
Computation of the Real Zeros of the Kummer
Function M(a; c; x)

Alfredo Deaño1, Amparo Gil2, and Javier Segura2

1 Departamento de Matemáticas. Univ. Carlos III de Madrid. 28911, Leganés
(Madrid), Spain

2 Departamento de Matemáticas, Estad́ıstica y Computación. Univ. de Cantabria.
39005, Santander, Spain

Abstract. An algorithm for computing the real zeros of the Kummer
function M(a; c; x) is presented. The computation of ratios of functions
of the type M(a + 1; c + 1; x)/M(a; c; x), M(a + 1; c; x)/M(a; c; x) plays
a key role in the algorithm, which is based on global fixed-point itera-
tions. We analyse the accuracy and efficiency of three continued fraction
representations converging to these ratios as a function of the parameter
values. The condition of the change of variables appearing in the fixed
point method is also studied. Comparison with implicit Maple functions
is provided, including the Laguerre polynomial case.

1 Introduction

Our algorithm is based on global fixed point iterations which apply to fam-
ilies of functions satisfying first order linear difference differential equations
with continuous coefficients. The methods were described in [1,2]. The start-
ing point of the methods is the construction of a first order system of differential
equations:

y′(x) = α(x)y(x) + δ(x)w(x)
w′(x) = β(x)w(x) + γ(x)y(x), (1)

with continuous coefficients α(x), β(x), γ(x) and δ(x) in the interval of interest
I, relating our problem function y(x) with a contrast function w(x), whose ze-
ros are interlaced with those of y(x). The coefficients δ(x) and γ(x) satisfy the
condition δ(x)γ(x) < 0, which has to be met when y(x) or w(x) have at least
two zeros in the interval I.

With these restrictions, we introduce new functions and a new variable as
follows. First, we consider a change of the dependent functions:

y(x) = λy(x)ȳ(x) , w(x) = λw(x)w̄(x), (2)

with λy(x) �= 0, λw(x) �= 0 ∀x ∈ I in such a way that ȳ and w̄ satisfy:

ȳ′ = ᾱ ȳ + δ̄ w̄
w̄′ = β̄ w̄ + γ̄ ȳ

(3)

A. Iglesias and N. Takayama (Eds.): ICMS 2006, LNCS 4151, pp. 296–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Computation of the Real Zeros of the Kummer Function M(a; c; x) 297

with δ̄ > 0 and δ̄ = −γ̄. This is accomplished by choosing:

λy = sign(δ)λw

√
−δ/γ (4)

It is obvious that the new functions ȳ(x) and w̄(x) have the same zeros as
y(x) and w(x). Considering now a change of variables:

z(x) =
∫

δ̄(x)dx, (5)

the system reads: (
˙̄y
˙̄w

)
=

(
ā 1

−1 b̄

) (
ȳ
w̄

)
, (6)

where ā = ᾱ/δ̄, b̄ = β̄/δ̄ and dots mean derivative with respect to z. Then, the
ratio H(z) = ȳ/w̄ satisfies the first order non-linear ODE:

Ḣ = 1 + H2 − 2ηH, (7)

where η = (b̄ − ā)/2.

From Eq.(7) it is possible to build a fixed point iteration [1]:

T (z) = z − arctan (H(z)) , (8)

which converges globally to the zeros of H(z) in intervals where the function η
does not change sign [1]. These zeros are the same as those of the function ȳ(z),
and undoing the change of variable we obtain the zeros of y(x) in the original
variable x.

2 The Confluent Hypergeometric Function M(a; c; x)

We consider the Kummer differential equation:

xy′′(x) + (c − x)y′(x) − ay(x) = 0. (9)

This equation has a regular singular point at the origin and an irregular singu-
larity at infinity. The regular solution around the origin reads

M(a; c; x) =
∞∑

n=0

(a)n

(c)n

xn

n!
, (10)

where (a)n = a(a + 1)(a + 2) . . . (a + n − 1) is the usual Pochhammer symbol.
This power series has radius of convergence equal to infinity, and defines for all
complex values of a, c, x (except if c = 0, −1, −2, . . .) a function which is a hy-
pergeometric function of type 1F1 and it is known as confluent hypergeometric
function of the first kind or Kummer function.

298 A. Deaño, A. Gil, and J. Segura

In this paper we will focus on real values of a, c and x. Moreover, we can
restrict ourselves to x > 0, because by Kummer transformations [3]:

M(a; c; x) = exM(c − a; c; −x). (11)

The positive real zeros of the function M(a; c; x) are bounded, a property
that can be proved by writing (9) in normal form. Indeed, the functions w(x) =
xc/2e−x/2y(x) with y(x) solution of (9), satisfy

w′′(x) +
(

− 1
4

+
c − 2a

2x
+

c(2 − c)
4x2

)
w(x) = 0. (12)

It is straightforward to check that the turning points are:

x± = c − 2a ±
√

(c − 2a)2 + c(2 − c). (13)

When x > x+ and when x < x− the independent term in (12) is negative,
and as a consequence of Sturm theorems [10] the function M(a; c; x) can only
have at most one zero in that region. More precisely, in [4] it is shown that if
M(a; c; x) has at least two positive real zeros then the parameters verify the so
called oscillatory conditions :

a < 0, c − a > 1 (14)

It is worth noticing that if a = −n is a negative integer we obtain the classical
Laguerre polynomials L

(α)
n (x), where c = α + 1.

2.1 Systems of DDEs for M(a; c; x)

Let us illustrate the construction of a system of DDEs for the functions M(a; c; x).
These functions satisfy the following relation (Eq. 13.4.11 of [3]):

xM ′(a; c; x) = (a + x − c)M(a; c; x) + (c − a)M(a − 1; c; x) (15)

and the following three-term recurrence relation (TTRR) (Eq.13.4.1 of [3]):

aM(a + 1; c; x) = (2a − c + x)M(a; c; x) + (c − a)M(a − 1; c; x) (16)

Now, using the notation yn ≡ M(a+n; c; x), we can write the following system
of difference-differential equations (1), as stated in [7]:

y′
n =

a + n + x − c

x
yn +

c − a − n

x
yn−1

y′
n−1 = −a + n − 1

x
yn−1 +

a + n − 1
x

yn,

(17)

where the second DDE can be obtained from the first DDE (15) by replacing
n → n − 1 and using the TTRR (16) for expressing yn−2 in terms of yn and
yn−1.

In this example the dependence on n is located in the first parameter of
the hypergeometric function, but it is clear that other choices are available. By
denoting an ≡ a+k n, cn ≡ c+m n and yn ≡ M(an; cn; x) we will have different
sets of DDEs for different selections of (k, m). As explained in the introduction,
these DDEs are the starting point for building the fixed point iterations.

Computation of the Real Zeros of the Kummer Function M(a; c; x) 299

3 Ratios of Hypergeometric Functions and Continued
Fractions

In order to apply the fixed point method for the real zeros of the function
M(a; c; x) we will need to compute the following ratios:

R1,1(x) :=
M(a + 1; c + 1; x)

M(a; c; x)
, (18)

when x < c − a, and

R1,0(x) :=
M(a + 1; c; x)

M(a; c; x)
, (19)

when x > c − a. The selection of the x-range is based on the efficiency of the
associated fixed point methods, as explained in [7].

As it is well known, confluent hypergeometric functions satisfy three-term
recurrence relations in any direction of increasing (decreasing) parameters (with
integer values), and the associated continued fractions converge to the ratio of
minimal solutions of the recurrence by Pincherle’s theorem [8,10] and when the
recurrence has a minimal solution. However, great care is needed in order to
avoid situations of pseudoconvergence of the continued fractions, as explained
in [5], that may result in a loss of precision in the computation or even in the
computation of a wrong ratio of functions.

When x < c − a we have to use the iteration (1, 1) (increasing both parame-
ters), and the function M(a; c; x) is minimal in that direction. No pseudoconver-
gence is expected, since this phenomenon is present when x is larger than c, as
can be seen in [5]. Therefore we can use the continued fraction that stems from
the recursion:

H(1)(x) :=
c

c − x+
(a + 1)x

c + 1 − x+
(a + 2)x

c + 2 − x+
. . . , (20)

This continued fraction converges to the ratio R1,1 for x ∈ R. We note that if
the parameter a is a negative integer then the confluent hypergeometric function
reduces to a polynomial of Laguerre type, and therefore the continued fraction
is finite.

When x > c−a we have to use the ratio corresponding to the (1, 0) iteration. In
this case the CF from the (1, 0) recursion can not be used for computing zeros
of M(a; c; x), because the function M(a + n; c; x) is dominant when n → ∞.
However, we can use the QD algorithm [8] to construct the following C-fraction
from the power series expansion of (19):

H(2)(x) := a0 +
a1x

1+
a2x

1+
a3x

1+
. . . , (21)

where a0 = 1, a1 = 1/c, and:

a2m =
a + 1 − c − m

(c + 2m − 2)(c + 2m − 1)
, m ≥ 1 (22)

300 A. Deaño, A. Gil, and J. Segura

a2m+1 =
a + m

(c + 2m − 1)(c + 2m)
, m ≥ 1 (23)

This CF converges to the ratio M(a + 1; c; x)/M(a; c; x) on compact subsets
of R except for the zeros of M(a; c; x). We refer the reader to [8, pg. 313] for
a similar result for the ratio in the (1, 1) direction. However, it is important to
note that this continued fraction exhibits pseudoconvergence [5] for large x, and
therefore should not be used to compute the largest zeros. For moderate values
of x, on the other hand, is a useful expression, as we show in Section 4.

When the variable x is large it is possible to use the fact that the function
M(a; c; x) is minimal in the (0, 1) direction, that is, when we increase the pa-
rameter c. This leads to the following continued fraction:

c

c + x+
−(c + 1 − a)x
c + 1 + x+

−(c + 2 − a)x
c + 2 + x+

. . . , (24)

This continued fraction converges to the ratio M(a; c + 1; x)/M(a; c; x), and it
does not present pseudoconvergence if the oscillatory conditions are fulfilled.
Once computed, we can obtain the ratio in the (1, 0) direction by means of a
three-term recurrence relation [3]:

M(a + 1; c; x)
M(a; c; x)

=
c

c − x
M(a + 1; c + 1; x)

M(a + 1; c; x)

(25)

This gives the following continued fraction for the ratio R1,0(x):

H(3)(x) :=
1

1+
−x

c + x+
−(c − a)x
c + 1 + x+

−(c + 1 − a)x
c + 2 + x+

−(c + 2 − a)x
c + 3 + x+

. . . , (26)

4 Computational Aspects of Continued Fractions

The algorithm uses the modified Lentz-Thompson method [9] to compute the
continued fractions (20), (21) and (26). The first one is used when x < c − a,
and the other two when x > c − a.

First, we perform an analysis of the accuracy of the continued fractions used in
the algorithm, comparing with the internal Maple subroutine KummerM(a,c,x).
In the following plots we have fixed several values of the parameter a and we
have used a random sweep in the plane (c, x). The threshold of accuracy has been
set to five digits less than the working precision (40 digits). Dark dots denote
points where the relative error between the continued fraction used and Maple is
smaller than this quantity, and grey dots when it is larger. We have also plotted
the line x = c − a in the case of the first continued fraction, and both x = c − a
and x = c − 2a in the other two cases.

Computation of the Real Zeros of the Kummer Function M(a; c; x) 301

0 20 40 60 80 100
c

0

50

100

150

200

x

0 20 40 60 80 100
c

0

100

200

300

400

x
0 20 40 60 80 100

c
0

100

200

300

400

x

Fig. 1. Plots for a = −50.1, with a sweep of 5000 random points. Left: accuracy test
for the CF (20) when x < c − a. Center: accuracy test for the CF (21) when x > c − a.
We observe a loss of accura cy of the CF when x becomes large. Right: accuracy test
for the CF (24) when x > c−a. We include the lines x = c−a (left) and both x = c−a
and x = c − 2a (center and right).

0 20 40 60 80 100
c

0

50

100

150

200

250

x

0 20 40 60 80 100
c

0

100

200

300

400

500

x

0 20 40 60 80 100
c

0

100

200

300

400

500

x

Fig. 2. Plots for a = −100.1, with a sweep of 5000 random points. Left: accuracy test
for the (20) when x < c − a. Center: accuracy test for the CF (21) when x > c − a. We
observe a loss of accuracy of the CF when x becomes large. Right: accuracy test for
the CF (24) when x > c − a. We include the lines x = c − a (left) and both x = c − a
and x = c − 2a (center and right).

The graphics suggest that the first continued fraction (20) can be used when
x < c − a. When x > c − a and x is not too large the second one is correct, but
the attainable accuracy deteriorates when x becomes large. This loss of accuracy
corresponds to the continued fraction (21), because the third continued fraction
(24) agrees with Maple subroutine in the whole region, as can be seen in the
graphics on the right.

In the general algorithm we will change from (21) to (24) when x = c − 2a.
This choice seems to be safe according to numerical experiments, and it can be
justified by performing a canonical contraction of (21), as explained in [8, pg.83].
In the resulting continued fraction both the numerators and the denominators
change of sign (from negative to positive), taking into account (14). When x <
c−2a+1 the change in the denominator occurs when the numerators are still neg-
ative, and therefore there is no risk of pseudoconvergence (see [5] for the criterion

302 A. Deaño, A. Gil, and J. Segura

0 20 40 60 80 100
c

0

100

200

300

400

500

600

700

x

0 20 40 60 80 100
c

500

1000

1500

x
0 20 40 60 80 100

c
500

1000

1500

x

Fig. 3. Plots for a = −500.1, with a sweep of 5000 random points. Left: accuracy test
for the CF (20) when x < c − a. Center: accuarcy test of the CF (21) when x > c − a.
We observe a loss of accuracy of the CF when x becomes large. Right: accuracy test
for the CF (24) when x > c−a. We include the lines x = c−a (left) and both x = c−a
and x = c − 2a (center and right).

of signs). On the other hand, when x > c − 2a + 1 the denominator changes
from negative to positive when the numerators are already positive. This is a
disctintive sign of pseudoconvergence and causes the loss of accuracy observed
in the plots.

4.1 Timings

From the point of view of accuracy, numerical tests indicate that it is possible
to use the third continued fraction (24) when x > c − a. However, the continued
fraction (21) seems to be more efficient for moderate values of x in terms of CPU
time, so we have kept the three continued fractions in the program to test CPU
time. If we compare both continued fractions in the zone c − a < x < c − 2a we
obtain that (21) is generally faster, as shown in Figure 4.

Once accuracy is tested we have to compare CPU times for continued fraction
evaluation and Maple, in order to establish which is the most efficient method
depending on the parameters.

Timing tests have been performed again fixing different values of a, carrying
out random sweeps in c and x and comparing the result from the continued
fraction method with the intrinsic Maple procedure (Figure 5). In order to ensure
a significant number of calls to both algorithms repeating loops are included,
which use slightly different values of the parameters in each call, in such a way
that the values are actually recomputed, and not stored in memory. Black dots
represent points where the continued fraction is faster, whereas grey dots indicate
that Maple is more efficient.

After several tests for fixed values of a the continued fraction method seems
to be superior when x and/or a are large, whereas Maple is faster for large values
of c. A final least squares fit is calculated to obtain a condition in terms of the
parameters of the function that will enable us to choose the best method in the
general algorithm.

Computation of the Real Zeros of the Kummer Function M(a; c; x) 303

0 20 40 60 80 100
c

50

100

150

200

x

0 20 40 60 80 100
c

100

150

200

250

300

x

Fig. 4. Timings of continued fractions (21) and (24) in the region c − a < x < c − 2a.
We include both lines. Left, a = −50.1. Right: a = −100.1. 1000 random points have
been used in the region c − a < x < c − 2a, and points indicate where (21) is faster.

0 10 20 30 40 50
c

100

120

140

160

180

200

x

0 10 20 30 40 50
c

0

20

40

60

80

100

x

0 50 100 150 200
c

0

50

100

x

Fig. 5. Comparison between continued fractions (20), (21), (24) and Maple in the final
scheme. Left: a = −50.1. Center: a = −100.1. Right: a = −500.1. 2000 random points
have been used in each case. Black points indicate where continued fraction is faster,
grey points where Maple is more efficient.

Apart from the numerical results shown before in the plots, similar graphics
have been generated in the cases a = −75.1, −125.1, −150.1, −200.1, −250.1,
− 300.1, −325.1, −350.1, −400.1, −425.1, −450.1 , using random sweeps in the
plane (c, x), in order to obtain a finer fit.

For each value of a, a straight line in the plane (c, x) divides approximately the
zones where Maple or the continued fraction are superior. These lines have the
form x = mc + l, where m, l are positive and decreasing when |a| increases (see
Figure 5). We have used a least squares fit to adjust the values of m and l, for
values of |a| between 50 and 500, and we have obtained the following function:

f(a, c, x) = −x +
A1

(−a)A2
c +

A3

(−a)A4
, (27)

where the constants A1, A2, A3 and A4 are:

A1 = 2408.3405, A2 = 1.5448166, A3 = 5182.0407, A4 = 1.0234031 .

Given a, c and x, the continued fraction method should be used if f(a, c, x) <
0. Several tests have been carried out to check if this fit is correct: we have

304 A. Deaño, A. Gil, and J. Segura

computed random values of a, c and x in the intervals (−500, −50), (0, 200) and
(0, 1000) respectively, and we have checked again the timings of the continued
fraction method and Maple whenever f(a, c, x) < 0. If the fit is correct, this
test should be favourable to the continued fraction method. In all cases, the
proportion of points in the regions considered where the continued fraction is
actually faster than Maple is larger than 90%.

5 Building the Full Algorithm

The main ingredients of the algorithm for computing the real zeros of hyperge-
ometric functions were discussed in [7]. The resulting algorithm for computing
the real zeros of the Kummer function M(a; c; x), in a given interval I = (xa, xb)
reads as follows:

◦ Consider the following functions:

z1(x) = 2
�

(1 − a)x ,

H1(x) =

���������
(1 − a)x

(c − 1)2

�����
M(a; c; x)

M(a − 1; c − 1; x)
,

η1(x) = − 2x + 3 − 2c

4
�

(1 − a)x
,

and

z2(x) =
�

(c − a)(1 − a) log x ,

H2(x) =

�����1 − a

c − a

���� M(a; c; x)

M(a − 1; c; x)
,

η2(x) = − 2a + c + x

2
�

(c − a)(1 − a)
.

◦ Let xtran = c − a.

If xb < xtran, consider z(x) = z1(x), H(x) = H1(x), η(x) = η1(x).
If xb > xtran, let I1 = (xa, xtran), I2 = (xtran, xb). Then consider

z(x) = z1(x), H(x) = H1(x), η(x) = η1(x) in I1 and z(x) = z2(x), H(x) =
H2(x), η(x) = η2(x) in I2.

◦ Divide the interval I (or the corresponding subintervals I1, I2) in subintervals where
η(x) does not change sign.

◦ Apply the following routine (SWEEP) in those subintervals where η(x) does not
change sign, but replacing the variable x by z(x) and H(x) by H(z) = H(x(z)).
The zeros are computed in the z variable. Let [z1, z2] be an interval where η does
not change sign:

Computation of the Real Zeros of the Kummer Function M(a; c; x) 305

SUBROUTINE SWEEP(j,z1,z2,ε,i,z(i))
Algorithm: forward and backward sweeps.
Input: j = −sign(η) (+1 forward sweep; -1 backward); z1;z2;ε ≡ relative preci-

sion
Output: i (number of zeros);z(1), ..., z(i): zeros in the interval
NOTERM=1
z̄1 =

z1 + z2

2 + j(
z1 − z2

2)
z = z̄1

z̄2 =
z1 + z2

2 − j(
z1 − z2

2)
IF (jH(z) > 0) THEN z = z + jπ/2
i = 0
DO WHILE (j(z − z̄2) < 0)

CALL FIXEDPOINT(z,z̄2,ε,zn,NOTERM)
IF(NOTERM=1) THEN

z(j i) = zn

i = i + 1
z = zn + jπ/2

ELSE
z = z̄2 + j

ENDIF
END WHILE
END

SUBROUTINE FIXEDPOINT(z,z̄2,ε,zn,NOTERM)
Err=1 + ε
DO WHILE (NOTERM=1) AND (Err> ε)

zp = z
z = z − arctan(H(z))
Err= |1 − z/zp|
IF (j(z − z̄2) > 0) THEN NOTERM=0

END WHILE
zn = z
END

and the zeros generated in a forward sweep are stored in the positive positions of
the array z(i) (z(1), z(2),...) while those generated in a backward sweep are stored
in the negative positions (z(−1), z(−2),...).

◦ Invert the change of variable z(x) to obtain the zeros in the original variable.

A relevant issue for the stability of the full algorithm, which was not analysed
in previous references [1,2,4], is the condition of the change of variables associated
to the recurrences used in the algorithm. We discuss this point briefly in the
following section.

5.1 Condition of the Change of Variables

An important issue in the accuracy of the computed zeros is the condition of the
change of variable z = z(x) explained in section 1. Indeed, once the zeros are

306 A. Deaño, A. Gil, and J. Segura

computed in the variable z by means of the fixed point iteration, it is necessary to
undo the change of variable in order to obtain the zeros in the original variable
x and evaluate x = x(z) at those points. In this section we examine the two
changes used for Kummer function.

As explained in [7], the changes of variable associated with the iterations (1, 1)
and (1, 0) are, respectively:

z1(x) = 2
√

(1 − a)x, z2(x) =
√

(c − a)(1 − a) log(x). (28)

The second change maps the interval (0, +∞) onto (−∞, +∞), and the first
one onto itself. When transforming from z to x the relative condition number is:

κrel =
∣
∣∣
∣z

ẋ(z)
x(z)

∣
∣∣
∣ . (29)

In the first case:
κrel = 2, (30)

so the problem is well conditioned. In the second case:

κrel =

∣
∣
∣∣
∣

z
√

(c − a)(1 − a)

∣
∣
∣∣
∣
. (31)

Hence the condition number grows linearly with the variable z. In terms of
the variable x we have that κrel = |log(x)|. Taking into account (Eq.13), when
the parameter −a is large the largest zero is x ∼ −4a, and we can estimate
κrel ∼ log(−4a).

For instance, for Laguerre polynomials L
(α)
n (x) the condition number can be

estimated as κrel ∼ log(4n) when the degree of the polynomial is large, and the
loss of significant digits is mild for the large zeros. Because the corresponding
fixed point iteration is only used for x > c − a = n + α + 1 > 1, there is no bad
condition due to x close to zero and κrel ∼ log(4n) in the worst case.

5.2 Timings

The algorithm has been coded in Maple. In Table 1 we show examples of typical
CPU-times spent by the algorithm on a standard configuration PC (Intel Pen-
tium M processor at 1.5GHz and RAM memory of 512MB) under Windows XP.
We consider non polynomial and polynomial cases. In the polynomial case, we
show the relative CPU-times in comparison with the computation of the zeros
using the Maple functions KummerM and fsolve. The interval for computing
the zeros has been fixed to I = [0.001, 50].

Computation of the Real Zeros of the Kummer Function M(a; c; x) 307

Table 1. Typical CPU-times spent by the algorithm for computing the real zeros of
the Kummer function M(a; c; x). (∗) The number of digits for the computation with the
function fsolve has been set to 35 in order to obtain at least 14 digits correct for the
largest zero. (∗∗) The number of digits for the computation with the function fsolve
has been set to 50 in order to obtain at least 14 digits correct for the largest zero.

a c Nzeros CPU-time RelCPU
−50.1 0.1 31 1.6 s

−100.1 0.1 44 2.3 s

−500.1 0.1 99 8.6 s

−50 0.1 31 1.3 s 13.6(∗)

−100 0.1 44 2.2 s 55.7(∗∗)

Acknowledgments

The authors thank the referee for comments which have helped in improving the
final manuscript. A. Gil acknowledges financial support from Ministerio de Ed-
ucación y Ciencia (programa Ramón y Cajal). J. Segura acknowledges financial
support from project BFM2003-06335-C03-02. The authors acknowledge finan-
cial support from Ministerio de Educación y Ciencia (Project MTM2004–01367).

References

1. J. Segura. The zeros of special functions from a fixed point method., SIAM J.
Numer. Anal. 40 (2002) 114-133.

2. A. Gil and J. Segura. Computing zeros and turning points of linear homogeneous
second order ODEs, SIAM J. Numer. Anal. 41 (2003) 827-855.

3. M. Abramowitz, I. A. Stegun. Handbook of Mathematical functions, with for-
mulas, graphs and mathematical tables. Dover, 1972.

4. A. Deaño, A. Gil, J. Segura. New inequalities from classical Sturm theorems.
J. Approx. Theory 131 (2004), 208-230.

5. A. Deaño, J. Segura. Transitory minimal solutions of hypergeometric recursions
and pseudoconvergence of associated continued fractions. Accepted for publication
in Math. Comp.

6. E. Frank. A new class of continued fraction expansions for the ratios of hyperge-
ometric functions. Transactions of the American Mathematical Society, Vol. 81, n.
2, (1956) 453-476.

7. A. Gil, W. Koepf, J. Segura. Computing the real zeros of hypergeometric func-
tions. Numer. Algorithms 36 (2004) 113-134.

8. L. Lorentzen, H. Waadeland. Continued fractions with applications. North Hol-
land, 1992.

9. I.J. Thompson, A. R. Barnett. Coulomb and Bessel functions of complex argu-
ments and order. J. Comput. Phys. 64 (1986) 490-509.

10. N.M. Temme. Special functions. An introduction to the classical functions of Math-
ematical Physics. John Wiley and Sons. 1996.

	Introduction
	The Confluent Hypergeometric Function M(a;c;x)
	Systems of DDEs for M(a;c;x)

	Ratios of Hypergeometric Functions and Continued Fractions
	Computational Aspects of Continued Fractions
	Timings

	Building the Full Algorithm
	Condition of the Change of Variables
	Timings

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

