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Abstract

We propose in this paper a novel technique for an efficient numerical approximation
of systems of highly oscillatory ordinary differential equations. In particular, we consider
electronic systems subject to modulated signals. A Filon-type method is proposed for
use and compared with traditional trapezoidal rule and Runge–Kutta methods. The Filon-
type method is combined with the waveform relaxation technique for nonlinear systems.
Preliminary numerical examples highlight the efficacy of this approach.
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1 Introduction

Most numerical simulators of electric and electronic circuits, such as SPICE (Nagel 1975),
as well as general-purpose solvers of ordinary differential equations (ODEs), like those in
MATLAB , use either multistep or Runge–Kutta methods. This is perfectly adequate for a great
majority of ODEs in applications, yet falls woefully short for systems subject to modulated
signals or RF oscillators. In this setting, traditional quadrature approaches can necessitate
the use of minute step-sizes with the consequent outcome of great inefficiencies and often
impractical simulation times.

Modulation is the process whereby information is transmitted at a high frequency to en-
able antennae of practical dimensions to be employed. Inamplitude modulation (AM), the
information signal/envelope is in the form of a low frequency sinewave,Am sinωmt. The
resultant amplitude-modulated signal is thereforeAc(1 + m sin ωmt) sin ωct, wherem =
Am/Ac. Another variation of amplitude modulation is theDouble-Sided Suppressed Carrier
Am sinωmt sin ωct. ωc = 2πfc is the carrier frequency in rad/s andAc is its amplitude. In
general AM the information signal is in the KHz range, while the carrier signal is in the MHz
range.

In digital modulation the information to be transmitted is a sequence of ones and zeros,
termedbits. The amplitude, frequency or phase of a carrier signal is varied dependent on the
bit value. For example, inBinary Phase Shift Keying (BPSK) the modulated signal is of the
form b(t) = cos(ωct)x(t), wherex(t) is +A or −A if a ‘1’ or a ‘0’ bit is to be transmitted,
respectively. In digital technologies involving more complex formats, such as EDGE, the
information/envelopes have bandwidths in the KHz range, while the carriers are 800MHz and
1800MHz. For evaluation of a bit-error ratio of such an RF transmission, several information
envelope time periods are required, but the step size is governed by the underlying carrier
frequency which is significantly higher than the envelope frequency.

All this motivates the present contribution, which addresses the issue of simulating ODEs
involving very high frequencies and widely varying frequency ranges. In particular, we intend
to demonstrate that Filon-type methods, applied in tandem with exponential integrators, result
in increased efficiencies for systems involving signal of widely varying frequencies. Similar
techniques have been already investigated for different models of highly oscillatory ODEs by
Khanamirian (2008).

Some of the results in this paper have been already addressedfrom the mathematical
standpoint in (Condon, Deaño & Iserles 2008).

2 ODEs and RF systems

The general solution of the ordinary differential equation

y
′ = Ay + g(t,y), t ≥ 0, y(0) = y0, (2.1)

can be written using the variation of constants formula in the following implicit form,

y(t) = etA
y0 +

∫ t

0

eA(t−τ)
g(τ,y(τ)) dτ (2.2)

In the current paper, the focus is on a specific type of circuit, such as the diode rectifier
shown in Fig. 2.1 and on ODEs (2.1) that occur in their modelling (Dautbegovic, Condon &
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Brennan 2005). We have focused on such circuits dues to theirhighly nonlinear, yet simple
nature. Two different input signals will be considered, an analogue AM-modulated signal and
a digitally-modulated signal.
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Figure 2.1: Diode rectifier circuit.

The governing equation for the circuit in Fig. 2.1 is

I0[e
k(b(t)−v(t)) − 1] = C

dv(t)

dt
+

v(t)

R
. (2.3)

HereC is capacitance,R resistance,I0 is a constant denoting the diode reverse bias current,
b(t) is the input signal and the unknownv(t) is the voltage.

Once we apply the variations of constants formula (2.2) to the ODE (2.3), integrating from
tn to tn+1 = tn + h rather than from the origin, we obtain

vn+1 = vne−h/(RC) + RI0[e
−h/(RC) − 1] +

I0

C

∫ tn+1

tn

exp

(

t − tn+1

RC
− kv(t) + kb(t)

)

dt

= vne−h/(RC) + RI0[e
−h/(RC) − 1] +

I0

C
I[g] (2.4)

where

g(t) = exp

(

t − tn+1

RC
− kv(t) + kb(t)

)

and I[g] =

∫ tn+1

tn

g(t) dt.

If b(t) = ε cos ϑ(t) then the integral in(2.4) is of the form

I[g] =

∫ tn+1

tn

f(t, v(t))ez cos ϑ(t) dt, (2.5)

where

z = kε, f(t, v(t)) = exp

[

t − tn+1

RC
− kv(t)

]

.

Integrals of similar form have been already investigated byCondon et al. (2008).
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It follows from (Abramowitz & Stegun 1964, p. 376) that

ez sin ϑ = I0(z) + 2

∞
∑

k=0

(−1)kI2k+1(z) sin(2k + 1)ϑ + 2

∞
∑

k=1

(−1)kI2k(z) cos 2kϑ,

ez cos ϑ = I0(z) + 2

∞
∑

k=1

Ik(z) cos kϑ,

whereIk is thekth modified Bessel function. Consequently, we can write the integralI[g] in
the form

I[g] =

∫ tn+1

tn

f(t, v(t))ez cos ϑ(t) dt

= I0(z)

∫ tn+1

tn

f(t, v(t)) + 2

∞
∑

k=1

Ik(z)

∫ tn+1

tn

f(t, v(t)) cos(kϑ(t)) dt, (2.6)

thereby expressing it as an infinite sum of integrals. The virtue of the highly oscillatory
integrals on the right of (2.6) is that they are amenable to very rapid and efficient numerical
calculation with Filon-type methods (Iserles & Nørsett 2005).

Next we consider the more complicated case of analogue amplitude modulation, whereby
b(t) = sin(ω1t) sin(ω2t). The first step is to rewriteb(t) in the form

b(t) = 1
2 [cos(ω̃1t) − cos(ω̃2t)],

whereω̃1 = ω1 − ω2 and ω̃2 = ω1 + ω2. This allows us to express the integralI[g] as a
product of two infinite series,

I[g] =

∫ tn+1

tn

f(t, v(t)) exp
(

1
2z cos ω̃1t − 1

2z cos ω̃2t
)

dt (2.7)

= [I0(
1
2z)]2

∫ tn+1

tn

f(t, v(t)) dt + 2I0(
1
2z)

∞
∑

k=1

Ik( 1
2z)

∫ tn+1

tn

f(t, v(t)) cos(kω̃1t) dt

+ 2I0(
1
2z)

∞
∑

l=1

(−1)lIl(
1
2z)

∫ tn+1

tn

f(t, v(t)) cos(lω̃2t) dt

+ 4

∞
∑

k=1

∞
∑

l=1

(−1)lIk( 1
2z)Il(

1
2z)

∫ tn+1

tn

f(t, v(t)) cos(kω̃1t) cos(lω̃2t) dt.

Since integrals with cosine oscillators can be calculated very efficiently using the methods of
(Iserles & Nørsett 2005), the above formula can be used as a means to calculateI[g] to high
accuracy. This is not totally straightforward, because forvalues ofk andl for whichkω̃1±lω̃2

vanishes (or is very small) the relevant integral in the double sum is non-oscillatory. This, in
particular, means that, for rationalω̃1 ≫ 1 andω̃2 it is true that

I[g] ∼ [I0(
1
2z)]2

∫ tn+1

tn

f(t, v(t)) dt + 2
∑

k,l≥1
kω̃1+lω̃2=0

(−1)lIk( 1
2z)Il(

1
2z)

∫ tn+1

tn

f(t, v(t)) dt

+ 2
∑

k,l≥1
kω̃1=lω̃2

(−1)lIk( 1
2z)Il(

1
2z)

∫ tn+1

tn

f(t, v(t)) dt + O
(

ω−1
)

.
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However, there is no need to use (2.7) for computational purposes. Insofar as we are concerned
in this paper, the main importance of this asymptotic expansion is as a justification of the
Filon-type methods of the next section.

3 Filon-type methods and waveform relaxation

Let

F [f ] =

∫ b

a

f(t)G(t, ω) dt (3.1)

be a highly oscillatory integral: more specifically, theoscillator G oscillates rapidly forω ≫
1, while f itself is nonoscillatory. Typical examples of oscillatorsareG(x, ω) = eiωg(x) and
G(x, ω) = Jν(ωx), whereg is some given smooth function, whileJν is a Bessel function. The
calculation of (3.1) for largeω by classical methods (e.g. Gaussian quadrature) is prohibitively
expensive, but such integrals can be calculated with relative ease using recently developed
methods, in particularFilon-type integrators (Iserles & Nørsett 2005).

The idea underlying Filon-type methods, analysed and underpinned by much mathemat-
ical analysis in (Iserles & Nørsett 2004, Iserles & Nørsett 2005) and elsewhere, is to replace
the functionf in (3.1) by a polynomial interpolation. Specifically, let

a = c1 < c2 < · · · < cq = b

be given nodes, eachck equipped with multiplicitymk ≥ 1. We construct a polynomialp of
degreer =

∑q
k=1 mk − 1 such that

p(j)(ck) = f (j)(ck), j = 0, 1, . . . ,mk − 1, k = 1, 2, . . . , ν.

The Filon-type method for the integral (3.1) is

QF[f ] =

∫ b

a

p(t)G(t, ω) dt (3.2)

and it is premised upon the assumption that the integral (3.1) can be calculated explicitly for
polynomial functionf .

The interpolating polynomialp can be written explicitly in the form

p(t) =

q
∑

k=1

mk−1
∑

j=0

αk,j(t)f
(j)(ck),

where eachαk,j is itself a polynomial: as a matter of fact, it is thecardinal polynomial of

Hermite interpolation, α
(j)
k,j(ck) = 1, otherwiseα(i)

k,j(cl) = 0 for all i = 0, 1, . . . ,ml − 1,
l = 1, 2, . . . , q. Therefore (3.2) can be written in the form

QF[f ] =

q
∑

k=1

mk−1
∑

j=0

bk,j(ω)f (j)(ck), where bk,j(ω) =

∫ b

a

αk,j(t)G(t, ω) dt.

The reason why Filon-type methods are so efficient is that suitable choice of nodes and
multiplicities results in an exceedingly rapid decay of theerror whenω ≫ 1. (The justification
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for this is provided by an asymptotic expansion: this is why (2.7) is so critical to our work.)
For example, let us considerG(x, ω) = eig(x). If g′ 6= 0 in [a, b] thenQF[f ] − F [f ] ∼
O

(

ω−s−1
)

, ω ≫ 1, wheres = min{m1,mq}. In the case wheng′ vanishes in[a, b], we
must choose each suchstationary point as a node of suitable multiplicity, and this ensures
asymptotic decay of the error asO(ω−κ) for suitable numberκ (Iserles & Nørsett 2005).
In general, Filon-type methods possess the intriguing (andmost welcome) feature that their
precision increases as frequency of oscillation grows!

The Filon-type method corresponding to (2.6) is

QF[g] = I0(z)

∫ tn+1

tn

p(t) dt + 2

∞
∑

k=1

Ik(z)

∫ tn+1

tn

p(t) cos(kϑ(t)) dt, (3.3)

wherep(t) interpolates the functionf(t, v(t)).

The infinite series in (3.3) converges very rapidly: sinceIk(z) = i−kJk(iz) andJk(z) ∼
(

ez
2k

)k
/
√

2πk (Abramowitz & Stegun 1964, p. 365), it is true that

Ik(z) ∼ 1√
2πk

( ez

2k

)k

, z ∈ R, k ≫ 1,

a hyper-exponential decay. Therefore, we can replace (3.3)by

QF[g] = I0(z)

∫ tn+1

tn

p(t) dt + 2
N

∑

k=1

Ik(z)

∫ tn+1

tn

p(t) cos(kϑ(t)) dt

for a relatively small value ofN without any ill effect insofar as accuracy is concerned.

Greater challenge is presented by the fact that the unknownv(t) features inside the integral
sign – the ODE being nonlinear, the variation of constants formula (2.4) is implicit. To this end
we usewaveform relaxation (WR). Several waveform relaxation methods have been developed
in the last few decades, see for example (Miekkala & Nevanlinna 1996, Nevanlinna 1989,
Vandewalle 1993).

The standard form of WR for an ODE of the form (2.1) is

y
[0](t) ≡ y0,

y
[s](t) = etA

y0 +

∫ t

0

e(t−τ)A
g(τ,y[s−1](τ)) dτ, s = 1, 2, . . . , (3.4)

and this can be easily generalized to a time-stepping algorithm fromtn to tn+1.

Combining the simplest Filon-type quadrature with (3.4) results in the following iterative
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scheme, that needs to be executed within each time step.

v
[0]
n+1 = vn,

ṽ[0](t) =
tn+1 − t

h
vn +

t − tn
h

v
[0]
n+1(≡ vn),

v
[1]
n+1 = vne−h/(RC) + RI0[e

−h/(RC) − 1] +
I0

C

∫ tn+1

tn

ekb(t)p(t, ṽ[0](t)) dt,

ṽ[1](t) =
tn+1 − t

h
vn +

t − tn
h

v
[1]
n+1,

v
[2]
n+1 = vne−h/(RC) + RI0[e

−h/(RC) − 1] +
I0

C

∫ tn+1

tn

ekb(t)p(t, ṽ[1](t)) dt,

ṽ[2](t) =
tn+1 − t

h
vn +

t − tn
h

v
[2]
n+1,

...

(3.5)

Thus, the Filon nodes arec1 = tn andc2 = tn+1, with unit multiplicities at both points: the
linear polynomialp agrees withf(t, ṽ[i](t) at t = tn andtn+1. The iteration is terminated
once|v[r]

n+1 − v
[r−1]
n+1 | < TOL, whence we letvn+1 = v

[r]
n+1.

The choice of just two nodes is essential, because the inclusion of interior points would
have greatly complicated the algorithm. To increase the precision of the algorithm we would
have needed to interpolate to bothf(t, v(t)) and

d

dt
f(t, v(t)) =

∂f(t, v(t))

∂t
+

∂f(t, v(t))

∂v
v′(t)

at the endpoints. (Note thatv′ can be obtained fromv using the differential equation.) The
purpose of this paper being an introduction of a new concept,rather than of a fully-fledged,
tested and optimized algorithm, we dwell no more on that issue and restrict ourselves to linear
interpolation.

4 Numerical results

4.1 Amplitude modulation

We commence from the case whereb(t) = sinω1t sin ω2t, with ω1 = 100 rad/s andω2 = 107

rad/s, difference of five orders of magnitude between the twooscillation scales. We prescribe
I0 = 1, C = 1, R = 1 andk = 40 in Fig. 2.1 and equation (2.3).

Figure 4.1 depicts the exact solution of the ODE – in reality,a numerical solution with
an exceedingly small step size. It is clear that, at the scaleof the plot, the solution is a
slow-varying wave and the extraordinarily large frequencyω2 is not visible. Nonetheless, the
presence of high oscillation is enough to render traditional numerical methods inefficient. In
Figs. 4.2–4 we exhibit the outcome of integrating the ODE in the interval[0, 0.2] with the
constant step sizeh = 2.5 × 10−4 and three numerical methods. In each case the numerical
solution is denoted by solid line while, for comparison’s sake, the exact solution from Fig. 4.1
features as a dashed line.
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Figure 4.1: The exact solution of the amplitude-modulated equation withω1 = 100, ω2 =
107, I0 = C = R = 1 andk = 40.

The standard numerical mechanism to increase accuracy is touse a higher-order method,
and this is evident from Figs. 4.2 and 4.3. The trapezoidal rule is of order 2, while the Runge–
Kutta method that we used is of order 3. The improvement in accuracy is tangible, but the
main conclusion from both figures is that both methods deliver exceedingly poor results.

In comparison, the ‘plain-vanilla’ Filon-type method fromFig. 4.4, using just linear inter-
polation, produces a result which is visually hardly distinguishable from the exact solution. It
is important to realise that the method is not designed to conform to the desiderata of classical
numerical ODE solvers: both order and stability are meaningless in this context. Its efficacy
comes from its good rendering of the asymptotics of highly oscillatory components.

Note further that our numerical examples are all using (the same) constant step and they
forego the usual best practice of locally varying step size in response to an error control
mechanism (Iserles 2008). This, we hasten to say, is not simply the consequence of employing
rough-and-ready numerics on a toy example, in a way of a feasibility study. Modern all-
purpose ODE software, with error-control and step-varyingmechanism, performs exceedingly
poorly in the presence of highly oscillatory components: itreduces the step size to an extent
that renders the solution exceedingly expensive, while falling well short of attaining requested
user tolerance (Condon et al. 2008, Iserles 2002). Ultimately, we expect Filon-type methods to
be implemented with error control and variable step size, but at the present stage our intention
is to demonstrate their superiority in comparison with classical solvers, and this point (we
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Figure 4.2: The solution of the amplitude-modulated equation by the trapezoidal rule.

believe) is amply made in Figs. 4.2–5.
As an aside, we comment that waveform relaxation converged fairly rapidly and letting

N = 7 our simulations (without even bothering to check for convergence) produced perfectly
satisfactory results.

4.2 Digital modulation

As an example of digital modulation we have takenb(t) = x(t) cos ωt, whereω = 4π × 109

rad/s, whilex(t) is an alternating sequence of+1 and−1 with a bit period of 133 ns.1 This
is an example for the Binary Phase Shift Keying modulation technique. We letI0 = 100,
C = 10−4, R = 1 andk = 1.

The exact solution of the digitally-modulated equation with the above parameters is dis-
played in Fig. 4.5. The time scale itself is very short, because (as evident from the plot on
the left) the rate of change is very substantial even for minute times. Equally important for
efficient simulation is that observation, evident from the figure on the right (which zooms on
an even smaller time-window), that the solution exhibits exceedingly rapid, small-amplitude
oscillations. Such oscillations are invisible in less detailed plots but, nonetheless, are bound
to defeat traditional ODE solvers or further depress their step size.

In Fig. 4.6 we display the errors committed by three numerical methods, all with constant
step sizeh = 2.5 × 10−10, applied to the digital-modulation equation: the (second-order)

1In a realistic modelx(t) is random, rather than alternating. However, introducing stochastic component would
have made the comparison of different methods considerably moredifficult.
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Figure 4.3: The solution of the amplitude-modulated equation by third-order explicit Runge–
Kutta method.

trapezoidal rule, the standard explicit, third-order three-stage Runge–Kutta method and the
Filon-type method with piecewise-linear approximation and waveform relaxation. The reason
for the choice of the minute step size, roughly of the order ofmagnitude ofO

(

ω−1
)

, is that
traditional methods require it, hence this course of actionwas unavoidable in this kind of
comparison. Even taking such a tiny step size, it is evident how the numerical solution (solid
line) rapidly departs from the exact solution, denoted by a dashed line. All accuracy is lost
in even such a short interval! In comparison, the Filon-typemethod produces an outcome
visually indistinguishable from the exact solution. Of course, given the way we constructed
the Filon-type method, this remarkable feature survives ifwe deploy substantially larger step
size: in methods designed using asymptotic principles the size of the step plays a minor role
insofar as accuracy is concerned.

5 Conclusions

This paper presents a preliminary study into an alternativetechnique for numerical integration
suitable for systems subjected to high-frequency signals.Numerical examples confirm the
theoretical expectations on the significant potential of Filon-type methods in this setting.

Needless to say, this paper lays no claims to a comprehensivetreatment of the subject,
whether from mathematical, electronic engineering or software engineering point of view,
being merely an introduction to the subject and a feasibility study of preliminary ideas. It
expands on the theoretical insight gained from (Condon et al. 2008) and we expect it to be
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Figure 4.4: The solution of the amplitude-modulated equation by the simplest Filon-type
method, combined with waveform relaxation.

followed by further publications, addressing this important subject with greater degree of
detail.
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(b) Runge–Kutta and (c) Filon-type method.


