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Abstract

We propose in this paper a novel technique for an efficient numerngabaimation
of systems of highly oscillatory ordinary differential equations. In paféc we consider
electronic systems subject to modulated signals. A Filon-type method isg@dfor
use and compared with traditional trapezoidal rule and Runge—Kutta dsetfibe Filon-
type method is combined with the waveform relaxation technique for nomlgyestems.
Preliminary numerical examples highlight the efficacy of this approach.



1 Introduction

Most numerical simulators of electric and electronic ditgusuch as SPICE (Nagel 1975),
as well as general-purpose solvers of ordinary differéetiuations (ODES), like those in
MATLAB, use either multistep or Runge—Kutta methods. This is pyfadequate for a great
majority of ODEs in applications, yet falls woefully shodrfsystems subject to modulated
signals or RF oscillators. In this setting, traditional dueiure approaches can necessitate
the use of minute step-sizes with the consequent outcomeeat (efficiencies and often
impractical simulation times.

Modulation is the process whereby information is transditt a high frequency to en-
able antennae of practical dimensions to be employedaniplitude modulation (AM), the
information signal/envelope is in the form of a low frequgrsinewave,A,, sin w,,t. The
resultant amplitude-modulated signal is therefaigl + m sinwy,t) sinw.t, wherem =
Am/Ac. Another variation of amplitude modulation is tBeuble-Sded Suppressed Carrier
Ap sinwytsinwt. w. = 2w f. is the carrier frequency in rad/s any is its amplitude. In
general AM the information signal is in the KHz range, whhe tarrier signal is in the MHz
range.

In digital modulation the information to be transmitted is a sequence of ones amd,ze
termedbits. The amplitude, frequency or phase of a carrier signal iedatependent on the
bit value. For example, iBinary Phase Shift Keying (BPSK) the modulated signal is of the
form b(t) = cos(wct)x(t), wherez(t) is +A or —A if a ‘1’ or a ‘0’ bit is to be transmitted,
respectively. In digital technologies involving more cdmpformats, such as EDGE, the
information/envelopes have bandwidths in the KHz rangeélexhe carriers are 800MHz and
1800MHz. For evaluation of a bit-error ratio of such an Rigraission, several information
envelope time periods are required, but the step size isrgesieby the underlying carrier
frequency which is significantly higher than the envelogejfrency.

All this motivates the present contribution, which addessthe issue of simulating ODEs
involving very high frequencies and widely varying freqogmanges. In particular, we intend
to demonstrate that Filon-type methods, applied in tandémexponential integrators, result
in increased efficiencies for systems involving signal odely varying frequencies. Similar
techniques have been already investigated for differemtaiscof highly oscillatory ODEs by
Khanamirian (2008).

Some of the results in this paper have been already addréssedhe mathematical
standpoint in (Condon, Déa & Iserles 2008).

2 ODEsand RF systems

The general solution of the ordinary differential equation
y' =Ay+g(ty), t=0,  y(0) =y, (2.1)
can be written using the variation of constants formula eftilowing implicit form,
ot
y(t) = <y + [ A Tg(ry(r) dr 22)
0

In the current paper, the focus is on a specific type of cirauth as the diode rectifier
shown in Fig. 2.1 and on ODEs (2.1) that occur in their modgl{iDautbegovic, Condon &



Brennan 2005). We have focused on such circuits dues tohtgdity nonlinear, yet simple
nature. Two different input signals will be considered, aalague AM-modulated signal and

a digitally-modulated signal.
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Figure 2.1: Diode rectifier circuit.

The governing equation for the circuit in Fig. 2.1 is

do(t)  w(t)
k(b(t)—v(t)) _ 11 — Y

HereC is capacitanceR resistance], is a constant denoting the diode reverse bias current,

b(t) is the input signal and the unknow(t) is the voltage.
Once we apply the variations of constants formula (2.2)¢édQBE (2.3), integrating from

t, tot, 1 = t, + h rather than from the origin, we obtain

Iy [t t—ty
Uny1 = vpe M EO) L RIG[em M (BC) 1] 4 *O/ exp ( — 2t — ko(t) + kb(t) | dt
C i, RC
I
= e/ 1 REgfe /(RO _ 1) 1 D7) (2.4)

where

g(t) = exp (t _Rtgﬂ — ko(t) + kb(t)) and Zlg] = /t/n+1 g(t) dt.

n

If b(t) = e cos¥(t) then the integral in(2.4) is of the form

Tlg) = / T (v ar, 2.5)

n

where

z = ke, f(t,v(t)) =exp [t _Rtg,ﬂ — kv(t)] .

Integrals of similar form have been already investigatec€bydon et al. (2008).



It follows from (Abramowitz & Stegun 1964, p. 376) that

zsm19 +22 12k+1 51n(2k+ 1 ﬂ+22 I2k(z) COSQI<I’L97
k=0 k=1
ercosV )+ QZIk cos kv,

wherel}, is thekth modified Bessel function. Consequently, we can write titegrall[g] in
the form

tna1
Tlg = / £t 0(t))er o7

n

To(2) / "y +221k / b () cos(RO() dE,  (2.6)

n

tn

thereby expressing it as an infinite sum of integrals. Theugiof the highly oscillatory
integrals on the right of (2.6) is that they are amenable tg v&pid and efficient numerical
calculation with Filon-type methods (Iserles & Ngrsett 2D0

Next we consider the more complicated case of analogue tdelmodulation, whereby
b(t) = sin(wyt) sin(wat). The first step is to rewritd(t) in the form
b(t) = 3lcos(@1t) — cos(@at)],

wherew; = w; — wy andws = wy + wy. This allows us to express the integidy] as a
product of two infinite series,

I[g] = -/ttn+1 f(t,v(t)exp (zcost — Lz cosot) dt (2.7)

n

n

_ [IO(;Z)F/:"“ F(t,0(t)) dt + 20y(L2) Zlk (12) /"+l Ft,v(t)) cos(kayt) dt

+210(§z)z(_1)111(gz)/t"+1 F(t, v(8)) cos(lat) di

=1 n

+4ZZ(—1)lIk(%z)Il(%z)/n+1 f(t,v(t)) cos(kwit) cos(lwst) dt.
k=11=1 tn

Since integrals with cosine oscillators can be calculatag efficiently using the methods of
(Iserles & Ngrsett 2005), the above formula can be used asaasre calculatd[g] to high
accuracy. This is not totally straightforward, becausevédues ofk andi for which k&, +10-
vanishes (or is very small) the relevant integral in the d@slim is non-oscillatory. This, in
particular, means that, for rational > 1 andws it is true that

Ilg] ~ To(32)P? / Teeydire Y (DTG / )

n ki>1 n
k&1 +102=0

tne1
+2 3 (—1)lIk(%z)Il(%z)/ Ftv(t) dt+O(w™).
Koo "



However, there is no need to use (2.7) for computationalgaep. Insofar as we are concerned
in this paper, the main importance of this asymptotic exjpenis as a justification of the
Filon-type methods of the next section.

3 Filon-type methods and waveform relaxation

b
] = / FHG(tw) dt (3.1)

be a highly oscillatory integral: more specifically, theillator G oscillates rapidly fotw >
1, while f itself is nonoscillatory. Typical examples of oscillatare G(z, w) = ¢9(*) and
G(z,w) = J,(wx), whereg is some given smooth function, whilg is a Bessel function. The
calculation of (3.1) for large by classical methods (e.g. Gaussian quadrature) is ptivieilyi
expensive, but such integrals can be calculated with velaase using recently developed
methods, in particuldFfilon-type integrators (Iserles & Ngrsett 2005).

The idea underlying Filon-type methods, analysed and yinleed by much mathemat-
ical analysis in (Iserles & Ngrsett 2004, Iserles & Ngrs@@%) and elsewhere, is to replace
the functionf in (3.1) by a polynomial interpolation. Specifically, let

Let

a=c<cp<---<cg=b

be given nodes, each equipped with multiplicitym; > 1. We construct a polynomial of
degreer = > _, my, — 1 such that

p(J)(Ck):f(j)(ck)v jzovla"'alnlk_]-v k:].,?,...,l/.

The Filon-type method for the integral (3.1) is

b
Qrlf] = / p(O)G(tw) dt (3.2)

and it is premised upon the assumption that the integra) €A be calculated explicitly for
polynomial functionf.
The interpolating polynomial can be written explicitly in the form

mkfl

Z f(J) (ck),

k=1 j=0

where eachy, ; is itself a polynomial: as a matter of fact, it is tiardinal polynomial of

Hermite interpolation, a(jz(ck) =1, otherW|sea,(€)( 1) =0foralli =0,1,...,m; — 1,
l=1,2,...,q. Therefore (3.2) can be written in the form
q mip—1 b
=> (@) fD(ck),  where by j(w) = / ok j ()G (t,w) dt.
k=1 j=0 a

The reason why Filon-type methods are so efficient is thaalsléi choice of nodes and
multiplicities results in an exceedingly rapid decay oféner whenv > 1. (The justification



for this is provided by an asymptotic expansion: this is why') is so critical to our work.)
For example, let us considéf(z,w) = 9@, If ¢ # 0in [a,b] thenQr[f] — F[f] ~
O(w™7'), w > 1, wheres = min{my,m,}. In the case whep’ vanishes ina, b], we
must choose each sustationary point as a node of suitable multiplicity, and this ensures
asymptotic decay of the error &(w—") for suitable numbek (Iserles & Narsett 2005).
In general, Filon-type methods possess the intriguing (aost welcome) feature that their
precision increases as frequency of oscillation grows!

The Filon-type method corresponding to (2.6) is

n+t1

Qrlg)=To(2) [ w0yt +2Y i) [ plcosae)dr,  (33)
t k=1 tn

n

wherep(t) interpolates the functioffi(¢, v(¢)).
The infinite series in (3.3) converges very rapidly: sifige:) = i=*J;(iz) andJ(2) ~
(%)k /v 2k (Abramowitz & Stegun 1964, p. 365), it is true that

Ix(2) L (e—z)k eR, k>1
k\Z \/2777 2% ’ z ) )

a hyper-exponential decay. Therefore, we can replace($.3)

n+1

[ N t
Qrlg) =10() [ pOat+2Y 1) [ ple)costhi®)de
t k=1 tn

n

for a relatively small value oV without any ill effect insofar as accuracy is concerned.

Greater challenge is presented by the fact that the unkm@tyfieatures inside the integral
sign —the ODE being nonlinear, the variation of constantsifda (2.4) is implicit. To this end
we usewaveformrelaxation (WR). Several waveform relaxation methods have been developed
in the last few decades, see for example (Miekkala & Nevaalih996, Nevanlinna 1989,
Vandewalle 1993).

The standard form of WR for an ODE of the form (2.1) is

y[O] (t) = y07
Yl (1) = ey, + /

0

t
e(t_T)Ag(Ta y[s—l] (,7_)) d,7—7 s = 1, 2, ceey (34)

and this can be easily generalized to a time-stepping &hgorfromt,, to ¢, 1.
Combining the simplest Filon-type quadrature with (3.4utes in the following iterative



scheme, that needs to be executed within each time step.

)
n+1 nsy
B tn_._l*t t—1, 0
o) = 250, + —llL (= vn),
[1] IO tn+1
oL, = e /(RO 4 R/ (RO) f1]+6/ PO p(t, 510 (1)) dt,
tn
5 tn 1 —t t_tn 1
g = = o

I, [t
vﬂrl = v,e MEO) L RI[e™ "/ (RC) _1] 4 60/ PP Op(t, 5 (1)) dt,
t'Vl
~ tn+1 -1 t— tw 2
52 (t) = 5 Uy, + " LULL,

Thus, the Filon nodes arg = t,, andcs = t,,11, With unit multiplicities at both points: the
linear polynomialp agrees withf (¢, 3(l(t) att = t, andt, ;. The iteration is terminated
oncelv!”l | — o' 1| < TOL, whence we let, ., = ol .

The choice of just two nodes is essential, because the inolas interior points would
have greatly complicated the algorithm. To increase theigign of the algorithm we would

have needed to interpolate to bgtf, v(¢)) and

d _ o) | af (o)
q /(o) = ==+ =g ()

at the endpoints. (Note that can be obtained from using the differential equation.) The
purpose of this paper being an introduction of a new coneafiier than of a fully-fledged,
tested and optimized algorithm, we dwell no more on thaessd restrict ourselves to linear
interpolation.

4 Numerical results

4.1 Amplitude modulation

We commence from the case whé(e) = sin w; ¢ sin wot, with w; = 100 rad/s andv, = 107
rad/s, difference of five orders of magnitude between theasaillation scales. We prescribe
Iy =1,C =1, R=1andk = 40 in Fig. 2.1 and equation (2.3).

Figure 4.1 depicts the exact solution of the ODE — in reaéithpumerical solution with
an exceedingly small step size. It is clear that, at the sochlbe plot, the solution is a
slow-varying wave and the extraordinarily large frequengys not visible. Nonetheless, the
presence of high oscillation is enough to render traditionanerical methods inefficient. In
Figs. 4.2—4 we exhibit the outcome of integrating the ODEhia interval[0, 0.2] with the
constant step size = 2.5 x 10~* and three numerical methods. In each case the numerical
solution is denoted by solid line while, for comparison’gesghe exact solution from Fig. 4.1
features as a dashed line.
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Figure 4.1: The exact solution of the amplitude-modulatgda¢ion withw; = 100, ws =
107, Ip = C' = R = 1 andk = 40.

The standard numerical mechanism to increase accuracygeta higher-order method,
and this is evident from Figs. 4.2 and 4.3. The trapezoidalisuwf order 2, while the Runge—
Kutta method that we used is of order 3. The improvement in@oy is tangible, but the
main conclusion from both figures is that both methods deéixeeedingly poor results.

In comparison, the ‘plain-vanilla’ Filon-type method frdfig. 4.4, using just linear inter-
polation, produces a result which is visually hardly digtirshable from the exact solution. It
is important to realise that the method is not designed téoconto the desiderata of classical
numerical ODE solvers: both order and stability are medag®yin this context. Its efficacy
comes from its good rendering of the asymptotics of highbillzgory components.

Note further that our numerical examples are all using (#mey constant step and they
forego the usual best practice of locally varying step sizeeisponse to an error control
mechanism (Iserles 2008). This, we hasten to say, is notgiimpconsequence of employing
rough-and-ready numerics on a toy example, in a way of alféi#gistudy. Modern all-
purpose ODE software, with error-control and step-varyimeghanism, performs exceedingly
poorly in the presence of highly oscillatory componentseduces the step size to an extent
that renders the solution exceedingly expensive, whilmfaivell short of attaining requested
user tolerance (Condon et al. 2008, Iserles 2002). Ultilpate expect Filon-type methods to
be implemented with error control and variable step sizeabthe present stage our intention
is to demonstrate their superiority in comparison with sileal solvers, and this point (we
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Figure 4.2: The solution of the amplitude-modulated eaqumlly the trapezoidal rule.

believe) is amply made in Figs. 4.2-5.

As an aside, we comment that waveform relaxation convergely fapidly and letting
N = 7 our simulations (without even bothering to check for cogegice) produced perfectly
satisfactory results.

4.2 Digital modulation

As an example of digital modulation we have takét) = z(t) cos wt, wherew = 47 x 10°
rad/s, whilex(t) is an alternating sequence ¢ft and—1 with a bit period of 133 n$. This
is an example for the Binary Phase Shift Keying modulatiahméque. We letly = 100,
C=10"% R=1andk = 1.

The exact solution of the digitally-modulated equationhvitie above parameters is dis-
played in Fig. 4.5. The time scale itself is very short, beea(as evident from the plot on
the left) the rate of change is very substantial even for meitimes. Equally important for
efficient simulation is that observation, evident from tlgaife on the right (which zooms on
an even smaller time-window), that the solution exhibitsemdingly rapid, small-amplitude
oscillations. Such oscillations are invisible in less dethplots but, nonetheless, are bound
to defeat traditional ODE solvers or further depress thejp size.

In Fig. 4.6 we display the errors committed by three numénuethods, all with constant
step sizeh = 2.5 x 10719, applied to the digital-modulation equation: the (seconder)

1in a realistic modek:(t) is random, rather than alternating. However, introducingtsastic component would
have made the comparison of different methods considerably difficeilt.
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Figure 4.3: The solution of the amplitude-modulated eaqumly third-order explicit Runge—
Kutta method.

trapezoidal rule, the standard explicit, third-order ¢hstage Runge—Kutta method and the
Filon-type method with piecewise-linear approximatiod araveform relaxation. The reason
for the choice of the minute step size, roughly of the ordemagnitude oi©® (w*l), is that
traditional methods require it, hence this course of actias unavoidable in this kind of
comparison. Even taking such a tiny step size, it is evident the numerical solution (solid
line) rapidly departs from the exact solution, denoted byashéd line. All accuracy is lost
in even such a short interval! In comparison, the Filon-typethod produces an outcome
visually indistinguishable from the exact solution. Of cgey given the way we constructed
the Filon-type method, this remarkable feature survivegifdeploy substantially larger step
size: in methods designed using asymptotic principlesiteed the step plays a minor role
insofar as accuracy is concerned.

5 Conclusions

This paper presents a preliminary study into an alternéioenique for numerical integration
suitable for systems subjected to high-frequency signilismerical examples confirm the
theoretical expectations on the significant potential tiri=type methods in this setting.
Needless to say, this paper lays no claims to a comprehemsatnent of the subject,
whether from mathematical, electronic engineering orvgmieé engineering point of view,
being merely an introduction to the subject and a feasjbditidy of preliminary ideas. It
expands on the theoretical insight gained from (Condon.e2Gfl8) and we expect it to be
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Figure 4.4: The solution of the amplitude-modulated equmeaby the simplest Filon-type
method, combined with waveform relaxation.

followed by further publications, addressing this impattaubject with greater degree of
detail.
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