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TRANSITORY MINIMAL SOLUTIONS
OF HYPERGEOMETRIC RECURSIONS

AND PSEUDOCONVERGENCE
OF ASSOCIATED CONTINUED FRACTIONS

ALFREDO DEAÑO AND JAVIER SEGURA

Abstract. Three term recurrence relations yn+1 +bnyn +anyn−1 = 0 can be

used for computing recursively a great number of special functions. Depending
on the asymptotic nature of the function to be computed, different recursion
directions need to be considered: backward for minimal solutions and forward
for dominant solutions. However, some solutions interchange their role for
finite values of n with respect to their asymptotic behaviour and certain domi-
nant solutions may transitorily behave as minimal. This phenomenon, related
to Gautschi’s anomalous convergence of the continued fraction for ratios of
confluent hypergeometric functions, is shown to be a general situation which
takes place for recurrences with an negative and bn changing sign once. We
analyze the anomalous convergence of the associated continued fractions for
a number of different recurrence relations (modified Bessel functions, conflu-
ent and Gauss hypergeometric functions) and discuss the implication of such
transitory behaviour on the numerical stability of recursion.

1. Introduction

Three term recurrence relations (TTRRs),

(1.1) yn+1 + bnyn + anyn−1 = 0,

are satisfied by a large number of special functions, including confluent and Gauss
hypergeometric functions.

For computing a solution of a TTRR different strategies should be considered
depending on the asymptotic character of the solution. When the recurrence admits
a minimal solution, fn (limn→∞ fn/gn = 0 for any gn independent of fn), forward
computation of fn (increasing n) is a bad conditioned process, at least asymptot-
ically, and only backward recursion should be considered. Contrary, for dominant
solutions forward recursion is the right choice. A simple recipe for computing with
TTRR would be: if one direction fails, the opposite will usually work well.

This simple recipe is true asymptotically when there exists a minimal solution;
however, some results indicate that it may dramatically fail for finite n. Gautschi’s
anomalous convergence [3] and the instability of certain confluent hypergeometric
recurrences found by N.M. Temme [8] point in this direction.
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880 ALFREDO DEAÑO AND JAVIER SEGURA

Pincherle’s theorem [2] states that a three term recurrence relation (1.1) admits
a minimal solution if and only if the associated continued fraction

(1.2) H(k) ≡ −ak

bk+
−ak+1

bk+1+
−ak+2

bk+2+
· · ·

converges; the continued fraction converges to the ratio of minimal solutions fk/fk−1.
In 1977, W. Gautschi found that the continued fraction H(k) associated to the re-
currence for fn =1F1(a+n; c+n; x) (which is the minimal solution) initially appears
to converge to a value different from fk/fk−1, particularly for large x.

Gautschi’s result and Pincherle’s theorem suggest that there may exist dominant
solutions of the recurrence that behave as a minimal solution transitorily. As we
will see, gn = (−1)nΓ(c+n)U(a+n, c+n, x) is a transitory minimal solution of the
confluent recurrence and, indeed, the approximants of the CF H(k) initially tend
to the ratio gk/gk−1 particularly when x is large.

Far from being a special case, we will show that the existence of transitory min-
imal solutions (for short, pseudominimal solutions) is a quite ubiquitous property.
Other examples are provided by the modified Bessel function recurrence, the recur-
rence satisfied by the confluent family 1F1(a + n; c; x) (the case described in [8]) as
well as some Gauss hypergeometric recursions. We will restrict the analysis to real
variables.

The paper is organized as follows. In Section 2, we reinterpret Gautschi’s anoma-
lous convergence [3] in terms of the existence of transitory minimal solutions. We
identify the minimal solution and a transitory minimal solution which, together
with asymptotic expansions (large x) for these solutions, allow us to obtain ex-
plicit approximations for the accuracy of the continued fraction; we prove that the
smallest relative error when the CF approaches the ratio gk/gk−1 decreases expo-
nentially as x increases. In Section 3 we establish that these transitory behaviours
are common to a wide family of recurrences, which we call symmetrical; the simplest
example is provided by modified Bessel functions. By using the characterization
of symmetrical recurrences and, in particular, the modified Bessel function case,
we identify additional examples of transitory behaviour. In Section 4 we provide
additional examples of recurrences exhibiting transitory behaviour. In 4.1 the in-
stabilities described by N.M. Temme [8] in the recurrent evaluation of the confluent
hypergeometric functions U(a + n, c, x) are explained in terms of the existence of
pseudominimal solutions. In 4.2 we provide examples of continued fractions associ-
ated to Gauss hypergeometric functions and we will obtain Gautschi’s phenomenon
as the confluent limit of a Gauss hypergeometric case. The last section describes
the implications of anomalous transitory behaviours in the numerical computation
through three-term recurrence relations when finite precision arithmetic is used.

In the sequel, the recurrence satisfied by a set of hypergeometric functions yn =2

F1(a + ε1n, b + ε2n; c + ε3n; x) with εi integer numbers (not all equal to zero), will
be named (ε1 ε2 ε3)-recurrence, as done in [4]. The same notation is adopted for the
recurrences for confluent functions M(a + ε1n, c + ε3n, z). Because we will restrict
to |εi| ≤ 1, we will further simplify the notation by writing only the signs of εi.

2. Gautschi’s anomalous convergence revisited

Let us study in detail the case of the recurrence satisfied by yn =1F1(a + n; c +
n; x) ≡ M(a + n, c + n, x) and the associated continued fraction.
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The (+ +) confluent recurrence relation yn+1+bnyn+anyn−1 = 0 has coefficients

(2.1) bn = − (c + n)(1 − c − n + x)
(a + n)x

, an = − (c + n)(c + n − 1)
(a + n)x

,

and two independent solutions are

(2.2) fn = M(a + n, c + n, x), gn = (−1)nΓ(c + n)U(a + n, c + n, x),

where U(a + n, c + n, x) is a second solution of the confluent differential equation
[1, Eq. 13.1.3]. As is well known [7], fn is the minimal solution and therefore
the associated continued fraction H(k) converges to the ratio fk/fk−1. However, as
Gautschi described [3], for large x the CF initially appears to converge to a different
value. The next result [6, Theorem 7.24] gives a specific meaning to this anomalous
behaviour when x is large.

Theorem 1. Let a, c, and k be fixed parameters, c + k − 1 �= 0,−1,−2, . . ., the
continued fraction (1.2) with the coefficients (2.1) corresponds at x = 0 to the ratio

(2.3)
fk

fk−1
= 1F1(a + k; c + k; x)

1F1(a + k − 1; c + k − 1; x)
and converges to this function for x ∈ R.

At x = ∞ the continued fraction (1.2) corresponds to the following ratio of formal
series

(2.4) −c + k − 1
x

2F0(a + k, a − c + 1; ;−1/x)
2F0(a + k − 1, a − c + 1; ;−1/x)

.

Therefore, the ratio

(2.5)
gk

gk−1
= −(c + k − 1)

U(a + k, c + k, x)
U(a + k − 1, c + k − 1, x)

corresponds asymptotically (as x → ∞) to the continued fraction (1.2).

Theorem 1 is essentially Theorem 7.24 of [6], but with the inclusion of the U
functions.

In the first part, correspondence means that the Taylor series around x = 0 of the
approximants of the CF coincides with the (convergent) Taylor series of the ratio of
1F1 confluent series (to higher order as higher approximants are considered). In the
second case, the correspondence for the ratio of 2F0 series is in powers of x−1 and
the formal expansion is divergent. Finally, by asymptotic correspondence we mean
that, by considering the asymptotic expansions as x → ∞, there is correspondence
in powers of x−1. Indeed, the complete asymptotic expansion of the U function can
be expressed in terms of 2F0 divergent series because [1, Eq. 13.5.2]:

(2.6) U(α, γ, x) = x−α

(
J−1∑
j=0

(α)j(α − γ + 1)j

j!
(−x)−j + O(x−J)

)
.

Theorem 1 explains why for large enough x the continued fraction H(k) gives
asymptotic estimations for the ratio of the dominant solutions gn (2.2); however,
because the continued fraction converges to the minimal solution, this can only
be true for a finite number of approximants. An initial apparent convergence to
gk/gk−1 is possible while for a large enough number of approximants the CF will
finally approach fk/fk−1.
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2.1. Error estimation of CFs from solutions of recurrence relations. A
more quantitative description can be obtained by analyzing the relation between
the continued fraction and backward recursion [2, 5, 6]. This will enable us to
estimate the relative accuracy of the CF [5], both for approximating ratios of tran-
sitory minimal solutions (pseudoconvergent regime) and ratios of the true minimal
solution fn.

The m-th approximant to the continued fraction H(k) (1.2) is equal to the
ratio of solutions yk/yk−1 which are obtained from the backward application of the
recurrence relation with starting values

(2.7) yk+m−1 = 1 , yk+m = 0.

This is shown by iterating m times the following relation (which is equivalent to
the application of one backward step of the recurrence):

(2.8)
yk

yk−1
=

−ak

bk + yk+1
yk

.

Let us denote N = k + m. Given an independent pair of solutions of the re-
currence relation {fn, gn}, we can write yN = αfN + βgN = 0, yN−1 = αfN−1 +
βgN−1 = 1. Solving for α and β (which is possible because {fn, gn} is an indepen-
dent pair) the m-th approximant to H(k) = fk/fk−1 reads:

(2.9) Hm(k) =
yk

yk−1
=

αfk + βgk

αfk−1 + βgk−1
=

gNfk − fNgk

gNfk−1 − fNgk−1
.

Therefore, the continued fraction converges if and only if either fN/gN or gN/fN

have a finite limit as N → +∞, which means that the recurrence admits a minimal
solution (essentially, this proves Pincherle’s theorem [5]).

We observe that when |fN/gN | becomes small, the m-th approximant to the
continued fraction approaches the ratio fk/fk−1. In particular, when neither fk

nor fk−1 vanish we can compute the relative error

(2.10) εf
r (k, m) = 1 − fk−1

fk
Hm(k) =

1/rk − 1/rk−1

1/rN − 1/rk−1

where

(2.11) rn ≡ fn/gn.

Notice that rk/rk−1 �= 1 because the solutions fn and gn are independent.
As |rN/rk−1| becomes small the error |εf

r (k, m)| tends to decrease. Of course,
when rN → 0 (fn minimal) we have true convergence to fk/fk−1 as N → ∞.

Even if rN → 0 as N → +∞ (which implies that the CF converges to fk/fk−1),
for a finite number of approximants the CF may appear to converge to another ratio
of solutions (that is, it pseudoconverges). Indeed, it may happen that gn is such
that initially rN (N = k+m) increases and becomes much larger than rk−1; in this
case, the sequence of approximants will initially approach gk/gk−1 and we will say
that gn is transitorily minimal or pseudominimal. The corresponding expression
for the relative error is:

(2.12) εg
r(k, m) =

rk

rN
εf
r (k, m) =

rk − rk−1

rN − rk−1
.
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|εg
r(k, m)| will become small when |rN/rk−1| is large. This expression will be used

for estimating the accuracy of the CF when it approximates a transitory minimal
solution (pseudoconvergence regime).

Unlike minimal solutions, which are unique up to constant factors, transitory
minimal solutions are not unique. However, not all dominant solutions are transi-
torily dominant: if the CF is transitorily converging to the ratio gk/gk−1, because
gk/gk−1 �= fk/fk−1, it will not approach (gk + Cfk)/(gk−1 + Cfk−1) for C large
enough. However, although transitory minimal solutions are not unique, we can
expect that there exists a dominant solution (or several) which is (are) optimally
pseudominimal in the sense that the CF appears to converge to this ratio of domi-
nant solutions with the best possible accuracy.

2.2. Asymptotic error estimates for Gautschi’s pseudoconvergence. Some
asymptotic estimates suffice to predict the convergence properties (transitory or
not) of the associated continued fraction. In [7], asymptotic expansions for large
x are given for the M(a, c, x) and U(a, c, x) functions, which are uniformly valid
with respect to µ = a/x when c and a are comparable in size. The dominant terms
provide the following estimation for rN = fN/gN :

(2.13) rN ∼ (−1)NK xN

Γ(a+N)

(
1 + a+N−1

x

)a−c (
1 + a+N

x

)a−c+1

where K = exx2a−c. Just by considering the factor xN/Γ(a+N) we see that rN will
initially grow rapidly as N increases, particularly for large x, although rN → 0 as
N → ∞. This points toward initial pseudoconvergence to the ratio of U functions
and final convergence to the ratio of M functions.

Figure 1 confirms this situation for the evaluation of the continued fraction as-
sociated to the ratio

(2.14)
f1

f0
=

M(a + 1, c + 1, x)
M(a, c, x)

,

which initially converges to

(2.15)
g1

g0
= −c

U(a + 1, c + 1, x)
U(a, c, x)

,

and shows the accuracy of the errors estimated from Eqs. (2.10), (2.12) and (2.13).

The relative error for pseudoconvergence to the wrong limit, |εg
r(1, m)| decreases

until the maximum rN (N = 1+m) is reached. For large x, it is easy to obtain the
following estimate for the value of N for which |rN | is maximal:

(2.16) N∗ = x − c + O(1/x).

The best relative error for pseudoconvergence will then be attained at the [x− c]
approximant ([x− c] denoting the integer part of x− c). We can estimate the error
when x is large and N = N∗ = x − c using (2.12); this will estimate the best
attainable error in the pseudoconvergent regime. We have

|εg
r(1, m)| =

∣∣∣∣ r1 − r0

rN∗ − r0

∣∣∣∣ ≈
∣∣∣∣ r1

rN∗

∣∣∣∣ ≡ εp,
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Figure 1. Left: the function |rN/r0| is shown for the values a =
12.4, c = 1.3, x = 60. Center: convergence of the successive
approximants Hm of the continued fraction for f1/f0 (Eq. (2.14));
an abrupt change in the value of the CF is observed when |rN/r0| 	
1. Right: the estimated analytical relative error together with the
computed errors obtained from the relative deviation of successive
approximants are shown.

where the approximation holds because |rN∗ | >> |r0|, r1/r0 ∼ −x/a and we con-
sider large x. Using (2.13) we have that as x → +∞,

(2.17) εp ∼
√

π

2
4c−a 1

Γ(a + 1)
xa+1/2e−x(1 + O(x−1)).

From this error analysis and the comparison with the error estimates, we see that
gn = (−1)nΓ(c + n)U(a + n, c + n, x) is a consistent candidate for being optimally
pseudominimal. Indeed, the explicit error estimations agree very well with the
relative deviation between successive approximants (Figure 1, right).

After [x − c] iterations, pseudoconvergence worsens. |rN/r0| starts to decrease
and the successive approximants will eventually start to converge to the ratio of
minimal solutions. A rough estimate of the iteration for which this happens can be
obtained by considering:

|εf
r (1, m)| =

∣∣∣∣ 1/r1 − 1/r0

1/rN − 1/r0

∣∣∣∣ ≈
∣∣∣∣ 1
r0/rN − 1

∣∣∣∣ ≡ ε.

When |rN | < |r0| convergence to f1/f0 begins. Then taking |rN/r0| = 1 in the
estimation rN/r0 ≈ xNΓ(a)/Γ(a+n) gives, for large x, N ∼ ex+(a−1/2) log(x)+
O(1). This is in agreement with the observed numerical behaviour.

A clear and quantitative picture of the “dip-and-peak” effect [3] emerges from
the combined used of the error formulas (2.10) and (2.12) and asymptotic approx-
imations for the solutions of the recurrence. The dip (see Figure 1) is reached at
N = [x−c], where the best accuracy for pseudoconvergence is reached in (2.17) and
the peak corresponds to the value of N for which |rN | ≈ |r0|, when the continued
fraction starts to converge to the ratio of minimal solutions.

Depending on how deep is the dip, accuracy in the evaluation of the ratio of
minimal solutions will suffer loss of accuracy when finite precision arithmetic is
used. Typically, the loss of accuracy in the computation of ratios of minimal solu-
tions will be reciprocal to the attainable accuracy in the pseudoconvergent region.
We postpone this analysis until Section 5. At the moment, we do not consider



TRANSITORY MINIMAL SOLUTIONS 885

restrictions on the available number of significant digits (we use Maple with a high
enough number of digits).

3. Symmetrical recurrences and pseudoconvergence

In this section we will show that the sign properties which take place for the
coefficients of the (+ +) confluent recurrence (negative an coefficient and coefficient
bn which changes sign) are clear signatures of transitory anomalous convergence.
Also, the fact that the pattern of signs of the minimal solution does not change, as
happens for the (+ +) case, is characteristic of transitory behaviour. When both
conditions are satisfied the minimal solution changes its role, causing anomalous
behaviour of the CF.

Perron’s theorem [2] can be used for determining the pattern of signs of minimal
solutions. We write Perron’s theorem [2] in a form suitable for analyzing the cases
for which the theorem gives positive results regarding the existence of a minimal
solution [5].

Theorem 2 (“Intuitive” Perron’s theorem). Let yn+1 +bnyn +anyn−1 = 0, an and
bn being rational functions of n such that b2

n − 4an > 0 for large n; let λ1(n) and
λ2(n) be the solutions of λ2 + bnλ + an = 0. If limn→+∞ |λ1(n)/λ2(n)| �= 1, then
there exists a pair of independent solutions {fn, gn} such that

lim
n→+∞

1
λ1(n)

fn

fn−1
= 1 , lim

n→+∞

1
λ2(n)

gn

gn−1
= 1

and the minimal solution is the one corresponding to the smallest |λ(n)|, namely

λ1(n) = − 2an

bn + sign(bn)
√

b2
n − 4an

.

As a consequence of this result, the characteristic roots λ1(n) and λ2(n) will
have opposite patterns of signs because we will assume that an < 0. This implies
that the minimal solution will be asymptotically alternating when bn < 0 for large
enough n or it will have constant sign if bn > 0. Any dominant solution will have
an asymptotic pattern of signs opposite to that of the minimal solution.

3.1. A canonical example: modified Bessel functions. The simplest exam-
ples of recurrences displaying transitory behaviour are those of the form

(3.1) yn+1 − yn−1 = bnyn , n ∈ N,
bn = −b−n,

or the slightly more general case wn+1 − awn−1 = Bnwn , n ∈ N, a > 0, Bn0+p =
−Bn0−p, p, n0 ∈ N, which can be transformed to the previous case with the changes
wn = an/2yn−n0 , bn = a−1/2Bn−n0 . We will say that this type of recurrences are
symmetrical around n0. The value n0 will play a central role. For simplicity let us
consider (3.1), that is, n0 = 0, a = 1.

All the solutions of the recurrence (3.1) are symmetrical, that is, they verify
yn = y−n for all n ∈ N.

Without loss of generality, we can consider that bn > 0 when n > 0 (if the sign is
opposite, we can consider the recurrence satisfied by (−1)nyn). When Theorem 2
applies, the minimal solution is alternating for large enough n while the dominant
solutions have constant sign. Furthermore, if a solution fn is alternating as n → +∞
((−1)nfn with constant sign), then it is alternating for all n and |fn| decreases as
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Figure 2. Plot of the ratio In+0.1(30)/Kn+0.1(30) as a function
of n ∈ Z. Several regions can be distinguished

|n| increases; this is seen by applying backward recursion for positive n. In addition,
using forward recursion we see that all solutions gn with g0 > 0, g1 > 0 are positive
for all n and therefore dominant; furthermore, |gn| increases as |n| increases.

Therefore, if gn is a positive (or negative) dominant solution, |rn| = |fn/gn|
reaches its maximum at n = n0 = 0 and it is strictly monotonic for n > 0 and
n < 0. This is the type of situation leading to pseudoconvergence of the associated
continued fraction.

For noninteger n − n0 this complete symmetry of the solutions is lost, but the
change of behaviour around n0 may remain. The simplest case is that of modified
Bessel functions. The recurrence relation

(3.2) yν+1(x) − 2ν

x
yν(x) − yν−1(x) = 0

has as a pair of independent solutions Kν(x) and (−1)[ν]Iν(x) the first being domi-
nant and the second minimal as ν → +∞ (a more standard notation for the minimal
solution is eiπνIν(x), but we prefer to use real notation only). For integer orders, as
is true for the general case described above, we have that Kn = K−n and In = I−n

and the transitory behaviour certainly takes place.
Pseudoconvergence takes place for real orders ν as well. The associated continued

fraction, F , reads

(3.3) H(ν) = lim
m→+∞

Hm(ν), Hm(ν) =
1

bν+
1

bν+1+
· · · 1

bν+m−1
,

and br = −2r/x. Although converging to −Iν(x)/Iν−1(x), this CF initially ap-
proaches the ratio Kν(x)/Kν−1(x) when ν is negative. After the N -th approximant,
N = [ν], the continued fraction no longer pseudoconverges to this ratio and, for a
large enough number of approximants m, the sequence {Fm(ν)} starts to converge
to −Iν(x)/Iν−1(x).

Similarly, as for the confluent hypergeometric case, the accuracy reached in the
pseudoconvergent regime can be very high (see Figure 3, center). Three features
take place for the modified Bessel function case which explain the transitory be-
haviour of the CF (3.3): the central coefficient of the recurrence bn changes sign at
some n0 (n0 = 0 in this case), the coefficient an is negative and the minimal solu-
tion keeps the same pattern of signs around n0 (for the particular case of Figure 2,
the minimal solution is alternating when n > −46). These features are also shared
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Figure 3. Left: The successive approximants to the CF of Eq.
(3.3) for ν = −45.9, x = 30. Center: relative deviation |1 −
Hm/Hm−1| between successive approximants for ν = −45.9, x =
30. Right: same but for ν = −59.9, x = 30.

by the confluent case previously described. In the next section we prove that these
three conditions are enough to guarantee the appearance of transitory behaviour.

The transitory behaviour is usually limited to a finite range of parameters. We
will not consider the detailed analysis of the parameter regions for which anoma-
lous behaviour takes place, but we give some indications for the case of modified
Bessel functions. For modified Bessel functions, pseudoconvergence of the CF (3.3)
occurs when ν < 0 but the effect tends to disappear for very negative ν because
−Iν(x)/Iν−1(x) and Kν(x)/Kν−1(x) become very similar; then, the change from
apparent convergence to Kν(x)/Kν−1(x) to true convergence to the ratio of mini-
mal solutions as ν → +∞, −Iν(x)/Iν−1(x), becomes less noticeable. This can be
observed in Figure 3 (center, right), where the peak preceding convergence to the
minimal solution tends to disappear as smaller ν (ν < −50) is considered.

The fact that the ratios −Iν(x)/Iν−1(x), Kν(x)/Kν−1(x) approach each other
for very negative ν /∈ Z can be understood by noting that

(3.4) Iν(x) = I−ν(x) − 2
π

sin νπKν(x)

together with the fact that Kν(x) = K−ν(x) and Iν(x)/Kν(x) → 0, ν → ∞.
Additionally, this also shows that (−1)[ν]Iν(x) is dominant as ν → −∞ for ν non-
integer (the minimal solution as ν → −∞ is (−1)[ν]I−ν(x)).

This gradual disappearance of transitory effects due to a change in the behaviour
of one of the solutions is also observed in the (+ +) confluent recurrence and the
(+ + +) Gauss recurrence to be studied later. The anomalous convergence prop-
erties are then limited to finite range of parameters. Also, anomalous convergence
will disappear if the solutions of the recurrence enter an oscillatory region (as hap-
pens for the (+ 0) confluent recurrence). As commented before, we will not study in
detail which are the ranges of parameters for which pseudoconvergence takes place.

In Section 4, we will use the modified Bessel function case as a reference for
determining the existence of transitory behaviour.

In the next section, we analyze general conditions (shared by the Bessel case)
under which anomalous convergence can be expected.

3.2. General symmetrical recurrences. Let us now consider the more general
case of recurrences yn+1 +bnyn +anyn−1 = 0 with an < 0 and such that bn changes
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sign at n0 (we call this a general symmetrical recurrence). Furthermore, we will
assume that the recurrence has a minimal solution fn as n → +∞.

When Theorem 2 applies, because an < 0, the minimal and dominant solutions
have opposite patterns of signs for large n (one alternating and the other one
with constant sign). When, for large enough n, bn > 0, the minimal solution is
alternating and when bn < 0, it has constant sign. Furthermore, it is easy to check
that the condition an < 0 necessarily holds when the solutions have this pattern of
signs (one with constant signs, the other one alternating).

We will analyze the appearance of the following type of transitory behaviour for
the quantity:

(3.5) Rn ≡ |rn| = |fn/gn|,
fn being minimal.

Definition 1. Given a TTRR with fn the minimal solution as n → +∞, a domi-
nant solution gn is transitorily minimal for n ≤ nt if {Rn} is an increasing sequence
for n ≤ nt (Rn−1 < Rn) and decreasing for n ≥ nt + 1 (Rn > Rn+1).

We will consider that bn may change its sign only once. Provided that the pattern
of signs of the minimal solution does not change, we will check that transitory
behaviour takes place if and only if bn changes sign and that, furthermore, the
change of sign of bn coincides with the change of tendency of Rn = |fn/gn|, gn

being a dominant solution with a pattern of signs contrary to the minimal solution.
Therefore, the behaviour observed for the modified Bessel function and the confluent
(+ +) recurrences are general for symmetrical recurrences.

First, we prove that when transitory minimal solutions exist the change of sign
of bn coincides with the change of behaviour of the functions.

Theorem 3. Let yn+1 + bnyn + anyn−1 = 0 with an < 0. Let fn and gn be
solutions with fixed and opposite pattern of signs (one of them with constant sign
and the other one alternating). If Rn = |fn/gn| reaches an absolute extremum at
n = n0 and it is strictly monotonic when n ≥ n0 and n ≤ n0, then the sign of bn

for n ≤ n0 − 1 is opposite to the sign for n ≥ n0 + 1.

Proof. Let us assume, for instance, that fn is alternating and that Rn reaches a
maximum at n0. We define

(3.6) ∆n =
∣∣∣∣gn+1

gn

∣∣∣∣ −
∣∣∣∣fn+1

fn

∣∣∣∣ =
gn+1

gn
+

fn+1

fn
.

Using the recurrence relation we have

(3.7) ∆n + λn∆n−1 = −2bn,

where

λn ≡ an
fn−1

fn

gn−1

gn
> 0.

Since Rn−1 < Rn for n ≤ n0 and Rn > Rn+1 for n ≥ n0, then ∆n < 0 if
n ≤ n0 − 1 and ∆n > 0 if n ≥ n0. From Eq. (3.7) bn > 0 if n ≤ n0 − 1 and bn < 0
in n ≥ n0 + 1. �

Now, we prove that the existence of transitorily minimal solutions is guaranteed
when the minimal solution of a symmetrical recurrence maintains its pattern of
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signs. We also prove that the change of behaviour of the solutions takes place at
the point where bn changes sign.

In the sequel, we will say that bn (or any other function depending on n) changes
sign at n = n0 if its sign when n ≤ n0 (excluding n = n0 when bn0 = 0) is opposite
to the sign when n ≥ n0 + 1.

Theorem 4. Let yn+1 + bnyn + anyn−1 = 0 be a recurrence such that, for n ≥ n−,
an < 0 and bn changes sign at n0 > n− + 1. Suppose that there exists a solution
fn with fixed pattern of signs for all n ≥ n−, the pattern being alternating if bn < 0
for large n or with constant sign if bn > 0 for large n (fn may be minimal). Let gn

be any solution (not minimal) such that

gn0+1

gn0

= −γ
fn0+1

fn0

, γ > 0,

and let Rn = |fn/gn|, then for n ≥ n− the following holds depending on the value
γ:

(1) If γ > 1, then Rn < Rn0 if n �= n0.
(2) If γ < 1, then Rn < Rn0+1 if n �= n0 + 1.
(3) If γ = 1, then Rn < Rn0 = Rn0+1 if n �= n0, n0 + 1.

Proof. Let us consider the case for which bn < 0 for large n (and therefore fn has
alternating sign). Clearly, it is enough to consider the cases with starting values
G0 ≡ (gn0 , gn0+1) = (|fn0 |, λ|fn0+1|) for the first case and G0 = (λ|fn0 |, |fn0+1|) for
the second, λ > 1.

We analyze the first possibility; for the second case, the proof is similar and the
third case is also obtained in a very similar way. Let us consider the generation of
the solution yn = gn − fn, which, given G0, has starting values yn0 ≥ 0, yn0+1 ≥ 0
(not both equal to zero). Forward recursion,

yn+1 = −bnyn − anyn−1,

for n ≥ n0 + 1 provides positive values for yn, n ≥ n0 + 2 because an < 0, bn < 0
if n ≥ n0 + 1. Similarly, the solution yn = gn + fn is also positive. Therefore,
gn − fn > 0 and gn + fn > 0 when n ≥ n0 + 2, that is, |fn| < gn = |gn| for n > n0

(also for n = n0 + 1 because of the definition of gn0).
Considering now backward recursion,

yn−1 = − 1
an

(bnyn + yn+1),

it is also clear that gn − fn > 0 and gn + fn > 0 when n ≤ n0 − 1. Therefore,
|fn| < |gn| if n < n0.

In summary, Rn = |fn/gn| < 1 = Rn0 for n �= n0, which completes the proof of
the first case. �

When Perron’s theorem is positive with respect to the existence of a minimal
solution, the fn in the previous theorem is necessarily minimal because the rest of
the solutions (all of them dominant) have asymptotically the opposite pattern of
signs. On the other hand, it is easy to see that the minimal solutions do not change
their pattern of signs (at least when Perron’s theorem provides information) for
n ≥ n0.
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Theorem 5. Let yn + bnyn−1 +anyn−1 = 0 with negative an and such that bn only
changes sign at n = n0. Then, if bn < 0 (bn > 0) for n > n0 and the minimal
solution is alternating (of constant sign) for large n, then it is alternating for all
n ≥ n0 (of constant sign).

Proof. Let us, for instance, consider the case bn > 0 for large n, then yn−1 =
−(yn+1 + bnyn)/an, which, for n > n0, is positive if yn and yn+1 are positive. Also
because, if Perron’s theorem applies, the solution is positive (or negative) for large
n, the theorem is proved. �

The situation in which the pattern for the minimal solution is kept for n < n0

depends on the specific coefficients an, bn, but it is a common situation (as the
confluent and the modified Bessel functions case show and as further examples
will illustrate). When this takes place, the minimal solution as n → +∞ no longer
behaves like a minimal solution when n < n0 and transitory minimal solutions exist
(Theorem 4). From the error analysis of Section 2.1, we conclude that when there
exist solutions which are transitorily minimal in n− ≤ n < n0 a CF for yn/yn−1 will
approximate these solutions instead of the minimal solution for the first [n0 − n]
approximants. The next theorem summarizes part of the results of this section
combined with the error analysis of Section 2.1:

Theorem 6. Let yn+1 + bnyn + anyn−1 = 0, an < 0 and bn changing sign at n0.
Let fn be minimal and with a fixed pattern of signs for n ≥ n− (n− < n0 − 1) and
gn a second independent solution such that gn0fn0+1 + gn0+1fn0 = 0. Let k be such
that n− < k < n0. Let |εf

r (k, m)| be the relative deviation from fk/fk−1 of the m-th
approximant of the CF and |εg

r(k, m)| the analogous deviation from gk/gk−1.
Let nk ∈ N be the only value greater that n0 such that Rn

Rk
− 1 changes sign at

n = nk. Then:

(1) If m < nk − k, |εg
r(k, m)| < |εf

r (k, m)|.
(2) If m > nk − k, |εf

r (k, m)| < |εg
r(k, m)|.

The smallest error for pseudoconvergence can be bounded in the following way:

(3.8) min
m

|εg
r(k, m)| ≤ Rk + Rk−1

Rn0 − Rk−1
.

We do not prove this theorem, which is a direct consequence of Theorem 4 and
the error formulas of Section 2.1.

Part of the previous result concerning the behaviour of the approximants of the
associated continued fraction can also be understood from an elementary analysis
of the CF. It is easy to see that when the pattern of signs of the minimal solution
does not change for n < n0 and bn changes sign, the first approximants cannot
initially approach the ratios of minimal solutions. As before, let us suppose that bn

is positive for n ≤ n0 (and negative for n > n0) and therefore the minimal solution
is asymptotically alternating (and we suppose that the pattern is kept for n < n0).
Taking into account that in the successive approximants of the continued fraction
the coefficients an are always negative while the coefficients bn are positive, when
n ≤ n0 the approximants Hm ≡ Hm(k) of the associated continued fraction are

Hm =
αk

βk+
αk+1

βk+1+
. . .

αk+m−1

βk+m−1
,
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with αn = −an > 0, βn = bn > 0 if n < n0. Then, the approximants Hm are
interlaced following the scheme

0 < H2 < H4 < H6 < . . . < H5 < H3 < H1

when m ≤ n0 − k + 1. Therefore, they are all inside a positive interval and they do
not approach the ratios for the minimal solution fn, which is alternating, and then
fk/fk−1 < 0.

Similarly, as the existence of minimal solution is an intrinsic property of the
recurrence relation, we see that the existence of transitory minimal solutions can
be deduced from sign properties of the coefficients of the recurrence relation and of
the minimal solution.

4. Further examples

Pseudoconvergence is a quite ubiquitous property of hypergeometric recursions
and it is not restricted to Gaustchi’s phenomenon [3]. In this section we identify
additional examples of pseudoconvergent transitory behaviour by using the results
of the previous section. Both the confluent and the Gauss hypergeometric recursion
present this type of behaviour. As we will see, Gautschi’s case can be also inter-
preted as the confluent limit of a the Gauss hypergeometric (+ + +) recurrence.

4.1. The confluent recurrences and Temme’s numerical instability revis-
ited. As we studied earlier, the recurrence relation satisfied by fn = M(a + n, c +
n, x), which is minimal when n → +∞, shows pseudoconvergence to a ratio for
transitory minimal solutions, particularly when x is large. This can be understood
by considering the signs of the coefficients of the recurrence satisfied by fn (Eq.
(2.1)).

For a and c positive, the bn coefficient changes sign at n0 = [x − c], and the
coefficient an is negative. This, together with the fact that the solution fn maintains
its sign pattern, shows that transitory behaviour will take place.

The recurrence for large x resembles that of modified Bessel functions. Let us
denote λ = x + 1 − c and let us shift n by considering the replacement ŷn = yn+λ,
then ŷn satisfies the recurrence

(4.1) ŷn+1 + b̂nŷn + ânyn−1 = 0

with

b̂n =
n

x
φ(n, x) , ân = −n + x

x
φ(n, x) , φ(n, x) =

(
1 +

a − c

n + x + 1

)−1

.

Therefore, b̂n(x) = n
x (1+O(x−1)) and ân(x) = −1+O(x−1) which, in first order, is

essentially the recurrence for modified Bessel functions. Thus, for large enough x,
we can expect noticeable transitory behaviour for ŷn around n = 0; equivalently, we
can expect transitory behaviour around n = n0 for fn and gn, with a reversion in
their roles. Thus, the continued fraction for the ratio of minimal solutions fn/fn−1

will display anomalous convergence when n < n0 as we have already shown in
Section 2 (and similarly as happens for the continued fraction for modified Bessel
functions, Iν(x)/Iν−1(x), when ν < 0).

The (+ +) recurrence is just one of the various hypergeometric recursions where
this transitory behaviour takes place. Also the recurrence for the set of functions
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yn = M(a + n, c, x) presents this type of behaviour, indeed, the recurrence has
coefficients

(4.2) bn = −2n + 2a + x − c

a + n
, an =

a + n − c

a + n
.

The coefficient an is negative when c > a + n; keeping this behaviour for a large
range in n requires c large. The bn coefficient changes sign at n0 = [(c−x−2a)/2].
A second solution is fn = Γ(1 + a + n − c) U(a + n, c, x). Perron’s theorem is
inconclusive with respect to the existence of minimal solutions. From asymptotic
information, it is easy to see that fn is minimal and gn is dominant [8]. We observe
that, around n0, gn is positive and fn alternating. Therefore, transitory behaviour
around n0 will take place.

As before, we can relate this case to modified Bessel functions. The shifted
solutions ŷn = yn+λ, λ = (c − x − 2a)/2, satisfy a new recurrence (4.1) with
coefficients

(4.3)
b̂n = − 4n

c−x+2n = −4n
c (1 + O(c−1)),

ân = − c+x−2n
c−x+2n = −1 + O(c−1),

and for large c the recurrence is similar to the modified Bessel functions case.
Transitory behaviours will occur around n0 and the associated continued fraction
will display pseudoconvergence to the wrong limit, particularly for large c.

This also means, as happens with the Bessel functions and with the (+ +) recur-
rence, that, for values smaller than n0 the minimal solution will cease to behave as
minimal and that for such values of n backward, recurrence for the minimal solu-
tion will be badly conditioned, at least transitorily. Similarly, forward recursion for
certain dominant solutions will be badly conditioned. In Section 5 we will consider
the problem of the condition of the recurrences in more detail. These problems
were already noticed by N. M. Temme [8] in connection with the computation of
the confluent function U(a, c, x).

Unlike for the (+ +) case, we will not analyze in detail the degree of pseudo-
convergence. We postpone this type of analysis, also for the Gauss hypergeometric
recursions, for a later paper. Numerical experiments show that the set of functions
gn = M(a+n, c, x) is a transitorily minimal solution companion of the minimal so-
lution fn = Γ(1+a+n−c)U(a+n, c, x), as Figure 4 illustrates. Notice that, indeed,
the accuracy of the continued fraction is governed by the value of |rN | = |fN/gN |.

Let us notice that limn→+∞ an = 1 > 0, which means that the negativity condi-
tion for an coefficient is violated for large enough n. However, what is important
is that the condition an < 0 is met in a wide range of n-values around n0, which is
the case when c is large. This, example, however, is indicating that the condition
an < 0 can be relaxed.

4.2. The Gauss hypergeometric case. Transitory behaviour also takes place
for recurrences satisfied by families of Gauss hypergeometric functions yn =2F1(a+
ε1n, b + ε2n; c + ε3n; x) with εi integer numbers (not all equal to zero).

In [4], the existence of minimal solutions in the complex plane was investigated
when |εi| ≤ 1. It was shown that all the possible cases are reducible to four cases;
the cases selected as representative were (+ + 0), (0 0 +), (+ + −) and (+ 0−). As
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Figure 4. Left: the function rN is shown for the values a = 4.4,
c = 60.3, x = 0.3. Center: successive approximants of the con-
tinued fraction. Right: the relative deviation between consecutive
approximants.

we will next see, the recurrence (0 0 +) (or related cases like (+ + +)), (+ + −) and
(+ 0−) are candidates for the appearance of transitory behaviour and they indeed
show pseudoconvergence of the associated CF. We will mainly concentrate on the
recurrence (+ + +) which has as a limiting case the (+ +) confluent hypergeometric
recursion (that is, Gautschi’s pseudoconvergence).

The Gauss hypergeometric functions satisfy recurrence relations with coefficients
an and bn with finite limits as n → ±∞. Let us denote α = limn→+∞ an and
β = limn→+∞ bn. From Perron’s theorem, the recurrence admits a minimal solution
when the roots λ1, λ2 of the characteristic equation λ2 + βλ + α = 0 have different
modulus.

Of the four basic cases, only one has a value α which is positive for all real x,
namely, the recurrence (+ + 0). Because we are interested in the cases for which
an < 0, we will not consider this recurrence; however, as we already noticed for the
confluent (+ 0) recurrence, it is not necessary that an < 0 for all n but only that this
holds around the change of sign for bn. The other three recurrences verify α < 0 in
(0, 1). Furthermore, in the three cases, the curves in the complex plane |λ1| = |λ2|
(which divide the complex plane in disjoint regions with different minimal solutions)
intersect the interval (0, 1). These intersection points are x0 = 1/2 for the (0 0 +) (or
the related (+ + +) recurrence), x0 = (−5+3

√
3)/4 for (+ + −) and x0 = 3−2

√
2

for (+ 0−). Therefore, these recurrences have the following form:

(4.4) yn+1 + (f(x) − g/n + O(n−2))yn + (a + O(n−1))yn−1 = 0,

with f(x0) = 0, a < 0; g is a function of all the parameters (except n). The
coefficient bn changes sign at n0 	 g/f(x) which will be large if x is close to x0.
Therefore, for x close enough to x0 the shifted solutions ŷn = yn+n0 verify

(4.5) ŷn+1 + n
f(x)
n0

(1 + O(n−1
0 ))yn + a(1 + O(n−1

0 ))yn−1 = 0

for |n| << |n0|. This is, again, similar to the modified Bessel function case, and
transitory behaviour leading to pseudoconvergence can be expected.

In this paper we will not describe in detail the (+ + −) and (+ 0−) cases, but
later we provide numerical evidence for transitory behaviour. We only describe in
detail the more simple case of the (+ + +) recurrence. This case is easy to analyze
and recovers Gautschi’s anomalous convergence by means of a confluent limit.
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4.2.1. The Gauss (+ + +) recurrence. For simplicity, we consider a recurrence
equivalent to (+ + +), namely, the recurrence relation satisfied by the set

y1(x) =
1

Γ(c + n) 2F1

(
a + n, b + n

c + n
; x

)
.

The recurrence relation has coefficients

(4.6) an =
1

x(x − 1)(a + n)(b + n)
, bn =

((a + b + 2n − 1)x − c − n + 1)
x(x − 1)(a + n)(b + n)

.

We choose the following pair of solutions for x ∈ (0, 1):

(4.7) y1,n(x) =
1

Γ(c + n) 2F1

(
a + n, b + n

c + n
; x

)

and

(4.8) y4,n(x) =
(−1)n

Γ(a + b + 1 − c + n) 2F1

(
a + n, b + n

a + b + n + 1 − c
; 1 − x

)
.

The numbering of solutions is the same as in [4] (but with the extra 1/Γ(c+n)).
It was shown [4] that the function y1,n(x) is minimal if x < 1/2, while the function
y4,n(x) is minimal if x > 1/2. At x = 1/2, where Perron’s theorem is inconclusive,
it is easy to check explicitly the character of the solutions. Given

(4.9) yn(d, x) ≡ 1
Γ(d + n) 2F1

(
a + n, b + n

d + n
; x

)
=

∞∑
k=0

(a + n)k(b + n)k

k!Γ(d + n + k)
xk

and taking into account that

(4.10) lim
p→+∞

Γ(p)
Γ(p + ε)

= 0 if ε > 0,

we have that, if d1 > d2, then

(4.11) lim
n→+∞

yn(d1, x)
yn(d2, x)

= 0

for x ∈ (0, 1). Now, because |y1(1/2)| = yn(c, 1/2) and |y4(1/2)| = yn(a + b + 1 −
c, 1/2), then for x = 1/2 and defining

(4.12) λ = a + b + 1 − 2c

we have:
(1) If λ > 0, y1,n(1/2) is dominant and y4,n(1/2) minimal.
(2) If λ < 0, y4,n(1/2) is dominant and y1,n(1/2) minimal.
(3) If λ = 0, there is no minimal solution because y4,n(1/2) = (−1)ny1,n(1/2).

In any case, {y1,n(x), y4,n(x)} is a numerically satisfactory pair in (0, 1).
We observe that an < 0 if x ∈ (0, 1), when a+n > 0, b+n > 0. In addition, the

coefficient bn changes sign at

(4.13) n0 =
c − 1 − (a + b − 1)x

2x − 1
= −1

2

(
(a + b − 1) +

λ

2x − 1

)
.

When λ is positive, n0 becomes larger as x approaches 1/2 with values smaller
than 1/2; contrary, when λ < 0 and x → 1/2+, then n0 → +∞.
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Figure 5. Left: Plot of |rN/r0| (rN = fN/gN , fN = y1,N ,
gn = y4,N ) for a = 20, b = 15.5, c = 0.6, x = 0.4. Center: succes-
sive approximants of the associated CF. Right: relative deviation
between successive approximants.

Considering, in particular, the case λ > 0, this is consistent with the fact that
y1,n(1/2) is dominant and y4,n(1/2) minimal while for x < 1/2 their asymptotic
behaviour is the opposite: y1,n(x) is minimal and y4,n(x) dominant.

This clarifies the appearance of a transitorily minimal solution for λ > 0 and
x < 1/2, but close to 1/2: y4,n(x) is transitory minimal because it is recessive for
forward recursion with respect to y1,n(x) as long as n < n0. The closer x is to 1/2
the larger n0 is and when x = 1/2, then n0 = ∞ and y4,n(1/2) becomes minimal
for all positive n.

Therefore, the transitory behaviour is a remnant of the behaviour at x = 1/2
(also in the case λ < 0). An example exhibiting pseudoconvergence is given in
Figure 5.

In Figure 5, we observe that the reversion of tendency seems to be kept for x not
so close to x = 1/2, of course depending on the values of the parameters; but, of
course, as x approaches 1/2, pseudoconvergence is more noticeable. This explains
the transitory behaviours observed for the (+ +) confluent recursions, as we next
show.

4.2.2. The (+ +) confluent limit. The pseudoconvergence for the Gauss hyperge-
ometric case can be understood as the consequence of the change of behaviour of
the solutions y1,n and y4,n as the line x = 1/2 is crossed.

It is tempting to consider the confluent limit

(4.14) M(a, c, x) ≡ 1F1(a; c; x) = lim
b→∞ 2F1

(
a, b
c

;
x

b

)

relating the minimal solutions of the (+ +) hypergeometric recurrence fn (Eq.
(2.1)) with the minimal solution of the Gauss recurrence (+ + +) for 0 < x < 1/2,
y1,n(x) (Eq. (4.7), but without the factor 1/Γ(c + n)),

(4.15) fn(x) = lim
b→+∞

y1,n(x/b).

We follow the notation yi,n(x) of [4].
Using well known identities satisfied by Gauss hypergeometric functions a second

solution of the recurrence satisfied by y1,n, y4,n can be written:

(4.16) y4,n =
(−1)nx−(a+n)Γ(c + n)
Γ(a + b + 1 − c + n) 2F1

(
a + n, a + 1 − c

a + b + n + 1 − c
; 1 − 1

x

)
.
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Now, considering the formal identity,

(4.17) lim
c→∞ 2F1

(
a, b
c

; cz
)

= 2F0(a, b; ; z),

which is true term by term but leads to a divergent series, we have, formally,

(4.18)
lim

b→∞

y4,n(x/b)
y4,n−1(x/b)

= − c+n−1
x

2F0(a+n,a+1−c;;− 1
x )

2F0(a+n−1,a+1−c;;− 1
x )

∼ gn(x)/gn−1(x) as x → +∞,

where gn is the second solution (dominant) of the (+ +) confluent recurrence (Eq.
(2.2)).

This explains the behaviour for the (+ +) confluent recurrence in terms of the
Gauss (+ + +) recurrence. When considering the confluent limit b → +∞ in
(4.15) and (4.18), the transitory behaviour for the Gauss functions close to x = 1/2
transforms to transitory behaviour for x large. The minimal solution is the confluent
limit of the minimal solution for the Gauss case, while the transitorily minimal
solution is the confluent limit of the corresponding transitory solution for the Gauss
case. From (4.13), the change of behaviour takes place at

lim
b→+∞

n0(x/b) = lim
b→+∞

c − 1 − (a + b − 1)x/b

2x/b − 1
= x + 1 − c.

For the Gauss case, the identification of a pseudominimal solution for n < n0

was quite obvious: the dominant solution which becomes minimal at the transition
point x = 1/2 is pseudominimal. A corresponding selection (of course, not unique)
for the confluent case now becomes also obvious by taking the confluent limit. Not
all cases discussed in this paper are equally clear, particularly the confluent (+ 0)
recurrence. For the other two Gauss cases, it appears that similar arguments as for
(+ + +) hold while for the Bessel case the identification of a transitory minimal
solution was immediate.

4.2.3. Other Gauss recurrences. In this paper, we do not consider a detailed anal-
ysis of the recurrences (+ 0−) and (+ + −). Numerical experiments show that, in-
deed, transitory behaviour is present for both recurrences. For example, for (+ 0−)
we have considered the minimal solution on the left of x0 = 3 − 2

√
2 (denoted by

y2,n in [4]), and the minimal solution on the right (denoted by y3,n); convergence
to the ratio of dominant solutions y3,n with more than double precision accuracy
for the values x = x0 − 0.01, a = 2.5, b = 6.8, c = 6.5 is reached with less than
50 iterations; only after 600 iterations does the CF start to converge to the ratio
of minimal solutions y2,n/y2,n−1. The y3,n solution appears to be pseudominimal
for x < x0 and close to x0 = (−5 + 3

√
3)/4. Experiments also show that for the

(+ + −) similar results (for the corresponding solutions y2,n and y3,n in [4]) can
be obtained, for example, for the set a = 23.5, b = 22.8, c = 10, x = x0 − 0.01:
better than double precision for the pseudoconvergence regime with less than 40
iterations, convergence to the ratio of minimal solutions after 200 iterations. The
detailed analysis of these cases will be considered in later papers.

5. Error analysis for finite precision arithmetic

A problem related to those of convergence and pseudoconvergence of the asso-
ciated continued fraction are the problems of condition of the recurrence relation
and numerical stability for finite precision arithmetic.
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The convergence of the continued fraction associated with a TTRR means that
the recurrence admits a minimal solution. As discussed before, the convergence of
the continued fraction is a consequence of the fact that the ratios of the numerical
solutions for the TTRR, yk, are such that the ratios yk/yk−1 approach the ratios
fk/fk−1 when applying backward recurrence starting for any values of yN and
yN−1 (not both equal to 0) for high enough N >> k. This implies that backward
recursion for a minimal solution is a well conditioned process.

Similarly, forward recursion is well conditioned for dominant solutions and, for
any numerical starting values yn, yn−1 (with ynyn−1 �= 0) we have that

(5.1) lim
k→+∞

yk/yk−1

gk/gk−1
= 1,

where gk is a dominant solution. For forward recursion, all numerical solutions be-
come dominant for large enough orders k. Forward recursion for minimal solutions
should never be used.

This, of course, does not mean that only this asymptotic information is enough
for a stable application of a TTRR because, as we have analyzed, the behaviour
for finite orders may be opposite to the asymptotic behaviour when the central
coefficient in the TTRR changes sign. This may result, for instance, in a loss of
precision for the forward (backward) evaluation of dominant solutions (minimal),
at least transitorily.

We will first study the possible loss of precision both in the ratios of solutions of
consecutive orders yk/yk−1, focusing on the backward computation of the minimal
solution (equivalent to the evaluation of the associated the CF). Finally, we study
the errors for the computation of numerical values of the solution yn, particularly
for pseudominimal solutions.

As in the rest of the article, we will consider recurrence relations

yn+1 + bnyn + anyn−1 = 0

with bn changing sign at n0 and such that all conditions are met which guarantee
the appearance of anomalous behaviour.

5.1. Errors in the numerical evaluation of the continued fraction. Let us
first consider the backward evaluation of fk/fk−1 being fn the minimal solution
and starting from fn, n = N, N + 1, N > n0; this is equivalent to the computation
of the m-th approximant of the associated CF (m = N − k). Backward recursion
is well conditioned for n > n0 and then we can assume that the numerical solution
yn, n = n0, n0 +1 is accurately computed. When fixed precision arithmetic is used,
we have

(5.2) yn = ε1rn0gn + (1 + ε2)fn, n = n0, n0 + 1

where ε1 and ε2 are of order machine-ε and gn is dominant but transitorily minimal
(for n ≤ n0). Then, because Rn = |rn| = |fn/gn| decreases as n < n0 decreases,
backward recurrence for n < n0 increases the unwanted component gn. The relative
deviation of yk/yk−1 from the ratio of minimal solutions can then be bounded as
follows:

(5.3) |εk| ≡
∣∣∣∣1 − yk

yk−1

fk−1

fk

∣∣∣∣ > Fk
|1 − rk−1/rk|
|1 + ε2| + Fk

≈ Fk
Ck

1 + Fk
,
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where

(5.4) Fk = |ε1|
Rn0

Rk−1
,

and Ck = |1− rk−1/rk| = 1+Rk−1/Rk ≈ 1 when fn and gn have opposite patterns
of signs; in any case, Ck �= 0 because fn and gn are independent solutions.

The accuracy is essentially determined by the factor Fk and the smaller k is the
larger the loss of accuracy. Given the equivalence between backward computation
of ratios and approximants of the continued fractions we deduce that the accuracy
reachable for the evaluation of fk/fk−1 is approximately machine-ε multiplied by
Rn0/Rk−1; because of the monotonicity, the loss of accuracy increases when smaller
values of k, k < n0, are considered. Notice also that the best accuracy reachable in
the pseudoconvergent region is well approximated by Rk/Rn0 . Therefore, the loss
of accuracy in the computation of ratios of minimal solutions is approximately the
inverse of the attainable accuracy in the pseudoconvergent region. When the CF
pseudoconverges with the full precision available in the computer, we can expect
total loss of accuracy for the computation of ratios of minimal solutions from the
CF, no matter how many approximants are considered.

5.2. Errors in the numerical computation of yn. Let us consider the forward
numerical evaluation of the pseudominimal solution starting with n < n0. We take
the starting numerical values yn 	 gn, n = m, m − 1, m < n0, which we write

(5.5) yn = ε1fn + (1 + ε2)rmgn,

ε1, ε2 being small numbers (of order machine-ε). Then, if Rn = |fn/gn| initially
increases, loss of precision in the forward evaluation of the dominant solution will
take place. Furthermore, for finite precision arithmetic all the accuracy will be lost
when

(5.6) Rm/Rn < |ε1| 	 ε,

ε being machine-ε, because the second term in (5.5), that is, the term corresponding
to the solution we intend to compute, becomes smaller than the first one. This is
shown in Figure 6, where loss of precision in the forward evaluation of a dominant
(transitorily minimal) solution is observed for n < n0. We compute the recurrence
using Fortran in double precision and compare it with the results produced by
direct computation using Maple.

As illustrated in Figure 6, when not all the accuracy is lost at n = n0, the
accuracy in the results is regained for sufficiently large n (left figure, solid line).
Furthermore, when the results for the dominant solution are totally inaccurate
around n = n0, accuracy can also be regained, at least partly (dotted line).

Notice that the ratios yn/yn−1 in fact converge to gn/gn−1 as n → +∞; therefore,
the loss of precision, if any, is due to loss of significant digits in a global factor. This
can be understood by writing the numerical values yn0 , yn0+1 as a combination of
the independent pair {fn, gn}:

(5.7)
(

yn0

yn0+1

)
=

1
Cn0 [f, g]

[
Cn0 [y, g]

(
fn0

fn0+1

)
+ Cn0 [f, y]

(
gn0

gn0+1

)]
,
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Figure 6. Left: relative errors for the forward computation of the
transitorily minimal solution gn = (−1)nΓ(c + n)U(a + n, c + n, x)
for a = 0.3, b = 0.8. x = 31 for the solid line and x = 51 for
the dotted line. εr = |1 − gF

n /gM
n | where gF

n are values computed
with Fortran in double precision (ε ≈ 2.2 10−16) and gM

n are values
computed with 30 digits in Maple. Right: same for the minimal
solution fn = M(a + n, c + n, x). Parameters: a = 0.3, b = 0.8,
x = 31.

where the Casorati determinants are given by

(5.8) Cn0 [v, w] ≡
∣∣∣∣ vn0 wn0

vn0+1 wn0+1

∣∣∣∣ .

Then, if |rn| = |fn/gn| initially increases because fn is transitorily dominant for
n < n0, we will have that the numerical solution (yn0 , yn0+1) will be nearly collinear
to (fn0 , fn0+1) when |rm/rn0 | < ε and, for finite precision, loss of significant digits
take place in Cn0 [f, y] which are kept for all n > n0. Contrary, no digits are lost
in Cn0 [y, g], particularly because, as discussed before, fn and gn typically have
opposite sign patterns (and therefore y and g also for n = n0, n0 + 1). The loss of
precision can be estimated from the ratio of first components in (5.7). The relative
accuracy in the second term (which will dominate for n >> n0) at n = n0 is
therefore reduced by a factor

(5.9) L =
∣∣∣∣ ε1fn0

(1 + ε2)rmgn0

∣∣∣∣ 	 |ε1|
Rn0

Rm

and then the best attainable accuracy for n >> n0 can be estimated by

(5.10) max {ε, εL} ≈ εmax {1, εRn0/Rm}
assuming that the errors at n0 are the only source of rounding error propagation.

Therefore, as long as

(5.11) Rm/Rn0 > ε2,

some accuracy will be recovered for n > n0.
This phenomenon of partial recovery of accuracy for finite precision arithmetic,

even when the accuracy is completely lost for intermediate values, takes place also
when a recurrence with no transitory behaviours and having minimal solutions is
first applied in the forward direction for the minimal solution and then in the more
natural backward direction. Depending on the number of forward steps all or part
of the accuracy will be lost, no matter how many backward steps are applied.
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With respect to the minimal (transitorily dominant) solution, as Figure 6 shows,
the behaviour is corresponding to a dominant solution when n < n0, where no loss
of precision takes place for forward recursion. For large values of n, accuracy is
rapidly lost as is normal for a minimal solution.

For backward recursion, similar situations take place when starting the recur-
rence from k > n0. The minimal solution will initially be accurately computed until
n0 is reached; then, error will increase for n < n0 (this is the situation described in
[8] for the computation of the U function). For the transitorily minimal solution,
the backward recurrence is initially badly conditioned until n0 is reached; then,
accuracy for n < n0 can be recovered or not depending on how large the loss of
accuracy is at n0.

It becomes clear that for a safe numerical use of recurrence relations, it is not
enough to know the asymptotic behaviour of the solutions, but it is also important
to study the behaviour for finite orders, particularly when the recurrence yn+1 +
bnyn + anyn−1 = 0 is such that an < 0 and bn changes sign. In this case, it is also
important to know if there are transitory minimal solutions.

6. Conclusions

We have analyzed the appearance of transitory minimal solutions for recurrences
of the type yn+1 + bnyn + anyn−1 = 0 with an < 0 and bn changing sign once. The
related phenomenon of pseudoconvergence of the associated continued fraction has
been discussed also. This type of behaviour is present in a considerable number of
hypergeometric recurrences. Six different recurrences have been considered, with
special emphasis on Gautschi’s anomalous convergence case, for which an accurate
description of the accuracy of anomalous convergence is provided, and the related
Gauss hypergeometric recurrence.

Extreme care has to be taken when using recurrences and associated continued
fractions where bn changes sign at a given n = n0. The continued fraction may
appear to converge with high precision, but to a ratio of solutions different from the
minimal solution. If finite precision is used, the CF may completely fail to compute
ratios of minimal solutions, no matter how many approximants are considered.

Regarding the computation of solutions from these types of recurrence relations,
it is concluded that asymptotic information is not sufficient for deciding the con-
dition and stability of the recurrent process and that the usual recipes based on
asymptotics fail past the value n0. The minimal solution, especially when it has a
fixed pattern of signs, should not be computed by backward recursion past n < n0

while forward recursion is badly conditioned for some dominant solutions (the tran-
sitorily minimal solutions) when n < n0 (although the accuracy may be recovered
for large enough n).

For a numerically stable use of these recurrences, it is not only important to iden-
tify the minimal solution of the recurrence, but also transitorily minimal solutions
should be identified and their forward computation avoided for n < n0.
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