, 2, ... (7)

Note that, in particular, r−1 = ρ0(α,C) = −(µ0 + C). The importance of these

variables in the Geronimus transformation will be given in Lemma 5, which expresses

the quantities rk defined in (7) in terms of the entries in the subdiagonal of the matrix

L in the UL factorization of J − αI.

From now on all the results refer to leading principal submatrices of monic Jacobi

matrices. Since we are interested in the numerical analysis of algorithms that implement

the Geronimus transformation, we can only consider finite matrices. We denote by

J(B,G) the n × n leading principal submatrix of J , where B = [B1, ..., Bn]T , and

8

G = [G1, ..., Gn−1]T . Then, the finite version of the Geronimus transformation with

shift α and parameter u1 is given by

J(B,G)− αI = UnLn + lnene
t
n, J(b, g) = LU + αIn, (8)

where Mn denotes the leading principal submatrix of order n of any matrix M , and

J(b, g) is the n×n leading principal submatrix of J̃ , being b = [b1, ..., bn]T the elements

on the main diagonal of J(b, g), and g = [g1, ..., gn−1]T the elements on the first lower

subdiagonal, i.e., the entries in the positions (i+ 1, i), 1 ≤ i ≤ n− 1.

Since we can only consider a finite leading principal submatrix of the initial monic

Jacobi matrix as input for any algorithm to compute the Geronimus transformation,

in order to determine the appropriate value of the free parameter u1, the parameters

C, µ0, and L0 need to be known (as Lemma 3 shows). Thus, in all the algorithms in

this paper we consider as inputs B, G, α, C, µ0, and L0.

The following pseudocode gives the standard algorithm to compute the Geronimus

transform with shift α and parameters C, µ0, and L0 of an n×n monic Jacobi matrix

J(B,G). This algorithm is obtained from (8). Notice that

UL =

26664
u1 + l1 1 0 0 · · ·
u2l1 u2 + l2 1 0 · · ·

0 u3l2 u3 + l3 1 · · ·
...

...
...

...
. . .

37775 , LU =

26664
u1 1 0 0 · · ·
u1l1 l1 + u2 1 0 · · ·

0 u2l2 l2 + u3 1 · · ·
...

...
...

...
. . .

37775 .

Algorithm 1 Given an n× n monic Jacobi matrix J(B,G), this algorithm computes

its Geronimus transform J(b, g) of order n with shift α and parameters C, µ0, and L0.

u1 = L0/(C + µ0)

b1 = u1 + α

for i = 1 : n− 1

li = Bi − ui − α
gi = ui ∗ li
ui+1 = Gi/li
bi+1 = ui+1 + li + α

end

The computational cost of Algorithm 1 is 6n− 2 flops.

The following lemma expresses the quantities rk defined in (7) in terms of the

entries in the subdiagonal of the matrix L in the UL factorization of J − αI.

Lemma 5 Let {Pn} be the sequence of monic polynomials orthogonal with respect to

the linear functional L (p) =
R
pdµ. Let C,α ∈ R, and α /∈ suppµ. Assume that

J − αI = UL is the UL factorization of J − αI such that J̃ = LU + αI is the monic

Jacobi matrix associated with G (p) =
R
p(x)/(x− α)dµ+ Cp(α). Then,

rk−1 :=
ρk(α,C)

ρk−1(α,C)
= −lk, for all k ≥ 1, (9)

where lk = L(k + 1, k).

9

Proof. The result can be proven by induction. After dividing by ρk−1(α,C) the

TTRR

ρk(α,C) = (α−Bk)ρk−1(α,C)−Gk−1ρk−2(α,C), k ≥ 1,

consider the expression for lk given in Algorithm 1.

By replacing lk by −rk−1 and eliminating the variables uk in Algorithm 1 the

following slightly different algorithm is obtained.

Algorithm 2 (Forward algorithm) Given an n× n monic Jacobi matrix J(B,G),

this algorithm computes its Geronimus transform J(b, g) of order n with shift α and

parameters C, µ0, and L0.

r−1 = −(µ0 + C)

G0 = L0

for k = 0 : n− 2

rk = −Bk+1 + α−Gk/rk−1

end

b1 = B1 + r0
g1 = L0 ∗ r0/r−1

for k = 2 : n− 1

bk = Bk + rk−1 − rk−2

gk = Gk−1rk−1/rk−2

end

bn = Bn + rn−1 − rn−2

The computational cost of this algorithm is 7n− 3 flops.

Notice that both Algorithms 1 and 2 are “forward algorithms” since they compute

ln and rn, respectively, for increasing values of n. However we call Algorithm 2 “For-

ward Algorithm” because this is the algorithm proposed by W. Gautschi [11] in the

split strategy for C = 0.

W. Gautschi also proposes an alternative algorithm when C = 0, in which the

quantities rk are computed backwards. Namely, given an initial value m ≥ n:

rm = 0, ri−1 =
Gi

α−Bi+1 − ri
, n = i, i− 1, . . . , 1,

together with r−1 = L0/(α − B1 − r0). Observe that this is equivalent to (7). The

quantities bk and gk are then computed in the same way as in the forward algorithm.

As we will see later, this explains the similar numerical behavior of the two methods

when α moves away from the support.

In [11] Gautschi studies the properties of Algorithm 2 and the backward method.

He states that the forward algorithm is better when α is very close to the support

of the measure and the order n of J(B,G) is not too large; otherwise, the backward

algorithm is advised.

This backward algorithm can produce very accurate Jacobi matrices but, unlike the

forward methods, it may require infeasibly large initial matrices J(B,G) to produce

an output matrix J(b, g) of quite moderate dimension. Estimators for determining the

advised initial order m of J(B,G) are given in [9] but they are only well-defined for

the classical families of orthogonal polynomials.

Elhay and Kautsky [5] also suggest a split strategy in the case C = 0. The backward

algorithm proposed by them is the same algorithm proposed by Gautschi. However,

the forward algorithm they propose, called the Inverse Cholesky algorithm, is more

10

α Error b Error g Error b Error g Error b Error g
−1.0001 1.4 10−11 2.2 10−16 2.5 10−11 6.7 10−16 1.3 10−11 4.4 10−15

−1.1 16.78 1.7 29.26 0.18 25 1.6
-2 2.43 2.16 2.43 2.16 1.4 4.5
-10 43.32 1.57 43.32 1.57 26.3 1.21

Table 1 Algorithm 1–Algorithm 2–Backward algorithm.
Forward errors for Jacobi Polynomials with a = −1/3, b = 1/7, n = 60, C = 0.

expensive than Algorithm 2 (computational cost of at least O(n2)) and their numerical

experiments in [5] show comparable performance.

3.1 Numerical experiments

Here we present some numerical experiments that show the accuracy of the algorithms

presented in the previous subsection.

In order to check the accuracy of the algorithms, we have computed the following

componentwise forward errors:

error b = max
k=1...n

(˛̨̨̨
˛ bk − b̂kbk

˛̨̨̨
˛
)
, error g = max

k=1...n−1

˛̨̨̨
gk − ĝk
gk

˛̨̨̨ff
, (10)

where b̂k and ĝk denote the outputs computed by a given algorithm in standard double

precision, i.e., u ≈ 1.11 × 10−16 is the unit roundoff of the finite arithmetic, while bk
and gk denote the outputs obtained by running the same algorithm with 64 decimal

digits of precision.

The experiments have been done using MATLAB 5.3, and we have used the variable

precision arithmetic of the Symbolic Math Toolbox of MATLAB. In all our tests,

theoretical error bounds guarantee that the outputs obtained by running the algorithms

with 64 decimal digits of precision have more than 50 significant decimal digits.

We have applied Algorithm 1, Algorithm 2 and the Backward Algorithm to the

following Jacobi matrices:

1. The 60-by-60 monic Jacobi matrix corresponding to the Jacobi polynomials with

parameters a = −1/3 and b = 1/7.

2. The 60-by-60 monic Jacobi matrix corresponding to the Laguerre polynomials with

parameter a = −1/3.

In both cases, we considered a broad range of values for the shift α and two different

values for the parameter C = {0, 10}. For other nonzero values of C, the behavior of

the algorithms is similar to that of C = 10. The results can be found in Tables 1, 2, 3

and 4.

Notice that when C = 0, the three algorithms lose all their accuracy as the shift

α moves away from the support. When C 6= 0, the accuracy of the algorithms also

decreases as α moves away from the support although in a more moderate way. Notice

that the numerical behavior of Algorithm 1 and the Forward Algorithm seems very

similar.

11

α Error b Error g Error b Error g
−1.0001 2.27 10−12 2.7 10−16 2.97 10−12 3.33 10−16

-1.1 1.5 10−11 2.5 10−16 2.15 10−11 4.44 10−16

-10 2.05 10−10 3.38 10−16 2.74 10−10 4.2 10−16

-100 1.06 10−9 3.35 10−16 1.16 10−9 4.44 10−16

−106 1.25 10−5 3.35 10−16 7.55 10−6 2.22 10−16

Table 2 Algorithm 1–Algorithm 2.
Forward Errors for Jacobi Polynomials with a = −1/3, b = 1/7, n = 60, C = 10.

α Error b Error g Error b Error g Error b Error g
-0.0001 2.1 10−16 3.64 10−16 1.72 10−15 4, 35 10−16 4.9 10−1 4.7 10−1

-0.1 1.45 10−15 2.14 10−15 6.76 10−15 1.07 10−14 4.8 10−16 6.7 10−16

-1 1.71 10−6 2.83 10−6 1.7 10−6 2.83 10−6 7 10−7 10−6

-10 2.74 44.65 2.74 44.67 1.4 2.5

Table 3 Algorithm 1–Algorithm 2–Backward algorithm.
Forward Errors for Laguerre Polynomials with a = −1/3, n = 60, C = 0.

α Error b Error g Error b Error g
-0.0001 2.01 10−16 3.32 10−16 1.73 10−15 3.86 10−16

-0.1 1.04 10−15 2.18 10−16 1.73 10−15 4.1 10−16

-1 2.28 10−16 2.18 10−16 2.1 10−16 4.36 10−16

-10 3.72 10−16 4.26 10−16 6.19 10−16 4.39 10−16

-100 3.92 10−15 2.7 10−16 2.25 10−15 2.99 10−16

−106 1.08 10−10 2.16 10−16 1.08 10−10 4.01 10−16

Table 4 Algorithm 1–Algorithm 2.
Forward Errors for Laguerre Polynomials with a = −1/3, n = 60, C = 10

4 A new algorithm

In this section we present a new algorithm to compute a Geronimus transform of a

monic Jacobi matrix J . We will show that, with this new algorithm, the accuracy

increases as α moves away from the support of the measure when C 6= 0. In Section

5 we will also show that this new algorithm is forward stable. This means that the

forward errors we get from this algorithm are the best that can be expected taking

into account the conditioning of the problem.

This new algorithm does not improve the accuracy when C = 0 because, as we

will show in Subsection 4.4, the problem of computing the Geronimus transformation

of a monic Jacobi matrix when C = 0 is very ill-conditioned. We will also show that

the conditioning of the problem depends strongly on the computation of the very

first outputs and the accuracy increases notably when computing those outputs with

extended accuracy and taking them as new inputs of the same algorithm.

The new algorithm that we present in this section only requires as input a monic

Jacobi matrix of the same size as the output matrix. The numerical experiments will

also show that the new algorithm do not improve significantly the accuracy when the

shift has a moderate size due to the conditioning of the problem.

Let us define new variables {ti}n−1
i=1 as ti := li + α. Then, the following new algo-

rithm to compute the Geronimus transformation with shift α and parameters C, µ0,

12

and L0 can be derived. Notice that the variables l1, ..., ln−1 have disappeared since

they have been replaced by t1, ..., tn−1.

Algorithm 3 (New algorithm) Given an n× n monic Jacobi matrix J(B,G), this

algorithm computes its Geronimus transform J(b, g) of order n with shift α and pa-

rameters C, µ0, and L0.

u1 = L0/(C + µ0)

b1 = u1 + α

for i = 1 : n− 1

ti = Bi − ui
gi = (ti − α) ∗ ui
ui+1 = Gi/(ti − α)

bi+1 = ui+1 + ti
end

The computational cost of Algorithm 3 is 5n− 2 flops.

A matrix version of this new algorithm is

J(B,G)− αI = U (T − αB) + lnene
t
n, J(b, g) = (T − αB)U + αI,

where

U =

0BBB@
u1 1 0 ... 0

0 u2 1 ... 0
...

...
. . .

. . .
...

0 0 ... 0 un

1CCCA , T =

0BBB@
1 0 0 ... 0

t1 1 0 ... 0
...

...
. . .

. . .
...

0 0 ... tn 1

1CCCA , B =

0BBB@
0 0 0 ... 0

1 0 0 ... 0
...

...
. . .

. . .
...

0 0 ... 1 0

1CCCA .

Some numerical results are presented in Tables 5 and 6, namely, the computed

forward errors by Algorithm 3. Those tables also include the condition number, which

will be defined in Subsection 4.2 and whose explicit expression is given in Theorem 3.

Notice that the accuracy of the outputs increases as |α| increases when C 6= 0. However,

no improvement can be observed when C = 0.

Before carrying out a rigorous roundoff error and stability analysis of the algo-

rithm, we can explain why the accuracy of the outputs improves when C 6= 0. Notice

that the new algorithm is obtained from Algorithm 1 through some, apparently, slight

modifications which actually have a significant influence on stability and accuracy.

We have observed that some harmful cancellations in the computation of the out-

puts bi by Algorithm 1 may arise. A significant situation where this problem can

be clearly understood appears when the shift α is large. It can easily be shown that

lim|α|→∞ uk = 0 for k ≥ 2, see Lemma 6 in Section 4.4, and therefore li = Bi−α−ui ∼
−α when |α| → ∞ and i ≥ 2, and then bi+1 = ui+1 + li+α ∼ (−α)+α when |α| → ∞
and i ≥ 2. The reader should notice that this cancellation is avoided in Algorithm 3.

From Lemma 6 in Section 4.4 we also observe that some harmful cancellations may

occur in Algorithm 1 when C = 0 in the computation of b1, l1, and u2, and these are

not eliminated by Algorithm 3.

4.1 Backward error analysis of Algorithm 3

We use the standard model of floating point arithmetic [18]:

fl(x op y) = (x op y)(1 + δ) =
x op y

1 + η
, |δ|, |η| ≤ u,

13

Table 5 New algorithm
Forward Errors for Jacobi Polynomials
a = −1/3, b = 1/7, n = 60, C = 0 (left) and C = 10 (right).

α Error b Error g cond Error b Error g cond
−1.0001 7.55 10−12 2.22 10−16 3.46 105 4.05 10−12 2.5 10−16 3.59 104

-1.1 16.78 0.17 5.83 1016 4.86 10−12 2.22 10−16 1.22 105

-10 43.32 1.57 1.83 1017 5.53 10−13 3.38 10−16 1.12 104

-100 2.89 2.96 1.33 1017 4.74 10−14 3.35 10−16 1.13 103

-1000 9.69 10.65 7.64 1017 8.4 10−15 3.35 10−16 113.81
−106 0.35 0.53 8.61 1016 1.64 10−15 3.35 10−16 38.4

Table 6 New algorithm
Forward Errors for Laguerre Polynomials
a = −1/3, n = 60, C = 0 (left) and C = 10 (right).

α Error b Error g cond Error b Error g cond
−0.0001 2.11 10−16 3.64 10−16 4.23 1.98 10−16 3.32 10−16 4.27

-0.1 1.45 10−15 2.14 10−16 1.19 103 1.04 10−15 2.14 10−16 54.64
-0.5 1.34 10−10 2.25 10−10 5.86 107 1.89 10−16 4.15 10−16 6.1
-1 1.71 10−6 2.83 10−6 2.92 1011 1.82 10−16 4.29 10−16 5.89
-5 1.36 3.37 1.36 1016 2.05 10−16 2.79 10−16 5.03
−10 2.24 3.83 2.5 1017 2.13 10−16 2.33 10−16 4.48

where x and y are floating point numbers, op = +,−, ∗, /, and u is the unit roundoff

of the machine. From now on, given a vector v, |v| denotes the vector whose entries

are the absolute values of the entries of v.

We develop our error analysis in the most general setting. For this purpose we as-

sume that the shift α and C are real numbers, and we denote by α̂ and Ĉ the nearest

floating point numbers to α and C. Similarly, we denote by L̂0 and µ̂0 the nearest

floating point numbers to L0 and µ0. Moreover, we assume that the input parameters

B1, ..., Bn−1 and G1, ..., Gn−1 are each affected respectively by the small relative errors

(1 + εB1), ..., (1 + εBn−1), (1 + εG1), ..., (1 + εGn−1), where max1≤i≤n−1{|εBi
|, |εGi

|} ≤
Du, D being a moderate constant. These errors in the inputs may come from the round-

ing process when storing them in the computer. In addition, for the Jacobi matrices

associated with families of classical orthogonal polynomials, the inputs are computed

using well-known formulae which may cause further errors.

Theorem 1 Let J(B,G) be a monic Jacobi matrix of order n. Let J(b, g) be the Geron-

imus transform with shift α and parameters C, µ0, and L0 of J(B,G). Let α̂, µ̂0, and

Ĉ be the nearest floating point numbers to α, µ0, and C. Consider the application of

Algorithm 3 to the matrix with floating point entries J(B̂, Ĝ) where

B̂i = Bi(1 + εBi
), Ĝi = Gi(1 + εGi

), 1 ≤ i ≤ n− 1,

and

max
1≤i≤n−1

{|εBi
|, |εGi

|} ≤ Du,

for a positive integer D such that Du � 1. If J(b̂, ĝ) is the matrix computed by Algo-

rithm 3, and L̂, T̂ are the computed intermediate matrices appearing in Algorithm 3,

then

J(B +∆B,G+∆G)− α̂I = Û(T̂ − α̂I),

14

J(b̂+∆b̂, ĝ +∆ĝ) = (T̂ − α̂I)Û + α̂I

where this transformation has parameters Ĉ, ∆L0, and µ̂0, and

|α̂− α| ≤ u|α|
|∆L0| ≤ 3u|L0|+O(u2),

|µ̂0 − µ0| ≤ u|µ0|
|Ĉ − C| ≤ u|C|,
|∆Bi| ≤ (D + 1)u(|Bi|+ |ûi|) +O(u2), 1 ≤ i ≤ n− 1,

|∆Gi| ≤ (D + 2)u|Gi|+O(u2), 1 ≤ i ≤ n− 1,

|∆b̂i| ≤ u|b̂i|, 1 ≤ i ≤ n,
|∆ĝi| ≤ 2u|ĝi|+O(u2), 1 ≤ i ≤ n− 1.

Proof.

First observe that

t̂i = (Bi (1 + εBi
)− ûi) (1 + εti) , |εti | ≤ u

and we get

|∆Bi| =
˛̨
t̂i + ûi −Bi

˛̨
≤
“

(D + 1) u +Du2
”

(|Bi|+ |ûi|) .

Assume that the floating point number closer to L0 is L0(1 + εL). Then,

û1 =
L0(1 + εL)(1 + εu1)(1 + δu1)

Ĉ + µ̂0

, |εL|, |εu1 |, |δu1 | ≤ u.

Therefore,

|∆L0| =
˛̨̨
L0 − û1(Ĉ + µ̂0)

˛̨̨
≤ (3u + 3u2 + u3)|L0|.

ûi+1 =
Gi (1 + εGi

)

t̂i − α̂
`
1 + δui+1

´ `
1 + εui+1

´
,
˛̨
δui+1

˛̨
,
˛̨
εui+1

˛̨
≤ u

which implies

|∆Gi| =
˛̨`
t̂i − α̂

´
ûi+1 −Gi

˛̨
≤
“

(D + 2)u + (2D + 1)u2 +Du3
”
|Gi|.

Finally,

b̂i
`
1 + εbi

´
= ûi+1 + t̂i,

˛̨
εbi

˛̨
≤ u.

ĝi (1 + εgi) (1 + δgi) =
`
t̂i+1 − α̂

´
ûi, |εgi | , |δgi | ≤ u,

and the results follow in a straightforward way.

In plain words, Theorem 1 says that the computed Geronimus transform J(b̂, ĝ)

with shift α and parameters C, µ0, and L0 is almost the exact Geronimus transform

of J(B +∆B,G+∆G) with shift α̂ and parameters C +∆C, µ̂0, and L̂0.

Definition 1 [18] A method for computing y = f(x) is called mixed forward-backward

stable (or numerically stable) if, for any x, it produces a computed ŷ satisfying

ŷ +∆ŷ = f(x+∆x), |∆ŷ| ≤ ε|ŷ|, |∆x| ≤ η|x|,

provided that ε and η are sufficiently small. Informally, a mixed forward-backward

stable algorithm produces almost the right answer for almost the right data.

15

We conclude that Algorithm 3 is componentwise stable in a mixed forward-backward

sense [18] if |ûi| = O(|Bi|), for 1 ≤ i ≤ n. However the following problem arises:

|∆Bi|/|Bi| can be much larger than u if |ûi| is much larger than |Bi|. Unfortunately,

this is the case as the following numerical experiments show. Consider the sequence

of Jacobi polynomials with parameters −1/3, 1/7, and the shift α = −2. Taking into

account Theorem 1, we compute a bound for the backward error as (ε · errback), where

errback = maxi=1:n−1

n
1 +

˛̨̨
ûi
Bi

˛̨̨o
, and we get

n = 10 n = 100 n = 1000

errback, C = 0 7.23 103 3.5 105 5.9 106

errback, C = 10 418 5.7 104 5.9 106

The previous table shows that the upper bound of the backward error is not “small”.

Therefore, we cannot assure mixed forward-backward stability.

4.2 Condition number

The main goal of this section is to develop a bound that allows us to estimate the

forward errors of Algorithm 3 in O(n) operations. We also present some numerical

experiments showing that the bound obtained gives a good prediction of the forward

errors produced by this algorithm.

To bound the errors in Algorithm 3, we study the sensitivity of the Geronimus

transformation with respect to perturbations of the initial data, i.e., the parameters of

the monic Jacobi matrix J(B,G), the shift α, and the parameters C, µ0 and L0. We

consider perturbations associated with the backward errors found in Theorem 1 and we

measure the sensitivity of the problem by using the notion of componentwise relative

condition number. This condition number, together with Theorem 1, allows us to get

a tight upper bound on the forward errors obtained by the application of Algorithm

3 to a monic Jacobi matrix. This bound is presented in Theorem 2. In the following

definition the variables u1, u2, . . . , un correspond to the diagonal entries of U in the

UL factorization of J(B,G)− αI.

Definition 2 Let J(b, g) be the Geronimus transform of order n with shift α and
parameters C, µ0, and L0 of the n×n monic Jacobi matrix J(B,G). Let J(b+∆b, g+
∆g) be the Geronimus transform of order n with shift α+∆α and parameters C+∆C,
µ0 +∆µ0, and L0 +∆L0 of the n× n monic Jacobi matrix J(B +∆B,G+∆G). Let
us define

DB := max

max

1≤i≤n−1

 |∆Bi|
|Bi|+ |ui|

ff
, max
1≤i≤(n−1)

 |∆Gi|
|Gi|

ff
,
|∆α|
|α|

,
|∆C|
|C|

,
|∆µ0|
|µ0|

,
|∆L0|
|L0|

,

ff
,

where the quotient
|∆α|
|α| has to be understood as zero if α = 0. Then, the relative

componentwise condition number of the Geronimus transformation with shift α and
parameters C, µ0, and L0 with respect to perturbations associated with the backward
errors in Theorem 1 is defined as

κ(B,G, α,C, µ0,L0) := lim
δ→0

sup
0≤DB≤δ

max

max

1≤i≤n

|∆bi|
|bi|

ff
, max
1≤i≤(n−1)

|∆gi|
|gi|

ffff
DB

.

16

The condition number κ(B,G, α,C, µ0,L0) is infinite if some of the denominators

appearing in the relative changes of the outputs bi, i.e. |∆bi|/|bi|, are zero. However,

bi = 0 will only happen for extremely particular values of the shift α and the rest

of the parameters. In those cases, other condition numbers have to be considered.

For instance, measuring absolute changes in the corresponding components of b, or

measuring relative normwise changes of b. We do not consider these particular situations

in this work. Notice that gi 6= 0 for all i since gi = (ti−α)ui and both factors li = ti−α
and ui are nonzero.

The condition number κ(B,G, α,C, µ0,L0) allows us to give an upper bound on

the forward errors produced by Algorithm 3, as the following theorem shows.

Theorem 2 Let J(b, g) and Ĵ(b̂, ĝ) be the exact and computed Geronimus transform

with shift α and parameters C, µ0, and L0 from Algorithm 3. Then,

max
k

(˛̨̨̨
˛ bk − b̂kbk

˛̨̨̨
˛ ,
˛̨̨̨
gk − ĝk
gk

˛̨̨̨)
≤
„

(D + 2)u

1− (D + 2)u

«
(1 + κ(B,G, α,C, µ0,L0)) +O(u2),

where the left hand side of the previous inequality is a shorthand expression for (10)

and D is the constant used in Theorem 1.

The proof of this theorem is a straightforward consequence of the definition of the

condition number and Theorem 1. We will provide a way to compute κ(B,G, α,C, µ0,L0),

and therefore a bound on the forward errors, with O(n) cost. It is essential to remark

that we have checked on the reliability of the bound on the forward errors running many

numerical experiments, where we have observed that the bound does not overestimate

significantly the actual errors. For an example, check Tables 5 and 6.

The entries b and g of the Geronimus transform J(b, g) of J(B,G) are rational

functions of the inputs B, G, α, C, µ0, and L0, and, as a consequence, b and g are dif-

ferentiable functions of these parameters whenever the denominators are different from

zero. Therefore, κ(B,G, α,C, µ0,L0) can be expressed in terms of partial derivatives

[3]. More precisely:

κ(B,G, α,C, µ0,L0) = max{ max
1≤k≤n

{κ(bk)}, max
1≤k≤n−1

{κ(gk)}}, (11)

where

κ(bk) :=

k−1X
i=1

κBi
(bk) +

k−1X
i=1

κGi
(bk) + κα(bk) + κC(bk) + κL0(bk) + κµ0(bk), (12)

κ(gk) :=

kX
i=1

κBi
(gk) +

k−1X
i=1

κGi
(gk) + κα(gk) + κC(gk) + κL0(gk) + κµ0(gk), (13)

where, for k = 1, the sums
P0
i=1 are understood to be zero and

κBi
(bk) :=

˛̨̨̨
|Bi|+ |ui|

bk

∂bk
∂Bi

˛̨̨̨
, κC(bk) :=

˛̨̨̨
C

bk

∂bk
∂C

˛̨̨̨
, (14)

κα(bk) :=

˛̨̨̨
α

bk

∂bk
∂α

˛̨̨̨
, κGi

(bk) :=

˛̨̨̨
Gi
bk

∂bk
∂Gi

˛̨̨̨
, (15)

κL0(bk) :=

˛̨̨̨
L0

bk

∂uk
∂L0

˛̨̨̨
, κµ0(bk) :=

˛̨̨̨
µ0

bk

∂bk
∂µ0

˛̨̨̨
, (16)

17

and analogously for κ(gk).

In Theorem 3, we give recurrence relations for computing κ(bk) and κ(gk) that lead

to an explicit expression for κ(B,G, α,C, µ0,L0). Our first step to prove Theorem 3

is to express the intermediate variables uk in Algorithm 3, and the outputs bk and

gk as functions of the data B, G, α, C, µ0, and L0. Then, we obtain expressions for

the partial derivatives of each of these functions with respect to their arguments. A

detailed proof of this theorem can be found in Appendix 1.

Theorem 3 Let J(B,G) be any n×n Jacobi matrix, and let α, C, µ0, and L0 be real

numbers such that J(B,G)−αI has an UL factorization, where u1 = L0/(C+µ0). Let

U be the upper bidiagonal factor in the UL factorization of J(B,G)−αI. If u1, u2, ..., un
are the entries of U in positions (1,1),(2,2),...,(n,n), then

κ(b1) =

˛̨̨̨
α

b1

˛̨̨̨ ˛̨̨̨
1 +

∂u1

∂α

˛̨̨̨
+

˛̨̨̨
u1

b1

˛̨̨̨
|κ∗(u1)|,

κ(bk) =
|uk|
|bk|

+
|γk−1uk − 1|

|bk|
ˆ
|Bk−1|+ |uk−1|

`
1 + κ∗(uk−1)

´˜
+
|α|
|bk|

˛̨̨̨
(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

˛̨̨̨
, k ≥ 2,

κ(gk) = |γk|
ˆ
|Bk|+ |uk|+ |δk|κ∗(uk)

˜
+

˛̨̨̨
α

gk

˛̨̨̨ ˛̨̨̨
δk
∂uk
∂α
− uk

˛̨̨̨
, k ≥ 1,

where

κ∗(u1) = 1 +
|C|+ |µ0|
|C + µ0|

,

κ∗(uk) = 1 + |γk−1|
ˆ
|Bk−1|+ |uk−1|(1 + κ∗(uk−1)

˜
, k ≥ 2,

∂uk
∂α

=

8>>><>>>:
− u1

C + µ0

∂µ0

∂α
, k = 1

γk−1uk

„
1 +

∂uk−1

∂α

«
, k > 1

and

γk :=
1

Bk − uk − α
, δk := Bk − 2uk − α, k ≥ 1.

4.3 Comparison with error bounds for Algorithm 1

It is possible to develop a roundoff error analysis of Algorithm 1 similar to the analysis

done for Algorithm 3. To begin with, backward error bounds for Algorithm 1 can be

found. Then, it is also possible to deduce recurrence relations for a relative compo-

nentwise condition number, κA(B,G, α,C, µ0,L0), for the Geronimus transformation

with respect to perturbations in the input data associated with the backward errors

of Algorithm 1. Finally, the condition number κA(B,G, α,C, µ0,L0) can be used in a

counterpart version of Theorem 2 for Algorithm 1 to bound the forward errors. We do

not include the details of these results to keep the paper concise. However, we would

like to remark that it is easy to prove that

κ(B,G, α,C, µ0,L0) ≤ κA(B,G, α,C, µ0,L0)

18

for all monic Jacobi matrices J(B,G), all shifts α, and all the possible values of the

parameters C, µ0 and L0. This fact, together with the numerical experiments in Sub-

section 3.1, show that Algorithm 3 is more accurate than Algorithm 1.

Similar remarks can be made regarding Algorithm 2.

4.4 Stability and accuracy of the new algorithm

There are some interesting results that we can prove related to the stability and accu-

racy of Algorithm 3 beyond the fact of being more accurate than Algorithm 1. It can be

proven that, for large enough values of the shift α and under some small constraints, for

C 6= 0, Algorithm 3 is accurate, i.e., it produces outputs with componentwise forward

errors of order O(u). To prove this, we will show that

lim
|α|→∞

κ(B,G, α,C, µ0,L0) = max

3,
|B1|+ 3|L0/C|
|B1 −L0/C|

ff
Therefore, Theorem 2 guarantees accuracy if the quantity on the right is “small”.

The numerical experiments in Subsection 3.1 show that this is not the case for Algo-

rithms 1, 2, or the backward algorithm. In fact, it can be proven that the accuracy of

those algorithms decreases as |α| grows.

Let us recall that, if C 6= 0, according to Theorem 1, if |ûi| = O(|Bi|) for 1 ≤ i ≤ n,

then Algorithm 3 is mixed forward-backward stable, which is the usual requirement

for a numerical algorithm to be considered stable [18, p. 7]. More precisely, in this

case, it can be said that the computed Geronimus transform J(b̂, ĝ) with shift α and

parameters C, µ0, and L0 of J(B,G) is an O(u) relative componentwise perturbation

of the exact Geronimus transform with shift α̂ and parameters Ĉ, µ̂0, and ∆L0 of

J(B + ∆B,G + ∆G), where ∆L0, ∆B and ∆G are O(u) relative componentwise

perturbations of the exact inputs L0, B and G. In this context, another goal of this

subsection is to prove that for large enough values of the shift, |ui| � |Bi| and then

Algorithm 3 is stable. We have to admit that this will be proven for the exact values of

ui and not for the computed values ûi, thus we are only proving stability up to O(u2)

terms.

Here we will also show that the condition number κ(B,G, α,C, µ0,L0) becomes

very large as |α| grows when C = 0. In Appendix 2 we show that this condition

number has the same magnitude as the standard condition number of the problem

which implies that no accuracy can be expected from any algorithm to compute the

Geronimus transformation when C = 0 and the shift moves away from the support.

Moreover, Lemma 6 shows that |B1|+ |u1| � |B1| when |α| grows which implies that

no stability can either be expected from Algorithm 3.

We start with some technical lemmas.

Lemma 6 Let J(B,G) be the leading principal submatrix of a monic Jacobi matrix J .

Let α, C, µ0, and L0 be real numbers such that there is a unique UL factorization of

J(B,G)−αI. Let uk, 1 ≤ k ≤ n, be the main diagonal elements in the U factor. Then,

– if C 6= 0,

lim
|α|→∞

u1 =
L0

C
, lim
|α|→∞

uk = 0, k ≥ 2.

As a consequence, when C 6= 0, Algorithm 3 is stable for |α| large enough if

|L0/C| = O(|B1|).

19

– if C = 0,

lim
|α|→∞

|u1| =∞, (u1 ∼ −α),

lim
|α|→∞

u2 =
G1

B1
, lim
|α|→∞

uk = 0, k ≥ 3.

Proof. First, assume C 6= 0. The proof follows directly from the expressions:

u1 =
L0

C + µ0
, uk =

Gk−1

Bk−1 − uk−1 − α
, k ≥ 2,

using induction and the fact that µ0 → 0 and hence u1 → L0/C when |α| → ∞.

When C = 0, Lemma 4 gives u1 ∼ −α, so u2 → G1/B1 when |α| → ∞. This

implies that u3 → 0 and the second claim follows by induction.

Lemma 7 When C 6= 0 it is true that γk → 0 and γkδk → 1 when |α| → ∞, k ≥ 1.

Proof. It follows from the definition of γk and δk and the asymptotic properties of

uk in Lemma 6.

Lemma 8 Let J(B,G) be the leading principal submatrix of a monic Jacobi matrix J .

Let α, C, µ0, and L0 be real numbers such that there is a unique UL factorization of

J(B,G)− αI. Let u1 be the element in position (1, 1) in the U factor. Then,

lim
|α|→∞

∂uk
∂α

=

−1, C = 0 and k = 1,

0, otherwise.

Proof. Taking into account the definition of u1, when α /∈ suppµ then

∂u1

∂α
=

−L0

(C + µ0)2
∂µ0

∂α
= − L0

(C + µ0)2

Z b

a

dµ

(x− α)2
.

The result follows from the observation that

µ0 = −L0

α
+O(α−2),

∂µ0

∂α
=

L0

α2
+O(α−3), |α| → ∞.

For k ≥ 2 we can use induction on k, noting that

∂uk
∂α

=
uk

Bk−1 − uk−1 − α

„
1 +

∂uk−1

∂α

«
.

and considering Lemma 6.

Lemma 9 If C 6= 0, then

lim
|α|→∞

B1 − 2u1 − α
u1

∂u1

∂α
= 0, lim

|α|→∞
α
∂uk
∂α

= 0, k ≥ 1

Proof. From the previous estimations it follows that when C 6= 0 then

∂u1

∂α
= − L 2

0

Cα2
+O(α−3),

so the second part of the lemma is true for k = 1. Assume that the result holds for

k − 1. Then, notice that

α
∂uk
∂α

= uk
α

Bk−1 − uk−1 − α
+

uk
Bk−1 − uk−1 − α

„
α
∂uk−1

∂α

«
.

Taking limits the second result follows. The first part of the lemma is obtained directly

from the asymptotic estimations of ∂u1/∂α and α∂u1/∂α given above and the fact

that u1 → L0/C when α→∞ and C 6= 0.

20

4.5 Asymptotic analysis of the condition number when C 6= 0.

Next we show that the condition number κ∗(uk) tends to 1 when α is large and C 6= 0.

Theorem 4 If C 6= 0,

lim
|α|→∞

κ∗(u1) = 2, lim
|α|→∞

κ∗(uk) = 1, k ≥ 2.

Proof. We prove the result by induction on k. Since lim|α|→∞ µ0 = 0,

lim
|α|→∞

κ∗(u1) = 2.

It is easy to show that κ∗(u2) = 1. Assume that lim|α|→∞ κ∗(uk−1) = 1 for some

k ≥ 3. Then, taking into account Lemma 6, we get

lim
|α|→∞

|γk−1Bk−1| = 0, lim
|α|→∞

|γk−1uk−1| = 0,

which implies the result.

Theorem 5 If C 6= 0, then

lim
|α|→∞

κ(bk) = 1, for k 6= 2, lim
|α|→∞

κ(b2) =
|B1|+ 3|L0/C|
|B1 −L0/C|

.

Proof.

Recall that b1 = u1 + α. Then, taking into account Theorem 4, Lemmas 6 and 8

the result follows for k = 1. For k = 2, we apply Theorem 4, Lemmas 6–9, bearing in

mind that bk = Bk−1 + uk − uk−1, k ≥ 2.

lim
|α|→∞

|u2|
|b2|

= 0, lim
|α|→∞

|B1|+ |u1|
|b2|

=
|B1|+ |L0/C|
|B1 −L0/C|

,

lim
|α|→∞

|γ1u2 − 1|
˛̨̨̨
u1

b2

˛̨̨̨
κ∗(u1) = 2

˛̨̨̨
L0/C

B1 −L0/C

˛̨̨̨
,

lim
|α|→∞

˛̨̨̨
α

b2

˛̨̨̨ ˛̨̨̨
∂b2
∂α

˛̨̨̨
= lim
|α|→∞

˛̨̨̨
α

b2

˛̨̨̨ ˛̨̨̨
∂u2

∂α
− ∂u1

∂α

˛̨̨̨
= 0.

Let k ≥ 3, then

lim
|α|→∞

|uk|
|bk|

= 0, lim
|α|→∞

|γk−1uk − 1|
|Bk−1|+ |uk−1|

|bk|
= 1,

lim
|α|→∞

|γk−1uk − 1|
˛̨̨̨
uk−1

bk

˛̨̨̨
κ∗(uk−1) = 0,

lim
|α|→∞

˛̨̨̨
α

bk

˛̨̨̨ ˛̨̨̨
∂bk
∂α

˛̨̨̨
= lim
|α|→∞

˛̨̨̨
α

bk

˛̨̨̨ ˛̨̨̨
∂uk
∂α
−
∂uk−1

∂α

˛̨̨̨
= 0,

by Lemma 9.

Theorem 6 If C 6= 0, then

lim
|α|→∞

κ(g1) = 3, lim
|α|→∞

κ(gk) = 1, k ≥ 2.

21

Proof. For k = 1,

lim
|α|→∞

|γ1|[|B1|+ |u1|] = 0, lim
|α|→∞

|γ1δ1|κ∗(u1) = 2,

lim
|α|→∞

˛̨̨̨
α

g1

˛̨̨̨ ˛̨̨̨
(B1 − 2u1 − α)

∂u1

∂α
− u1

˛̨̨̨
=

lim
|α|→∞

˛̨̨̨
α

B1 − u1 − α

˛̨̨̨ ˛̨̨̨
B1 − 2u1 − α

C + µ0

∂µ0

∂α
− 1

˛̨̨̨
= 1.

The last equality follows from Lemma 9.

For k ≥ 2, notice that

lim
|α|→∞

|γk|[|Bk|+ |uk|] = 0, lim
|α|→∞

|γkδk|κ∗(u1) = 1,

lim
|α|→∞

˛̨̨̨
α

gk

˛̨̨̨ ˛̨̨̨
(Bk − 2uk − α)

∂uk
∂α
− uk

˛̨̨̨
=

˛̨̨̨
α

Bk − uk − α

˛̨̨̨ ˛̨̨̨
Bk − 2uk − α

uk

uk
Bk−1 − uk−1 − α

„
1 +

∂uk−1

∂α

«
− 1

˛̨̨̨
= 0.

taking into account Lemma 8.

Theorem 7 Let κ(B,G, α,C, µ0,L0) be the condition number for the Geronimus trans-

formation with shift α and parameters C 6= 0, µ0, and L0 introduced in Definition 11.

Then

lim
|α|→∞

κ(B,G, α,C, µ0,L0) = max

3,
|B1|+ 3|L0/C|
|B1 −L0/C|

ff
.

This implies that Algorithm 3 is accurate for |α| large enough as long as
|B1|+3|L0/C|
|B1−L0/C|

is small.

4.6 Asymptotic analysis of the condition number when C = 0

Next we present a similar analysis for the case C = 0.

Theorem 8 If C = 0, then

lim
|α|→∞

κ∗(u1) = 2, lim
|α|→∞

κ∗(u2) =∞.

lim
|α|→∞

κ∗(u3) = 1 + 3

˛̨̨̨
G1

B2
1

˛̨̨̨
, lim
|α|→∞

κ∗(uk) = 1, for all k ≥ 4.

22

Proof. The result for u1 follows in a straightforward way. In the expression for

κ∗(u2) notice that

lim
|α|→∞

|u1|
|B1 − u1 − α|

(1 + κ∗(u1)) =∞

taking into account Lemma 6.

Notice that κ∗(u3) can also be expressed as

1 +
|B2|

|B2 − u2 − α|
+

|u2|
|B2 − u2 − α|

„
2 +

|B1|
|B1 − u1 − α|

«
+

|u2|
|B1 − u1 − α|

|u1|
|B2 − u2 − α|

(1 + κ∗(u1)).

Notice that the limit when |α| grows of the first three terms in the previous expression

is 1, while the limit of the last term is 3|G1/B
2
1 |. Now it is easy to show the result for

k = 4. The rest of the cases follow by induction.

Theorem 9 If C = 0,

lim
|α|→∞

κ(b1) =∞, κ(b2) = 3

˛̨̨̨
1− G1

B2
1

˛̨̨̨
,

lim
|α|→∞

κ(b3) =∞, lim
|α|→∞

κ(bk) = 1, for k ≥ 4

Proof. Notice that

κ(b1) =

˛̨̨̨
α

b1

˛̨̨̨ ˛̨̨̨
1 +

∂u1

∂α

˛̨̨̨
+ 2

˛̨̨̨
u1

b1

˛̨̨̨
.

Taking into account Lemmas 8 and 6, the result follows.

Theorem 10 If C = 0,

lim
|α|→∞

κ(g1) =∞, κ(g2) =∞,

lim
|α|→∞

κ(g3) = 1 + 3

˛̨̨̨
G1

B2
1

˛̨̨̨
, lim
|α|→∞

κ(gk) = 1, for k ≥ 4

The previous results suggest that better accuracy can be obtained when computing

the Geronimus transformation with C = 0 using the new algorithm if at least the fol-

lowing outputs are computed with extended accuracy: u1, u2, u3, b1, b2, b3, b4, g1, g2, g3
and then use these values as inputs of the same algorithm. Check Table 7 for new

numerical results. The computations of the 4-by-4 principal leading submatrix of the

Geronimus transform J̃ as well as the the first three main diagonal entries of the factor

U were done with 64 decimal digits of precision.

23

α Error b Error g
-1.0001 1.31 10−11 2.22 10−16

-1.1 91.26 1.74
-2 9.3 10−3 1.67 10−2

-10 1.41 10−5 5.73 10−7

-100 5.29 10−10 5.28 10−10

-1000 1.59 10−12 1.59 10−12

−106 2.21 10−16 2.22 10−16

α Error b Error g
-0.0001 2.1 10−16 3.64 10−16

-0.1 1.83 10−16 2.31 10−16

-1 1.41 10−7 2.34 10−7

-10 4.5 10−3 9.3 10−3

-100 2.38 10−8 4 10−8

-1000 3.65 10−12 3.59 10−12

−106 2.2 10−16 2.89 10−16

Table 7 Algorithm with extended accuracy. Forward Errors for n = 60 and C = 0. On the
left, Jacobi Polynomials with a = −1/3, b = 1/7. On the right, Laguerre Polynomials with
a = −1/3.

5 Forward stability of Algorithm 3

The purpose of this section is to prove that the forward error bound we have found

for Algorithm 3 is the best one can expect, because it reflects the sensitivity of the

transformation to componentwise relative perturbations in the data. We have seen

that Algorithm 3 is not backward stable, and therefore we consider a weaker notion

of stability. An algorithm is said to be forward stable if it produces forward errors of

similar magnitude to those produced by a backward stable algorithm [18, p. 9]. In

this section we show that Algorithm 3 is componentwise forward stable. In order to

prove that, we define the relative componentwise condition number of the Geronimus

transformation with shift α and parameters C, µ0, and L0 with respect to small

componentwise relative perturbations of B, G, α, C, µ0, and L0.

κS(B,G, α,C, µ0,L0) = lim
δ→0

sup
0≤DC≤δ

max

max

1≤i≤(n)

|∆bi|
|bi|

ff
, max
1≤i≤(n−2)

|∆gi|
|gi|

ffff
DC

,

(17)

where

DC = max

max

1≤i≤(n)

|∆Bi|
|Bi|

ff
, max
1≤i≤(n−1)

|∆Gi|
|Gi|

ff
,
|∆α|
|α| ,

|∆C|
|C| ,

|∆µ0|
|µ0|

,
|∆L0|
|L0|

ff
.

Recurrent expressions for κS(B,G, α,C, µ0,L0) can be obtained in a similar way as

we got recurrent expressions for κ(B,G, α,C, µ0,L0).

Theorem 11 Let J(B,G) be any n × n monic Jacobi matrix, and let α, C, µ0, and

L0 be real numbers such that J(B,G) − αI has a unique UL factorization with u1 =

L0/(C+µ0). Let U be the upper bidiagonal factor in the UL factorization of J(B,G)−
αI. If u1, u2, ..., un are the entries of U in positions (1,1),(2,2),...,(n,n), then

κS(b1) =

˛̨̨̨
α

b1

˛̨̨̨ ˛̨̨̨
1 +

∂u1

∂α

˛̨̨̨
+

˛̨̨̨
u1

b1

˛̨̨̨ ˛̨
κ∗S(u1)

˛̨
,

κS(bk) =
|uk|
|bk|

+
|γk−1uk − 1|

|bk|
ˆ
|Bk−1|+ |uk−1|κ∗S(uk−1)

˜
,

+

˛̨̨̨
α

bk

˛̨̨̨ ˛̨̨̨
(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

˛̨̨̨
, k ≥ 2,

24

κS(gk) = |γk|
ˆ
|Bk|+ |δk|κ∗S(uk)

˜
+

˛̨̨̨
α

gk

˛̨̨̨ ˛̨̨̨
δk
∂uk
∂α
− uk

˛̨̨̨
, k ≥ 1,

where

κ∗S(u1) = 1 +
|C|+ |µ0|
|C + µ0|

,

κ∗S(uk) = 1 + |γk−1| [|Bk−1|+ |uk−1|κ∗S(uk−1)] , k ≥ 2,

and

∂uk
∂α

=

8>>><>>>:
− u1

C + µ0

∂µ0

∂α
, k = 1,

γk−1uk

„
1 +

∂uk−1

∂α

«
, k > 1.

To prove that Algorithm 3 is componentwise forward stable is equivalent to prove

that κS(B,G, α,C, µ0,L0)and κ(B,G, α,C, µ0,L0) have the same order of magnitude,

by taking into account Theorem 2.

By using Theorem 11, we can prove Theorem 12, after considerably long and deli-

cate algebraic manipulations are performed. The complete proof can be found in Ap-

pendix 2. This theorem states that the condition numbers, κ(B,G, α,C, µ0,L0) and

κS(B,G, α,C, µ0,L0) that we have defined for the Geronimus transformation are of

the same order of magnitude, which implies that Algorithm 3 is forward stable.

Theorem 12 Let κ(B,G, α,C, µ0,L0) and κS(B,G, α,C, µ0,L0) be the condition

numbers introduced, respectively, in Definition 2 and (17) for the Geronimus trans-

formation with shift α and parameters C, µ0 and L0, then

κS(B,G, α,C, µ0,L0) ≤ κ(B,G, α,C, µ0,L0) ≤ 8 κS(B,G, α,C, µ0,L0). (18)

This result together with the fact that κ(B,G, α,C, µ0,L0) ≥ 1 implies that Algorithm

3 is componentwise forward stable.

References

1. M.I. Bueno and F. Marcellán. Darboux transformation and perturbation of linear func-
tionals. Linear Algebra Appl., 384:215–242, 2004.

2. M. Buhmann and A. Iserles. On orthogonal polynomials transformed by the QR algorithm.
J. Comp. Appl. Math., 43:117–134, 1992.

3. F. Chaitin-Chatelin and V. Fraysse. Lectures on finite precision computations. SIAM,
Philadelphia, 1996.

4. T. S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach, New York,
1957.

5. S. Elhay and J. Kautsky. Jacobi matrices for measures modified by a rational factor.
Numer. Algorithms, 6:205–227, 1994.

6. D. Galant. An implementation of Christoffel’s theorem in the theory of orthogonal poly-
nomials. Math. Comp., 25:111–113, 1971.

7. D. Galant. Algebraic methods for modified orthogonal polynomials. Math. Comp., 59:541–
546, 1992.

8. W. Gautschi. Computational aspects of three-term recurrence relations. SIAM Review,
9:24–82, 1967.

9. W. Gautschi. Minimal solutions of three-term recurrence relations and orthogonal poly-
nomials. Math. Comp., 36:547–554, 1981.

10. W. Gautschi. The interplay between classical analysis and (numerical) linear algebra- a
tribute to Gene H. Golub. Electron. Trans. Numer. Anal., 13:119–147, 2002.

11. W. Gautschi. Orthogonal polynomials: Computation and approximation. Oxford Univer-
sity Press, New York, 2004.

25

12. Ya. L. Geronimus. On the polynomials orthogonal with respect to a given number sequence.
Zap. Mat. Otdel. Khar’kov. Univers. i NII Mat. i Mehan., 17:3–18, 1940.

13. Ya. L. Geronimus. On the polynomials orthogonal with respect to a given number sequence
and a theorem. Izv. Akad. Nauk., 4:215–228, 1940.

14. G.H. Golub and J. Kautsky. Calculation of Gauss quadratures with multiple free and fixed
knots. Numer. Math., 41:147–163, 1983.

15. F.A. Grünbaum, J. Haine, and E. Horozov. Some functions that generalize the Krall-
Laguerre polynomials. J. Comp. Appl. Math., 106:271–297, 1999.

16. F.A. Grünbaum and L. Haine. Orthogonal polynomials satisfying differential equations:
the role of the Darboux transformation. Proc. Amer. Math. Soc., 9:143–154, 1983.

17. F.A. Grünbaum and L. Haine. Bispectral Darboux transformations:an extension of the
Krall polynomials. Internat. Math. Res. Notices, 8:359–392, 1997.

18. N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelpia, 2002.
19. V.B. Matveev and M.A. Salle. Differential-difference evolution equations. ii (Darboux

transformation for the Toda lattice). Letters in Math. Physics, 3:425–429, 1979.
20. V. Spiridonov, L. Vinet, and A. Zhedanov. Spectral transformations, self-similar reductions

and orthogonal polynomials. J. Phys. A, 30:7621–7637, 1997.
21. V. Spiridonov and A. Zhedanov. Discrete Darboux transformations, discrete time Toda

lattice and the Askey-Wilson polynomials. Methods and Appl. Anal., 2:369–398, 1995.
22. V.B. Uvarov. The connection between systems of polynomials that are orthogonal with

respect to different distribution functions. Vychisl. Matem. i Mat. Fiz., 9:1253–1262, 1969.
23. G. J. Yoon. Darboux transformation and orthogonal polynomials. Bull. Korean Math.

Soc., 39(3):359–376, 2002.

26

APPENDIX 1: Proof of Theorem 3

In this section we include the proof of Theorem 3. First, we express the intermediate

variables uk of Algorithm 1, and the outputs bk and gk as functions of the data B, G,

α, C, µ0, and L0. Then we obtain expressions of the partial derivatives of each of the

functions with respect to their arguments. From Algorithm 1, we get

u1 =
L0

C + µ0
, uk =

Gk−1

Bk−1 − uk−1 − α
, k ≥ 2, (A-1)

and hence, for k ≥ 2, uk can be seen as a function of B1, ..., Bk−1, G1, ..., Gk−1, α, C, µ0,

and L0. Notice that u1 is a function of α,C, µ0, and L0 only.

Lemma 10 If α, C, µ0 and L0 are real numbers such that J(B,G) − αI has a

unique UL factorization, then uk has the following partial derivatives with respect to

B1, ..., Bk−1, G1, ..., Gk−1, α, C, µ0 and L0.

∂uk
∂Bi

=

8>><>>:
0, k = 1

−γk−1uk, i = k − 1, k > 1

γk−1uk
∂uk−1

∂Bi
, i < k − 1, k > 1

∂uk
∂Gi

=

8>><>>:
0, k = 1,

γk−1, i = k − 1, k > 1

γk−1uk
∂uk−1

∂Gi
, i < k − 1, k > 1

∂uk
∂α

=

8>>><>>>:
− u1

C + µ0

∂µ0

∂α
, k = 1

γk−1uk

„
1 +

∂uk−1

∂α

«
, k > 1

∂uk
∂C

=

8>><>>:
−u1

C + µ0
, k = 1

γk−1uk
∂uk−1

∂C
, k > 1

∂uk
∂L0

=

8>><>>:
1

C + µ0
, k = 1

γk−1uk
∂uk−1

∂L0
, k > 1

∂uk
∂µ0

=

8>><>>:
−u1

C + µ0
, k = 1

γk−1uk
∂uk−1

∂µ0
, k > 1

Here

γk−1 :=
1

Bk−1 − uk−1 − α
, k ≥ 2. (A-2)

From Algorithm 1, we also get

b1 = u1 + α, bk = Bk−1 + uk − uk−1, k ≥ 2 (A-3)

and, therefore, for k ≥ 2, the variable bk can be seen as a function of B1, ..., Bk−1,

G1, ..., Gk−1, α, C, µ0,L0. Notice that b1 is only a function of α, C, µ0, and L0.

Lemma 11 If α, C, µ0 and L0 are real numbers such that J(B,G)−αI has a unique

UL factorization, then the partial derivatives of bk with respect to B1, ..., Bk−1, G1, ..., Gk−1,

α, C, µ0, and L0 are

27

∂bk
∂Bi

=

8>>>><>>>>:
0, i = 1, k = 1

1 +
∂uk
∂Bk−1

, i = k − 1, k > 1

∂uk
∂Bi

−
∂uk−1

∂Bi
, i < k − 1, k > 1

∂bk
∂Gi

=

8>>>><>>>>:
0, k = 1
∂uk

∂Gk−1
, i = k − 1, k > 1

∂uk
∂Gi

−
∂uk−1

∂Gi
, i < k − 1, k > 1

∂bk
∂α

=

8>><>>:
∂u1

∂α
+ 1, k = 1

∂uk
∂α
−
∂uk−1

∂α
, k > 1

∂bk
∂C

=

8>><>>:
∂u1

∂C
, k = 1

∂uk
∂C
−
∂uk−1

∂C
, k > 1

∂bk
∂L0

=

8>><>>:
∂u1

∂L0
, k = 1

∂uk
∂L0

−
∂uk−1

∂L0
, k > 1

∂bk
∂µ0

=

8>><>>:
∂u1

∂µ0
, k = 1

∂uk
∂µ0

−
∂uk−1

∂µ0
, k > 1

It also happens that gk = (Bk − uk − α)uk, k ≥ 1, so gk is a function of

B1, ..., Bk, G1, ..., Gk−1, α, C, µ0,L0.

Lemma 12 If α, C, µ0 and L0 are real numbers such that J(B,G)−αI has a unique

UL factorization, then the partial derivatives of gk with respect to B1, ..., Bk, G1, ..., Gk−1,

α and C are

∂gk
∂Bi

=

8><>:
uk, i = k

δk
∂uk
∂Bi

, i < k

∂gk
∂Gi

= δk
∂uk
∂Gi

, i < k

∂gk
∂α

= δk
∂uk
∂α
− uk, k ≥ 1

∂gk
∂C

= δk
∂uk
∂C

, k ≥ 1

∂gk
∂L0

= δk
∂uk
∂L0

, k ≥ 1

∂gk
∂µ0

= δk
∂uk
∂µ0

, k ≥ 1

Here δk := Bk − 2uk − α for k ≥ 1.

Next, we define some quantities that will be useful in order to compute the condition

number κ(B,G, α,C, µ0,L0) introduced in (11). Let us call

κ∗(uk) :=

k−1X
i=1

κBi
(uk) +

k−1X
i=1

κGi
(uk) + κC(uk) + κL0(uk) + κµ0(uk), (A-4)

where

κBi
(uk) :=

˛̨̨̨
|Bi|+ |ui|

uk

∂uk
∂Bi

˛̨̨̨
, κC(uk) :=

˛̨̨̨
C

uk

∂uk
∂C

˛̨̨̨
, (A-5)

κGi
(uk) :=

˛̨̨̨
Gi
uk

∂uk
∂Gi

˛̨̨̨
, κL0(uk) :=

˛̨̨̨
L0

uk

∂uk
∂L0

˛̨̨̨
, κµ0(uk) :=

˛̨̨̨
µ0

uk

∂uk
∂µ0

˛̨̨̨
. (A-6)

Note that the subscript of these auxiliary “condition numbers” indicates with re-

spect to which input variable the specific condition number is computed.

The quantities κ∗(uk) can be computed recursively as the following lemma shows:

28

Lemma 13 Let α, C, L0, and µ0 be real numbers such that J(B,G)−αI has a unique

UL factorization. Then,

κ∗(u1) = 1 +
|C|+ |µ0|
|C + µ0|

κ∗(uk) = 1 + |γk−1Bk−1|+ |γk−1uk−1|(1 + κ∗(uk−1)), k ≥ 2,

where γk−1 is defined in (A-2).

Proof.

If k = 1 then

κ∗(u1) = κC(u1) + κL0(u1) + κµ0(u1) = 1 +
|C|+ |µ0|
|C + µ0|

.

Assume now that k > 1. Then, if i = k − 1,

κBk−1(uk) =
|Bk−1|+ |uk−1|

|uk|

˛̨̨̨
uk

Bk−1 − uk−1 − α

˛̨̨̨
=
|Bk−1|+ |uk−1|
|Bk−1 − uk−1 − α|

.

κGk−1(uk) =

˛̨̨̨
Gk−1

uk

˛̨̨̨ ˛̨̨̨
1

Bk−1 − uk−1 − α

˛̨̨̨
= 1.

Similarly, if i < k − 1,

κBi
(uk) =

|Bi|+ |ui|
|uk|

˛̨̨̨
uk

Bk−1 − uk−1 − α

˛̨̨̨ ˛̨̨̨
∂uk−1

∂Bi

˛̨̨̨
=

˛̨̨̨
uk−1

Bk−1 − uk−1 − α

˛̨̨̨
κBi

(uk−1).

κGi
(uk) =

˛̨̨̨
Gi
uk

˛̨̨̨ ˛̨̨̨
uk

Bk−1 − uk−1 − α

˛̨̨̨ ˛̨̨̨
∂uk−1

∂Gi

˛̨̨̨
=

˛̨̨̨
uk−1

Bk−1 − uk−1 − α

˛̨̨̨
κGi

(uk−1).

Finally,

κC(uk) =

˛̨̨̨
C

uk

˛̨̨̨ ˛̨̨̨
uk

Bk−1 − uk−1 − α

˛̨̨̨ ˛̨̨̨
∂uk−1

∂C

˛̨̨̨
=

˛̨̨̨
uk−1

Bk−1 − uk−1 − α

˛̨̨̨
κC(uk−1).

The remaining two condition numbers are computed in a similar way.

These expressions lead us to the recurrence relation for κ∗(uk) in a straightforward

way from (A-4).

Theorem 13 Let α, C, L0, and µ0 be real numbers such that J(B,G) − αI has a

unique UL factorization. Then

κ(b1) =

˛̨̨̨
α

u1 + α

˛̨̨̨ ˛̨̨̨
1 +

∂u1

∂α

˛̨̨̨
+

˛̨̨̨
u1

u1 + α

˛̨̨̨
κ∗(u1),

κ(bk) = |γk−1uk|+
|γk−1uk − 1|

|bk|
ˆ
|Bk−1|+ |uk−1|

`
1 + κ∗(uk−1

´˜
+

+

˛̨̨̨
α

bk

˛̨̨̨ ˛̨̨
(γk−1uk − 1)

∂uk−1
∂α + γk−1uk

˛̨̨
, k ≥ 2.

where γk−1 is defined in (A-2).

29

Proof.

For k = 1,

κC(b1) =

˛̨̨̨
C

b1

˛̨̨̨ ˛̨̨̨
u1

C + µ0

˛̨̨̨
, κα(b1) =

˛̨̨̨
α

b1

˛̨̨̨ ˛̨̨̨
1 +

∂u1

∂α

˛̨̨̨
.

κL0(b1) =

˛̨̨̨
u1

b1

˛̨̨̨
, κµ0(b1) =

˛̨̨̨
u1

b1

˛̨̨̨ ˛̨̨̨
µ0

C + µ0

˛̨̨̨
.

Assume now that k > 1. For i = k − 1,

κBk−1(bk) =
|Bk−1|+ |uk−1|

|bk|

˛̨̨̨
uk

Bk−1 − uk−1 − α
− 1

˛̨̨̨
=
|Bk−1|+ |uk−1|

|bk|
|γkuk − 1| ,

κGk−1(bk) =

˛̨̨̨
Gk−1

bk

˛̨̨̨ ˛̨̨̨
1

Bk−1 − uk−1 − α

˛̨̨̨
=

˛̨̨̨
uk
bk

˛̨̨̨
.

For i < k − 1

κBi
(bk) =

|Bi|+ |ui|
|bk|

|γk−1uk − 1|
˛̨̨̨
∂uk−1

∂Bi

˛̨̨̨
= |γk−1uk − 1|

˛̨̨̨
uk−1

bk

˛̨̨̨
κBi

(uk−1),

κGi
(bk) =

˛̨̨̨
Gi
bk

˛̨̨̨
|γk−1uk − 1|

˛̨̨̨
∂uk−1

∂Gi

˛̨̨̨
= |γk−1uk − 1|

˛̨̨̨
uk−1

bk

˛̨̨̨
κGi

(uk−1).

Finally,

κα(bk) =

˛̨̨̨
α

bk

˛̨̨̨ ˛̨̨̨
(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

˛̨̨̨
,

κC(bk) =

˛̨̨̨
C

bk

˛̨̨̨ ˛̨̨̨
(γk−1uk − 1)

∂uk−1

∂C

˛̨̨̨
= |γk−1uk − 1|

˛̨̨̨
uk−1

bk

˛̨̨̨
κC(uk−1).

The rest of the condition numbers can be obtained in a similar way. The result follows

by (12) and (A-4).

The expression for κ(gk) can be found following a similar procedure.

APPENDIX 2: Proof of Theorem 12

It can be seen from their explicit expressions that both numbers κ∗(uk) and κ∗S(uk)

are larger than one. Moreover they are of the same order of magnitude as the following

lemma shows.

Theorem 14

κ∗S(uk) ≤ κ∗(uk) ≤ 2κ∗S(uk) for all k ≥ 1.

Proof. The first inequality is clear. Notice that the second inequality is true for

k = 1. In order to prove the second inequality for k > 1, note that

κ∗(uk) = 1+ |γk−1Bk−1|+
k−2X
i=1

(2 + |γiBi|)
k−1Y
j=i+1

|γjuj |+
k−1Y
j=1

|γjuj |
„

2 +
|C|+ |µ0|
|C + µ0|

«
,

30

κ∗S(uk) = 1+|γk−1Bk−1|+
k−2X
i=1

(1 + |γiBi|)
k−1Y
j=i+1

|γjuj |+
k−1Y
j=1

|γjuj |
„

1 +
|C|+ |µ0|
|C + µ0|

«
,

where
P0
i=1 ≡ 0 and

P−1
i=1 ≡ 0, i.e., for k = 1 the summations are not present. The

result follows from the previous expressions.

It is also easy to prove that κ(bk) and κS(bk) are of the same order of magnitude

for all k ≥ 1.

Theorem 15 For 1 ≤ k ≤ n,

κS(bk) ≤ κ(bk) ≤ 3κS(bk).

Proof. Again, the first inequality is obvious. In order to prove the second one take

into account Theorem 14 and the fact that 1 ≤ κ∗S(uk) for all k to get

κ(bk) ≤
˛̨̨̨
uk
bk

˛̨̨̨
+

˛̨̨̨
γk−1uk − 1

bk

˛̨̨̨
[|Bk−1|+ |uk−1|3κ∗S(uk−1)]

+

˛̨̨̨
α

bk

˛̨̨̨ ˛̨̨̨
(γk−1uk − 1)

∂uk−1

∂α
+ γk−1uk

˛̨̨̨
,

and the result follows.

Proving that κ(gk) and κS(gk) are of the same magnitude is not always possible. It

is not true in general that κ(gk) is upper bounded by a multiple of κS(gk). However, the

lemma below shows that whenever κ(gk) and κS(gk) have different orders of magnitude,

then κ(gk) is bounded by 8κS(bk+1). The technical Lemma 14 will be needed to prove

our claim.

Lemma 14 Let us assume that 3
4 < γkuk <

3
2 for some k. If γkuk > 4 |γkBk|, then

– if γkuk+1 > 15/8 or γkuk+1 < 3/8, then

5

12
<

˛̨̨̨
uk+1 − 1/γk

bk+1

˛̨̨̨
.

– if 3/8 ≤ γkuk+1 ≤ 15/8, then
1

4
<

˛̨̨̨
uk+1

bk+1

˛̨̨̨
.

Proof. Since γkuk > 4 |γkBk|,

−3

8
< γkBk <

3

8
. (A-1)

We consider two possible situations: γk > 0 and γk < 0. Let us begin by assuming that

γk > 0.

1. If γk > 0, then uk > 0. From (A-1) we get

−3

8

1

γk
< lk + uk + α <

3

8

1

γk
.

Therefore,

− 15

8γk
− lk < α < − 3

8γk
− lk. (A-2)

31

Then, from (A-2), and taking into account that bk+1 = uk+1 + lk + α, we get the

following bounds

uk+1 −
15

8γk
< bk+1 < uk+1 −

3

8γk
.

Notice that both bounds of bk+1 will be positive if uk+1γk > 15/8, and both

bounds will be negative if uk+1γk < 3/8.

– Let us assume that uk+1γk > 15/8, then uk+1 − 1/γk > 0 and

uk+1 − 1/γk

uk+1 − 3
8γk

<

˛̨̨̨
uk+1 − 1/γk

bk+1

˛̨̨̨
.

Therefore,
7

12
<

1

1 + 5
8

1
uk+1γk−1

<

˛̨̨̨
uk+1 − 1/γk

bk+1

˛̨̨̨
.

– Let us assume now that uk+1γk < 3/8. Then, uk+1 − 1/γk < 0 and

−uk+1 + 1/γk

−uk+1 + 15
8γk

<

˛̨̨̨
uk+1 − 1/γk

bk+1

˛̨̨̨
.

As a consequence,

5

12
<

1

1 + 7
8

1
1−uk+1γk

<

˛̨̨̨
uk+1 − 1/γk

bk+1

˛̨̨̨
.

– Finally, suppose that 3
8 ≤ uk+1γk ≤ 15

8 . Then, uk+1 > 0. If bk+1 > 0, we get

5

4
<

uk+1γk

uk+1γk − 3
8

<

˛̨̨̨
uk+1

bk+1

˛̨̨̨
.

If bk+1 < 0, then
1

4
<

uk+1γk

−uk+1γk + 15
8

<

˛̨̨̨
uk+1

bk+1

˛̨̨̨
.

2. When γk < 0, a similar proof gives the same bounds.

Now we can prove Theorem 16. Let us remark that Theorem 12 is a trivial conse-

quence of Theorems 15 and 16. Notice that, from the expressions for κ(gk) and κS(gk),

and taking into account that κ∗(uk) and κ∗S(uk) are of the same order of magnitude

by Theorem 14, it can easily be deduced that κ(gk) and κS(gk) have similar orders

of magnitude when ukγk is not close to one. This is covered in the first two items of

Theorem 16. The most difficult situation, i.e., when ukγk is close to one, is presented

in the last item. Let us recall that uk 6= 0 for all k because Gk−1 6= 0 for monic Jacobi

matrices corresponding to sequences of orthogonal polynomials.

Theorem 16 For 1 ≤ k ≤ n− 1,

1 if ukγk < 0, then

κS(gk) ≤ κ(gk) ≤ 3κS(gk).

2 if 0 < ukγk ≤ 3/4 or ukγk ≥ 3/2, then

κS(gk) ≤ κ(gk) ≤ 8κS(gk).

32

3 if 3
4 < ukγk <

3
2 for some k,

3.1 if ukγk ≤ 4|Bkγk|, then

κS(gk) ≤ κ(gk) ≤ 5κS(gk).

3.2 if ukγk > 4|Bkγk|, then

(a) if κ(gk) ≥ 4
3ukγk, then

κS(gk) ≤ κ(gk) ≤ 8κS(gk).

(b) if κ(gk) < 4
3ukγk, then

κS(gk) ≤ κ(gk) ≤ 8κS(bk+1).

Proof.

Considering the definitions of κ(gk) and κS(gk), it is easy to see that

κS(gk) ≤ κ(gk), for all k.

In the rest of the proof, notice that

γkδk =
Bk − 2uk − α
Bk − uk − α

= 1− uk
Bk − uk − α

= 1− γkuk.

Denote a = ukγk. We need to compare the quantities |a| + 2|1 − a|κ∗S(uk) and

|1− a|κ∗S(uk). Note also that κ∗S(uk) ≥ 1.

1. If a < 0 then |a|+ 2|1− a| = 2− 3a ≤ 3(1− a), and hence

|a|+ 2|1− a|κ∗S(uk) ≤ (|a|+ 2|1− a|)κ∗S(uk) ≤ 3|1− a|κ∗S(uk),

so κ(gk) ≤ 3κS(gk).

2. If 0 ≤ a ≤ 3/4, then |a|+ 2|1− a| = 2− a, so

|a|+ 2|1− a|κ∗S(uk) ≤ (|a|+ 2|1− a|)κ∗S(uk) ≤ 8|1− a|κ∗S(uk),

and therefore κ(gk) ≤ 8κS(gk).

3. If a ≥ 3/2 then |a|+ 2|1− a| = 3a− 2 ≤ 5(a− 1), so

|a|+ 2|1− a|κ∗S(uk) ≤ (|a|+ 2|1− a|)κ∗S(uk) ≤ 5|1− a|κ∗S(uk),

and κ(gk) ≤ 5κS(gk).

3.1 If 3
4 < γkuk <

3
2 and ukγk ≤ 4|Bkγk| then, taking into account the expressions for

κ(gk) and κS(gk), the result follows.

3.2 If 3
4 < γkuk <

3
2 and ukγk > 4|Bkγk| then, the condition κ(gk) ≥ 4

3ukγk implies

8κS(gk) ≥ 4

|γk|[|Bk|+ |δk|κ(uk)] + |γkα|

˛̨̨̨
1− δk

uk

∂uk
∂α

˛̨̨̨ff
≥ 4κ(gk)−4|ukγk| > κ(gk).

On the other hand, if κ(gk) < 4
3ukγk and uk+1γk >

15
8 or uk+1γk <

3
8 , then by

Lemma 14

κS(bk+1) ≥
˛̨̨̨
uk+1 − 1/γk

bk+1

˛̨̨̨
|ukγk| >

5

12
|ukγk|,

33

which implies

κ(gk) <
16

5
κS(bk+1).

When κ(gk) < 4
3ukγk and 3

8 ≤ ukγk ≤
15
8 , by Lemma 14

κS(bk+1) ≥ 1

4
.

Moreover, since ukγk <
3
2 , κ(gk) < 4

3ukγk ≤ 2, which implies

κ(gk) ≤ 8κS(bk+1).

