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Abstract

A modification of standard Poincaré asymptotic expansions for
functions defined by means of Laplace transforms is analyzed. This
modification is based on an alternative power series expansion of the
integrand, and the convergence properties are seen to be superior to
those of the original asymptotic series. The resulting modified asymp-
totic expansion involves confluent hypergeometric functions U(a, c, z),
which can be computed by means of continued fractions. Numerical
examples are included, such as the incomplete Gamma function Γ(a, z)
and the modified Bessel function Kν(z) for large values of z. The same
procedure can be applied to uniform asymptotic expansions when extra
parameters become large as well.

1 Introduction

Many special functions admit integral representations in term of Laplace or
Fourier transforms:

F (z) =

∫ ∞

0
e−ztf(t)dt, (1)

where ℜz > 0 and f(t) may depend on one or several extra parameters. In
some cases, this formulation is obtained after some suitable transformations
of a contour integral in the complex plane, for example through the classical
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saddle point method. For instance, the modified Bessel function Kν(z) of
order ν can be written as:

Kν(z) =

√
π(2z)νe−z

Γ(ν + 1
2)

∫ ∞

0
e−2zt[t(1 + t)]ν−

1

2 dt, (2)

and this expression is valid for ℜ(ν) > −1
2 and ℜ(z) > 0.

When z is real the integrand is exponentially decaying, and for the pur-
poses of numerical evaluation a quadrature rule such as Gauss-Laguerre
should be quite effective for approximating the value of (1). However, if z is
complex (particularly if ℑz is large and/or ℜz is small), then the integrand
will become oscillatory. In this case, an asymptotic expansion in terms of z
can be interesting from a numerical point of view.

The standard procedure for deriving an asymptotic expansion for large
values of z from the integral (1) is either successive integration by parts
(provided that the function f(t) is regular enough) or, more generally, an
application of Watson’s lemma [6], [12]. When applying Watson’s lemma
we suppose that we have a convergent or asymptotic expansion

f(t) ∼
∞
∑

n=0

antλn−1, t → 0+, (3)

where λn+1 > λn for all non-negative n and λ0 > 0, and also that the
integral (1) exists for large enough values of z. Then integration term by
term yields

F (z) ∼
∞
∑

n=0

an
Γ(λn)

zλn

, z → ∞. (4)

This Poincaré asymptotic expansion can be very useful for large values
of z, but its main disadvantage is that in general it will be divergent for
fixed values of z. This situation is due to the fact that the expansion (3)
will typically have a finite radius of convergence (limited by the closest
singularity of f(t) to the origin). Thus, integration from 0 to ∞ in the
variable t in (1) will yield a divergent expression in (4).

In order to circumvent the problem of the divergence of the asymptotic
series, several possibilities have been presented in the literature. One of
them is the use of Hadamard expansions (see [7] and subsequent papers in
the series). Taking into account the location of the singularities of f(t), the
interval [0,∞) in (1) is decomposed into a union of finite intervals, and then
Watson’s lemma is applied in each of them to yield a convergent expansion.
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The terms in the series are no longer Gamma functions, as in (4), but
incomplete Gamma functions, by virtue of the formula:

P (a, z) =
1

Γ(a)

∫ z

0
ta−1e−tdt, ℜa > 0. (5)

The outcome is a convergent approximation consisting of a infinite num-
ber of contributions:

F (z) =
∞
∑

n=0

e−ΩnzSn(z), (6)

where the parameters Ωn depend on the partition of the original interval, and
each Sn(z) is a series involving incomplete Gamma functions as smoothing
factors. For details and numerical examples we refer the reader to [7].

Another modification of the standard asymptotic series gives the so called
factorial series, which have been proposed as approximations of Bessel func-
tions, see [4]. Convergence in a half plane ℜz ≥ ε > 0 can be obtained
through this procedure, and the coefficients can be computed by means of a
recurrence relation, although they are not given explicitly in general. Other
methods are based on interpolation of the integrand together with succes-
sive integration in a similar way as Watson’s lemma, see [5, Sec. 2.4.4] for
a general review.

A different possibility, discussed in [11] and [5], is a modification of the
power series expansion (3), followed by integration term by term. This
gives an expansion analogous to (4), but including confluent hypergeomet-
ric functions instead of inverse powers of z as asymptotic sequence. The
main advantages of this approach with respect to other methods are two:
firstly, the domain of convergence of the modified expansion is larger than
the one of the original series, and in fact in rather general cases the mod-
ified approximation can be shown to be valid for values of z without the
original restriction ℜz > 0 given by the Laplace integral (1). Secondly, the
coefficients of the modified series can be given in closed form in some quite
general cases.

The purpose of this paper is to analyze some features of this modifica-
tion, namely the convergence properties of the modified asymptotic series
and some techniques that can be used to compute the confluent hypergeo-
metric functions involved in the approximation. This is studied in Section
2. As a general example, modified expansions for confluent hypergeomet-
ric functions are considered in Section 3, and as particular cases expansions
for the incomplete Gamma function Γ(a, z) and the modified Bessel function
Kν(z) are studied. In Section 4 we investigate a similar modification applied
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to uniform asymptotic expansions, and we present the function Kν(νz) for
large values of ν as an example.

2 Modified asymptotic series

Consider the Laplace integral

F (z) =

∫ ∞

0
e−zttα−1h(t)dt, (7)

where α > 0, ℜz > 0 and h(t) is analytic in a domain containing the positive
real t axis.

The usual method to obtain an asymptotic expansion of this integral
for large values of z is to expand h(t) as a power series in t and integrate
term by term, but unless h(t) is entire in the complex plane, the resulting
expression will be divergent, as a consequence of integrating in t from (0,∞)
regardless of the (finite) singularities of h(t).

In this section we propose an alternative expansion for h(t), which is
based on a different power series and in general exhibits better behaviour.
The modified asymptotic series does not contain inverse powers of z, but
confluent hypergeometric U functions, that can be efficiently computed by
means of continued fraction representations.

2.1 Construction

First we consider the basic aspects of the construction of the modified asymp-
totic series.

Proposition 2.1 Let h(t) be analytic in a certain domain D ⊂ C, which
contains the origin. If we consider the two following expansions:

h(t) =

∞
∑

j=0

ajt
j, h(t) =

∞
∑

k=0

bk

(

t

1 + t

)k

, (8)

which converge inside D, then it is true that b0 = a0, and for k=1,2,. . .

bk =
k
∑

j=1

aj
(j)k−j

(k − j)!
. (9)

We use the standard Pochhammer symbol

(a)0 = 1, (a)m =
Γ(a + m)

Γ(a)
, m ≥ 1. (10)
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Proof 2.2 The equality a0 = b0 is clear by comparing powers of t of order
0 in both expansions. By using the change of variable s = t/(1+ t) it follows
that for k ≥ 1

bk =
1

2πi

∫

Cs

h(s/(1 − s))

sk+1
ds, (11)

where Cs is a small circle around the origin inside D. Returning to the t
variable we have

bk =
1

2πi

∫

Ct

h(t)(1 + t)k−1

tk+1
dt, (12)

where Ct is a contour around the origin, which again can be taken as a small
circle. By using the first expansion in (8), it follows that

bk =

∞
∑

j=0

ajBj,k, Bj,k =
1

2πi

∫

Ct

tj(1 + t)k−1

tk+1
dt. (13)

We see that Bj,k = 0 if j = 0 and if j > k. Also,

Bj,k =

(

k − 1

k − j

)

=
(j)k−j

(k − j)!
, j = 1, 2, . . . , k, (14)

which proves the result.

We observe that the relation for bk also holds for formal series, so analytic
functions are not really needed in the proof. Alternatively, the result can be
proved by manipulating the series in (8) directly.

Remark 2.1 This modification can be seen as a particular case of a more
general transformation of series, as exposed in [8]. We can write

h(t) =
1

1 − λt

∞
∑

k=0

b̂k

(

λt

1 − λt

)k

, (15)

where λ is chosen in an optimal way, taking into account the singularities
of the function h(t). The coefficients b̂k can be written in a similar form as
bk in (9).

In the examples of Section 3, the optimal value λ = −1/2 seems to
give minor improvements on the convergence of the series with respect to
λ = −1. However, as follows from Scraton’s paper, in more general cases
(such as the uniform expansions that we consider in Section 4) the optimal
value of λ depends on t. This is not convenient when we use the expansion
(15) in integral transforms, because the identification of the terms in the
asymptotic series as known special functions is not possible anymore. For
this reason, in this paper we will only consider the case λ = −1.
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2.2 Asymptotic properties

In this section we will analyze the integrals that result when integrating
term by term the modified power series that we have constructed. For
integer K > 0 consider the partial sum:

hK(z) =

K
∑

k=0

bk

(

t

1 + t

)k

, (16)

then

FK(z) =
K
∑

k=0

bk

∫ ∞

0
e−zttα+k−1(1 + t)−kdt. (17)

These integrals can be written as confluent hypergeometric functions, by
virtue of the integral representation [1, Eq. 13.2.5]:

U(a, c, z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)c−a−1dt, (18)

valid for ℜa > 0, ℜz > 0. Identifying parameters we obtain:

FK(z) =

K
∑

k=0

bkΓ(α + k)U(α + k, α + 1, z), (19)

for ℜz > 0. We note that using the identity [1, Eq. 13.1.29]

U(a, c, z) = z1−cU(a + 1 − c, 2 − c, z), (20)

we can write (19) in the form:

FK(z) = z−α
K
∑

k=0

bkΓ(α + k)U(k, 1 − α, z). (21)

We can show that for large z this series presents nice asymptotic prop-
erties. This follows from the next proposition.

Proposition 2.3 For fixed α > 0, the functions φk(z) := U(k, 1 − α, z),
k = 0, 1, . . ., form an asymptotic sequence when z → ∞ in | arg z| < 3π/2.

Proof 2.4 Following the definition of asymptotic sequence given by Olver
[6, Pg. 25], we need to show that, for all k ≥ 0, φk+1(z) = o(φk(z)) when
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z → ∞, | arg z| < 3π/2. This can be obtained from the asymptotic estimate
[1, 13.5.2]:

U(a, c, z) ∼ z−a, z → ∞, | arg z| < 3
2π, (22)

valid for fixed values of a and c. Therefore:

φk+1(z)

φk(z)
∼ 1

z
, z → ∞, (23)

for k ≥ 0, which proves the result.

Remark 2.2 We point out that this result is not uniform with respect to
the parameter α. We will see later on that large values of this parameter
can cause important numerical problems.

2.3 Convergence

Up to this point, the construction of the modified asymptotic series has
been formal. In this section we investigate the convergence properties of the
approximation.

As it is well known, the radius of convergence of the first series in (8),
say R, is determined by the singularities of the function h(t) (in the complex
plane), in the sense that if the singularity of h(t) that is closest to the origin
is t0, then R = |t0|. If we use the change of variable

s =
t

1 + t
, (24)

then the singularity will be moved from t0 to s0 = t0/(1+ t0). Let us denote
ρ = |s0|. We have the following result:

Proposition 2.5 Let t0 be the singularity of h(t) which is closest to the
origin. With the change of variables (24), it is true that:

• If ρ ≥ 1 then the second series in (8) converges for t > 0.

• If ρ < 1 then the second series in (8) converges for 0 < t < t+, where
t+ ≥ |t0|.

Proof 2.6 The domain of convergence of the series is given by |s| < ρ, that
is |t| < ρ|1 + t|.
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If ρ > 1, this domain is the exterior of the circle

D =

{

t = x + iy :

(

x − ρ2

1 − ρ2

)2

+ y2 =
ρ2

(1 − ρ2)2

}

,

which includes the real axis t > 0.
If ρ = 1, then |t| < |1 + t| holds for t > −1/2.
If 0 < ρ < 1 then the domain of convergence is the interior of D. This

includes the part of the real axis 0 < t < t+, where

t+ =
ρ2

1 − ρ2
+

ρ

1 − ρ2
=

ρ

1 − ρ
.

Now, since 0 < ρ < 1, it follows that |1 + t0| > |t0|, and then

ρ

1 − ρ
=

|t0|
|1 + t0| − |t0|

≥ |t0|.

The following corollary will be useful when dealing with Laplace trans-
forms:

Corollary 2.7 If ρ ≥ 1 then the sequence

FK(z) =

K
∑

k=0

bk

∫ ∞

0
e−zttα−1

(

t

1 + t

)k

dt

is convergent for | arg z| < π
2 , and its limit is

F (z) = lim
K→∞

FK(z) =

∫ ∞

0
e−zttα−1h(t)dt

Proof 2.8 The result follows directly from the convergence of the power
series for h(t), uniformly on compact intervals of (0,∞), when ρ ≥ 1.

In most of the cases that we will consider, the first part of the proposition
can be applied, and the modified series will be convergent.

Remark 2.3 It is important to observe that the convergence of the expan-
sions (19) and (21) can also be established when we have information on the
coefficients bk. From [9, Pg. 81] we have the following estimation for the
terms in the sum (21):

Γ(α + k)U(k, 1 − α, z) ∼ 2(kz)
α

2 e
z

2 K−α(2
√

kz), k → ∞ (25)
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inside the sector −π < arg z < π. For the modified Bessel function we have
the asymptotic relation (see [1, Eq. 9.7.2])

Kµ(z) ∼
√

π

2z
e−z, z → ∞ (26)

inside the sector −3
2π < arg z < 3

2π. So

Γ(α + k)U(k, 1 − α, z) ∼
√

π(kz)
2α−1

4 e
z

2
−2

√
kz, k → ∞. (27)

Combining the information on bk with the large k behavior of the Kum-
mer functions gives the convergence properties of the expansions. We also
note that this analysis can be used to obtain an analytic continuation of F (z)
for values of arg z different from the ones imposed by the Laplace integral
representation (1), that is | arg z| < π

2 .

2.4 Numerical aspects

As can be seen in formulas (19) and (21), the modified asymptotic series
involves confluent hypergeometric functions as the asymptotic sequence. In
this section we will analyze possible strategies for the numerical computation
of these functions.

It is known that the functions fk(z) := U(a+k, c, z) satisfy a three term
recurrence relation of the form:

fk+1(z) + βkfk(z) + αkfk−1(z) = 0, (28)

where αk and βk are rational functions in the parameters a and c and the
variable z. In principle this enables us to generate the sequence of fk(z)
needed for the modified asymptotic series with two initial values, f0(z) and
f1(z).

However, as noted in [11], see also [2] and [5], the function fk(z) is the
minimal solution of the recursion for increasing k, and hence the computa-
tion in the forward direction (increasing k) is numerically ill conditioned.
Instead, the backward direction or equivalently the associated continued
fraction should be used.

The recursion for increasing k reads ([1, Eq. 13.4.15]):

yk+1(z) +
c − 2a − 2k − z

(a + k)(a + k − c)
yk(z) +

1

(a + k)(a + k − c)
yk−1(z) = 0, (29)
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for k = 1, 2, . . ., with initial values y0 and y1(z). A second solution is given
by:

gk(z) =
1

Γ(a + k + 1 − c)
1F1(a + k, c, z), (30)

in terms of the confluent hypergeometric function of the first kind or Kum-
mer function. This is a dominant solution for increasing k.

From the recursion (28) we can construct the associated continued frac-
tion:

fk

fk−1
=

−αk

βk+

−αk+1

βk+1+

−αk+2

βk+2+
. . . , (31)

where for k ≥ 0 we have:

αk = 1, αk+j = (a + k + j − 1)(a + k + j − 1 + c), j = 1, 2, 3, . . . , (32)

βk+j = c − 2a − 2k − 2j − z, j = 0, 1, 2, . . . (33)

Since the continued fraction will give the value of a ratio fk/fk−1, then
it is convenient to compute the series of the form (21):

FK =

K
∑

k=0

dkfk (34)

in the following way (provided that fk 6= 0):

FK = d0f0

(

1 +
d1

d0

f1

f0

(

1 +
d2

d1

f2

f1

(

. . . +

(

1 +
dK

dK−1

fK

fK−1

))))

. (35)

The advantage of this formulation is that it may prevent overflow or
underflow if fk and fk−1 are very large or very small but the ratio is of
moderate size, and it exploits the structure that the coefficients dk have in
most of the cases.

An algorithm for the evaluation of this series could be:

• Choose an integer K, which may be estimated from the terms of the
series (for more details see the discussion in [11]).

• Compute the continued fraction for the ratio rK := fK/fK−1, using
e.g. the modified Lentz-Thompson method [5, Ch. 6].

• The ratios rk can be easily updated once we have rK , since:

rk =
−αk

βk + rk+1
, j = K,K − 1, . . . , 1. (36)
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We observe that the coefficients dk are easily obtained once we know bk,
since dk = bkΓ(α + k) for k ≥ 0. Moreover, d0 = b0Γ(α) and f0 = 1, so
in this setting there is no need for the actual computation of the confluent
hypergeometric functions.

We also point out a potential problem here. The convergence of the
continued fraction (31) to the ratio of U functions is ensured by Pincherle’s
theorem [5], but for large values of the parameter c and small values of k
the convergence can be poor. This phenomenon has been analyzed in [3]
and [5] for several recursions for Gauss and Kummer functions, and it is
related to the fact that the minimal or dominant character of the solutions
can be temporarily reversed for small values of k, resulting in an anomalous
behaviour of both the recursion and the associated continued fraction.

This problem will be present here when the parameter α is large, see
equations (21) and (41). In these cases one possible solution is to consider
uniform asymptotic expansions. This type of expansion is (necessarily) more
complex than the one presented before, but nevertheless it lends itself to a
similar transformation. For an example we refer to Section 4.1.

3 Examples

3.1 The confluent hypergeometric function U(a, c, z)

As an important example, we can derive the modified asymptotic expansion
for the confluent hypergeometric U function itself. Starting from the Laplace
integral (18), if we expand:

h(t) = (1 + t)c−a−1 =
∞
∑

j=0

(

c − a − 1

j

)

tj, (37)

then a standard application of Watson’s lemma gives the known asymptotic
expansion:

U(a, c, z) ∼ z−a
∞
∑

j=0

(a)j(a + 1 − c)j
j!

(−z)−j , (38)

which is valid for | arg z| < 3π/2, see [1, Eq. 13.5.2]. The modification of this
asymptotic expansion, along the lines explained before, gives an expression
of the form (21), with α = a:

U(a, c, z) =
∞
∑

k=0

(a)kbkU(a + k, a + 1, z), (39)
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In this case the coefficients bk can indeed be written in compact form,
namely:

bk = (−1)k
(

a + 1 − c

k

)

=
(c − a − 1)k

k!
, (40)

where we have used the Pochhammer symbols given in (10). Therefore,
using (20) we can write (39) in the form:

U(a, c, z) = z−a
∞
∑

k=0

(a)k(c − a − 1)k
k!

U(k, 1 − a, z), (41)

which may be seen as a modification of the expansion (38).
Regarding convergence of this expansion, we have a straightforward ap-

plication of the results of the preceding section.

Proposition 3.1 The series (39) is convergent for bounded values of a and
for z in | arg z| < π.

Proof 3.2 Since the function h(t) = (1 + t)c−a−1 has a singularity at t0 =
−1, then λ = ∞ and convergence follows from Corollary 2.7 for | arg z| < π

2 .
This domain can be extended to all z 6= 0, inside the sector | arg z| < π, using
Remark 2.3.

We note that the convergence can be also established by means of (27),
together with the fact that bk ∼ kc−a−2 when k → ∞, which follows directly
from (40). Naturally, for complex z, one would expect the convergence to
get slower when z is close to the negative imaginary axis, since in this case

the decay of the exponential term e−2
√

kz is much less pronounced.
As particular cases of the confluent hypergeometric function U(a, c, z)

we have several special functions of importance. In the next sections we
address some examples.

3.2 The incomplete Gamma function Γ(a, z)

We consider the incomplete Gamma function:

Γ(a, z) =

∫ ∞

z
e−tta−1dt = zae−z

∫ ∞

0
e−zt(1 + t)a−1dt, (42)

where we assume that | arg z| < π. The relation with the confluent U -
function is:

Γ(a, z) = zae−zU(1, a + 1, z) = e−zU(1 − a, 1 − a, z), (43)
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see for instance [10, Pg. 186]. Hence, the standard asymptotic expansion
for large z follows directly from (38):

Γ(a, z) ∼ e−zza−1
∞
∑

j=0

(1 − a)j(−z)−j , (44)

when | arg z| < 3π/2. Alternatively, one can expand the function h(t) =
(1 + t)a−1 in powers of t and apply Watson’s lemma. The divergence of this
expansion for fixed values of z is shown in Figure 3.1.

The modified asymptotic series can be obtained from (39):

Γ(a, z) ∼ zae−z
∞
∑

k=0

(a − 1)kU(1 + k, 2, z), (45)

and the convergence of this expansion for | arg z| < π follows from the more
general case in Proposition 3.1.

It is important to note that the parameter a does not appear in the U
functions. However, large values of a will slow down the convergence of the
series (45). This can be seen by considering the estimations (25) and (26),
which yield:

(a − 1)kU(1 + k, 2, z) ∼
√

πz−3/4ez/2

Γ(a + 1)
ka−7/4e−2

√
kz, k → ∞. (46)

The effect of a on the convergence of the modified asymptotic series is
illustrated in Figure 3.1. Indeed, for large values of a we observe that the
approximation is quite poor.

3.3 The modified Bessel function Kν(z)

The modified Bessel function Kν(z), also called MacDonald function, can
be written as:

Kν(z) =
√

π(2z)νe−zU
(

ν + 1
2 , 2ν + 1, 2z

)

, (47)

see for instance [10, Eq. 9.45]. The corresponding asymptotic approximation
follows directly from (41), with parameters a = ν + 1

2 , c = 2ν + 1. Namely,

Kν(z) =

√

π

2z
e−z

∞
∑

k=0

(ν − 1
2)k(ν + 1

2)k

k!
U

(

k,
1

2
− ν, 2z

)

, (48)

13



0 5 10 15 20
−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

K
0 10 20 30 40 50

−10

−8

−6

−4

−2

0

2

K
0 20 40 60 80

−10

−8

−6

−4

−2

0

2

K

Figure 1: Relative error (in log10 scale) in the computation of the incomplete
Gamma, using the standard (solid line) and modified series (dashed line)
with K terms and z = 10.23. Left, a = 1.5, center a = 10.5 and right
a = 40.5.

which is convergent for ν > −1/2 and | arg z| < π, again as a consequence
of Proposition 3.1.

This expansion can also be obtained from the integral representation:

Kν(z) =

√
π(2z)νe−z

Γ(ν + 1
2)

∫ ∞

0
e−2zt[t(1 + t)]ν−

1

2 dt, (49)

which is valid for ℜ(ν) > −1
2 and ℜ(z) > 0, and in turn can be easily

obtained from the standard formula [1, Eq. 9.6.23]:

Kν(z) =

√
π(z

2 )ν

Γ(ν + 1
2)

∫ ∞

1
e−zt(t2 − 1)ν−

1

2 dt. (50)

In Figure 3.2 we illustrate the computation of the modified series for the
function Kν(z) in Matlab for three different values of z, and we plot the
error with respect to the direct evaluation of the Bessel function using the
Matlab internal subroutine. Similarly to what happened with the incomplete
Gamma function, we note that large values of ν give worse results.

3.4 Other examples

These techniques can be applied to several other examples within the family
of confluent hypergeometric functions. For example, by using the following
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Figure 2: Relative error (in log10 scale) in the computation of the Bessel
function Kν(z), using the series involving Kummer U functions. Left, z =
10+11.1i, center z = 50.1+42.5i and right z = 100.1+120.5i. Here ν = 10.1
(solid line) and ν = 20.1 (dashed line).

identities [1, Eq. 9.6.4]:

H(1)
ν (z) =

2

πi
e−

νπi

2 Kν

(

ze−
πi

2

)

, −π

2
< arg z ≤ π, (51)

H(2)
ν (z) = − 2

πi
e

νπi

2 Kν

(

ze
πi

2

)

, −π < arg z ≤ π

2
, (52)

it is possible to derive the modified asymptotic expansions for large z corre-
sponding to the Hankel functions (and hence to the standard Bessel functions
Jν(z) and Yν(z)):

H(1)
ν (z) =

√

2

πz
eiz− νπi

2
−πi

4

∞
∑

k=0

(ν − 1/2)k(ν + 1/2)k
k!

U
(

k, 1
2 − ν,−2iz

)

,

(53)
which is valid for −π

2 < arg z < π, and

H(2)
ν (z) =

√

2

πz
e−iz+ νπi

2
+ πi

4

∞
∑

k=0

(ν − 1/2)k(ν + 1/2)k
k!

U
(

k, 1
2 − ν, 2iz

)

,

(54)
for −π < arg z < π

2 .
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Other examples are furnished by the Weber parabolic cylinder functions,
see [1, Ch.19]. Using [10, Eq. 7.21]

U(a, z) = 2−3/4−a/2e−z2/4z U
(

3
4 + 1

2a, 3
2 , 1

2z2
)

, (55)

we get the modified expansion:

U(a, z) = z−1/2−ae−z2/4
∞
∑

k=0

bkU
(

k, 1
4 − 1

2a, 1
2z2
)

, (56)

where

bk =
(3
4 + 1

2a)k(−1
4 − 1

2a)k

k!
. (57)

Once more, large values of a will slow down the convergence of this
modified asymptotic series.

4 Modified uniform asymptotic expansions

As can be seen from the previous examples, one problem with the modi-
fied asymptotic expansions is that, though being convergent in many cases,
they are not uniform with respect to other parameters, such as a for the
incomplete Gamma function and ν for the modified Bessel function. Large
values of these parameters with respect to z will slow down the numerical
convergence.

A way to overcome this difficulty is to use an asymptotic expansion for
large values of the parameters that remains uniformly valid with respect to
z, and then apply a modification similar to the one that we used before. As
an illustrative example, we investigate again the modified Bessel function.

4.1 A modified uniform asymptotic expansion for Kν(νz)

4.1.1 Construction

An asymptotic expansion for large values of ν which is uniform with respect
to z can be found in [1, Eq. 9.7.8]:

Kν(νz) ∼
√

π

2ν

e−νη

(1 + z2)1/4

(

1 +

∞
∑

k=1

(−1)k
uk(t)

νk

)

, (58)

which holds when ν → ∞, uniformly with respect to z such that | arg z| <
π/2. Here,

t =
1√

1 + z2
, η =

√

1 + z2 + log
z

1 +
√

1 + z2
. (59)
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The first coefficients uk(t) are [1, Eq. 9.3.9]:

u0(t) = 1, u1(t) =
3t − 5t3

24
, u2(t) =

81t2 − 462t4 + 385t6

1152
, (60)

and other coefficients can be obtained by applying the formula

uk+1(t) = 1
2 t2(1− t2)u′

k(t) + 1
8

∫ t

0
(1− 5s2)uk(s)ds, k = 0, 1, 2, . . . (61)

This expansion can be obtained in the following way: consider the inte-
gral representation [1, Eq. 9.6.24]

Kν(νz) =
1

2

∫ ∞

−∞
e−νφ(v) dv, φ(v) = z cosh v − v. (62)

When z is real, the function φ(v) has a real saddle point located at
v0 = arcsinh(1/z). We apply the following transformation:

φ(v) − φ(v0) = 1
2φ′′(v0)w

2, sign(w) = sign(v − v0), (63)

where φ′′(v0) =
√

1 + z2 = 1/t and with t as before. This gives

Kν(νz) = 1
2 e−νη

∫ ∞

−∞
e−

1

2
νφ′′(u0)w2 dv

dw
dw, (64)

where η is given in (59). If we expand dv/dw =
∑∞

k=0 ckw
k and integrate

term by term we obtain (58), with

uk(t) = (−1)k(2t)k
(

1
2

)

k
c2k, k = 0, 1, . . . . (65)

An alternative expansion can be obtained as follows. Write

Kν(νz) = 1
2 e−νη

∫ ∞

−∞
e−

1

2
νφ′′(u0)w2

f(w) dw, (66)

where f(w) is the even part of du/dw (considered as a function of w). That
is,

f(w) =
∞
∑

k=0

akw
2k, (67)

where ak = c2k, and the c2k can be computed from the functions uk(t) using
(65). To obtain an alternative expansion we write

f(w) =

∞
∑

k=0

bk

(

w2

1 + w2

)k

. (68)
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The relation between ak and bk is given by (9), and this gives:

Kν(νz) = 1
2e−νη

∞
∑

k=0

bk

∫ ∞

−∞

e−
1

2
νφ′′(u0)w2

w2k

(1 + w2)k
dw. (69)

These integrals can be expressed in terms of the Kummer U−function.
Indeed, using (18):

∫ ∞

−∞

e−
1

2
νφ′′(u0)w2

w2k

(1 + w2)k
= Γ

(

k + 1
2

)

U
(

k + 1
2 , 3

2 , 1
2ν
√

1 + z2
)

. (70)

Therefore, the expansion can be written as follows:

Kν(νz) = 1
2e−νη

∞
∑

k=0

bk Γ
(

k + 1
2

)

U
(

k + 1
2 , 3

2 , 1
2ν
√

1 + z2
)

. (71)

The coefficients bk can be expressed in terms of uk(t), using (65), (9)
and [1, Eq. 9.3.9]. The first few are:

b0 = a0 = 1,

b1 = a1 = 5
24 t2 − 1

8 ,

b2 = a1 + a2 = 385
3456 t4 + 43

576 t2 − 13
128 ,

b3 = a1 + 2a2 + a3 = 17017
248832 t6 + 13783

138240 t4 + 89
230400 t2 − 85

1024 ,

b4 = a1 + 3a2 + 3a3 + a4

= 1062347
23887872 t8 + 979693

9953280 t6 + 83633
1720320 t4 − 159049

4300800 t2 − 2237
32768 ,

(72)

where we recall that t = 1/
√

1 + z2. Although the expressions become
rather cumbersome, we note that, with the aid of symbolic computation
in mathematical software like Maple or Mathematica, it is not difficult to
generate and store a sequence of uk(t) using (61), which can then be used
to compute the coefficients bk.

In Figure 4.1 we give an example of this expansion, taking the first few
terms. We consider the same values of the variable as before (though now
we scale to evaluate at νz) and plot the relative error with respect to Matlab
internal routine for the Bessel K function, for increasing values of ν.

We observe that, as expected, large values of the parameter ν improve
the results. In fact, we have (see (25))

U
(

1
2 + k, 3

2 , ξ
)

∼ 1

Γ(k)
2(kξ)−

1

4 e
1

2
ξK 1

2

(2
√

kξ), k → ∞, (73)
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Figure 3: Relative error (in log10 scale) in the computation of the Bessel
function Kν(νz), using 3 terms (solid line), 4 terms (dashed line) and 5
terms (dashed-dotted line) of the series involving Kummer U−functions.
Left, νz = 1 + i, center νz = 10.1 + 20.5i and right νz = 100.1 + 120.5i.

uniformly with respect to ξ in | arg ξ| < π, where

ξ = 1
2ν
√

1 + z2. (74)

For the modified Bessel function K 1

2

(2
√

kξ) we have the exact relation

K 1

2

(2
√

kξ) = 1
2

√
π(kξ)−

1

4 e−2
√

kξ, (75)

and hence

U
(

1
2 + k, 3

2 , ξ
)

∼ 1

Γ(k)

√

π

kξ
e

1

2
ξ−2

√
kξ, k → ∞, (76)

uniformly with respect to ξ in | arg ξ| < π.

4.1.2 Convergence properties

The domain of convergence of the standard and modified asymptotic ex-
pansions can be analyzed by considering the singularities of the respective
integrands in the complex plane, as shown in Section 2. For simplicity, in
this section we will restrict ourselves to real values of z > 0.

We note that the change of variables (63) introduces singularities of the
function dv/dw in the complex w-plane that we can use to analyze the
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convergence of the series that results from Watson’s lemma applied to the
integral (64). Indeed, the (complex) solutions of (63) are:

vk(z) = (−1)karcsinh
1

z
+ kπi, k = 0,±1,±2, . . . , (77)

the case k = 0 corresponding to the saddle point which is real when z is
real. The next relevant saddle points are w±1, which will give the closest
singularities of dv/dw to the origin in the w variable. A direct manipulation
using (63) yields:

w2
±1 = −4η ± 2πi√

1 + z2
, (78)

where again η is given in (59). Hence, the radius of convergence of the series
obtained by application of Watson’s lemma to (64) is |w±1|.

In Figure 4.2 we show the location of these two saddle points in the
complex w-plane, for z = 0.1, 0.2, . . . , 20:

0 0.5 1 1.5 2 2.5 3 3.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re (w)

Im
 (

w
)

Figure 4: Saddle points w1 (negative imaginary part) and w−1 (positive
imaginary part), for z = 0.1, 0.2, . . . , 20 (from right to left in the graphic).

It is clear from (59) and (78) that when z → 0+ then w2
±1 → +∞∓ 2πi,

and when when z → +∞ then w2
±1 → −4.

We expand in the form:

f(w) =

∞
∑

k=0

bk

(

w2

1 + w2

)k

=

∞
∑

k=0

bks
2k, (79)

where
s =

w√
1 + w2

. (80)
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The singularities of the new variable s can be computed from the ones in
w obtained from (77), and they will determine the domain of convergence of
the modified asymptotic series. More precisely, we can prove the following
result:

Proposition 4.1 If z > 1 then |s±1| > 1.

Proof 4.2 From (80) we obtain:

|s1|2 =

∣

∣

∣

∣

w2
1

1 + w2
1

∣

∣

∣

∣

(81)

If we write w1(z) = reiθ, then the condition |s1|2 > 1 is seen to be
equivalent to ℜw2

1(z) < −1/2. From (78) it follows that

ℜw2
1(z) = − 4η√

1 + z2
= −4 − 1√

1 + z2
log

z

1 +
√

1 + z2
. (82)

As a function of z, ℜw2
1(z) is decreasing for z > 0, and ℜw2

1(z) < −1/2,
which proves the result. The same reasoning can be applied to s−1.

As a corollary we have:

Corollary 4.3 The series (79) is convergent for all real w if z > 1.

Proof 4.4 This is a consequence of Proposition 4.1 and Corollary 2.7.

It is clear that in these results the value z = 1 is set for clarity and can
be refined to be the solution of (82) equal to −1/2. Numerical computation
gives approximately z∗ = 0.753. For z < z∗ we do not have convergence
of the modified expansion, and the series (71) should be understood in an
asymptotic sense.

Other singular points in the w−plane of the mapping in (63) occur when
φ(v) = φ(v0) at points different from the point v = v0 inside the strip
−π < ℑv < π. It is not difficult to verify that this cannot happen when
z > 0.

Figure 4.3 illustrates the location of the points s±1 in the complex plane
for different values of z.

We recall that we can replace the expansion in (68) by a more efficient
modified expansion of the form (15), where we take into account the singu-
larities of f(w). However, as follows from [8] and from the singular points
of f(w), the value of λ for an optimal choice gives an expansion in which λ
depends on w. When we take such an optimal λ a transformation of the uni-
form expansion (58) into an expansion in terms of the Kummer U−functions
is not possible anymore.

21



1 1.1 1.2

−0.1

0

0.1

Re (w)

Im
 (

w
)

Figure 5: Saddle points s1 (negative imaginary part) and s−1 (positive imag-
inary part), for z = 0.1, 0.2, . . . , 20 (from left to right in the graphic).

4.2 A modified uniform asymptotic expansion for the U−function

As a final example, we give a few details for a uniform asymptotic expansion
of the Kummer U−function that generalizes the expansion for Kν(νz) given
in (58).

We write (18) in the form

U(ν + 1
2 , 2ν + 1 + b, 2νz) =

1

Γ(ν + 1
2)

∫ ∞

0
e−νφ(t) (1 + t)b

√

t(1 + t)
dt, (83)

where
φ(t) = 2zt − ln t(1 + t). (84)

It is clear that for b = 0 this U−function can be written in terms of the
modified Bessel function Kν(νz), see formula (47). When z > 0 there is a
positive saddle point:

t0 =
1 − z +

√
1 + z2

2z
. (85)

We have

φ(t0) = 1 − z + ln(2z) + η, φ′′(t0) =
4z2

√
1 + z2

1 +
√

1 + z2
, (86)

where η is given in (59). We apply the transformation:

φ(t) − φ(t0) = 1
2φ′′(t0)w

2, sign(w) = sign(t − t0), (87)
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and obtain

U(ν + 1
2 , 2ν + 1 + b, 2νz) =

e−ν+νz−νη

Γ(ν + 1
2)(2z)ν

∫ ∞

−∞
e−

1

2
νφ′′(t0)w2

f(w) dw, (88)

where

f(w) =
(1 + t)b
√

t(1 + t)

dt

dw
. (89)

Expanding now f(w) =
∑∞

k=0 fkw
k we obtain the asymptotic expansion:

U(ν + 1
2 , 2ν + 1 + b, 2νz) ∼

√

π/ν(1 + t0)
be−ν+νz−νη

Γ(ν + 1
2)(2z)ν(1 + z2)1/4

(

1 +

∞
∑

k=1

Uk(b, z)

νk

)

,

(90)
where

Uk(b, z) =
f2k

f0

2k(1
2 )k

(φ′′(t0))k
. (91)

We have

U1(b, z) = 1
24(−1−3b2z+6b2 +(−3−3b2z+3bz)t+(3bz−6b)t2 +5t3), (92)

where again t = 1/
√

1 + z2 (as in (59)). In the case b = 0 we obtain the
expansion in (58) when we use the estimation

√
2πe−ννν

Γ(ν + 1
2 )

∼ 1 +
∞
∑

k=1

γk

νk
, ν → ∞, (93)

together with the asymptotic identity

(

1 +

∞
∑

k=1

γk

νk

)(

1 +

∞
∑

k=1

Uk(0, z)

νk

)

∼ 1 +

∞
∑

k=1

(−1)k
uk(t)

νk
. (94)
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