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Abstract

Liouville–Green transformations of the Gauss hypergeometric equation with changes of variable z(x) =∫ x
tp−1(1 − t)q−1 dt are considered. When p + q = 1, p = 0 or q = 0 these transformations, together

with the application of Sturm theorems, lead to properties satisfied by all the real zeros xi of any of its
solutions in the interval (0, 1). Global bounds on the differences z(xk+1) − z(xk), 0 < xk < xk+1 < 1 being
consecutive zeros, and monotonicity of these distances as a function of k can be obtained. We investigate
the parameter ranges for which these two different Sturm-type properties are available. Classical results
for Jacobi polynomials (Szegö’s bounds, Grosjean’s inequality) are particular cases of these more general
properties. Similar properties are found for other values of p and q, particularly when |p|= |�| and |q|= |�|,
� and � being the usual Jacobi parameters.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Different properties of the real zeros of the solutions of hypergeometric equations can be ob-
tained by means of Liouville–Green (LG) transformations of the differential equation and the
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subsequent application of Sturm theorems. Among these, bounds on the distances between con-
secutive zeros and monotonicity properties of these distances can be obtained in the transformed
variable z(x).

In [1], Sturm properties of the solutions of second order hypergeometric equations were inves-
tigated by using sets of LG transformations that verify two basic requirements: first, the study
of the transformed differential equation was analytically affordable; second, the results obtained
from Sturm theorems provided global information on the zeros. The properties obtained were
global in three ways: first, for fixed parameter values, they are valid for any solution of the
differential equation; second, the Sturm properties apply to all real zeros in the given maximal
interval of continuity of the coefficients of the ODE, which can be (0, 1), (−∞, 0) or (1, ∞) in
the case of the Gauss hypergeometric equation; third, the properties hold independently on the
parameter n (the degree for the polynomials cases), although the value of the bounds depends
on n.

In the case of the Gauss hypergeometric equation, several particular transformations were con-
sidered, which led to a generalization of known results (Szegö’s [5, pp. 124–126] and Grosjean’s
[3] inequalities), as well as to new inequalities satisfied by the real zeros of Gauss functions. As a
particular case, this study provided global properties for all the real zeros of Jacobi polynomials

P
(�,�)
n (x) in (−1, 1).
In this paper, we investigate more general properties that have Szegö’s [5, pp. 124–126] and

Grosjean’s [3] inequalities as particular cases and which are global in the three ways described
above. In addition, the bounds will be optimal in a sense to be described later.

We consider the LG transformations of the hypergeometric equation with changes of
variable

z(x) =
∫ x

tp−1(1 − t)q−1 dt (1)

transforming the hypergeometric equation to an equation in normal form in the z variable:

ÿ(z) + �(z)y(z) = 0. (2)

To this transformed equation, we apply Sturm’s theorem.
The changes of variable (1), having derivative z′(x) = xp−1(1 − x)q−1, are the natural gener-

alization of the changes of variable considered in [1]. These changes do not introduce additional
singularities; the only singularities in �(z(x)) or z(x) are at x = 0, 1, +∞, which are the three
singularities of the hypergeometric differential equation.

In [1] the particular cases p, q = 0, 1
2 , 1 (but not both equal to 1) were considered; (p, q) =

( 1
2 , 1

2 ) corresponds to Szegö’s case and (0, 1) or (1, 0) to the (generalized) Grosjean’s inequality.
Here we investigate more general global inequalities which have these properties as particular
cases.

Our analysis completes the picture of global properties obtainable from the Sturm
comparison theorem that are valid for all the real zeros of any solution of the Gauss hyper-
geometric equation. We will concentrate on the interval (0, 1); as discussed in [1], the corre-
sponding Sturm properties for the other two maximal intervals of continuity follow from the
properties in (0, 1), taking into account linear transformations of the hypergeometric
equation.
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2. Methodology

The main result that we will consider is the Sturm comparison and convexity theorem. Denoting
first and second order differences by

�zk = zk+1 − zk,

�2zk = �zk+1 − �zk = zk+2 − 2zk+1 + zk,
(3)

zk < zk+1 < zk+2, we can enunciate the Sturm theorem in the following form [1].

Theorem 1 (Sturm). Let us consider a second order ordinary differential equation in normal
form:

ÿ(z) + �(z)y(z) = 0, (4)

where �(z) is continuous in a given interval I . Let y(z) be a nontrivial solution of this equation
in I , and zk < zk+1 < zk+2 consecutive zeros of y(z) in this interval.

• If there exists zM ∈ I such that �(z) < �(zM) for all z in I different from zM , then: �zk >
�√

�(zM)
.

• If there exists zm ∈ I such that �(z) > �(zm) > 0 for all z in I different from zm, then:
�zk < �√

�(zm)
.

• If �(z) changes sign at most once in I and it is strictly increasing when it is positive, then:
�2zk < 0.

• If �(z) changes sign at most once in I and it is strictly decreasing when it is positive, then:
�2zk > 0.

We will apply the Sturm theorem after transforming the Gauss hypergeometric equation to
normal form by means of LG transformations, which we discuss in the next section.

It should be emphasized that the Sturm theorem applies to any solution of the differential
equation; therefore, the results we will obtain will be globally valid for any solution. The other
two types of globality properties (validity for all the real zeros and for all n) is obtained by
carefully choosing the changes of variable for the LG transformation. The bounds obtained from
Sturm theorem will be optimal in the sense that they are obtained by finding the extrema of �(z).

2.1. LG transformations

We start from the hypergeometric equation

w′′(x) + B(x)w′(x) + A(x)w(x) = 0,

B(x) = c − (a + b + 1)x
x(1 − x)

, A(x) = − ab
x(1 − x)

,
(5)

which has the hypergeometric function 2F1(a, b; c; x) as one of its solutions. We will consider
values of the parameters a, b and c such that oscillation in the interval (0, 1) is possible [2].
Considering the Jacobi notation

a = −n, b = n + � + � + 1, c = � + 1, (6)
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corresponding to the standard notation for Jacobi polynomials

P
(�,�)
n (1 − 2x) =

(
n + �

n

)
2F1(−n, n + � + � + 1; � + 1; x), (7)

the necessary conditions for oscillation can be written as [1]

n > 0, n + � > 0, n + � > 0, n + � + � > 0. (8)

If one of these conditions is not met, then any solution of the differential equation has less than
two zeros in (0, 1).

From now on, we use this notation and assume that these conditions are verified. We will also
denote

L ≡ 2n + � + � + 1. (9)

The results of the paper apply to any solution of the hypergeometric differential equation. In
the particular case of Jacobi polynomials, the parameter n is a positive integer value (the degree
of the polynomial).

From the oscillatory conditions (8) it is easy to check that

L2 − �2 − �2 − 1 − 2c1� − 2c2� − 2c3�� > 0 for any c1, c2, c3 ∈ [−1, 1]. (10)

This property will be frequently used in the sequel, particularly for ci = −1, 0, 1.
For applying Theorem 1 we need to transform Eq. (5) to normal form (Eq. (4)). For this sake,

we LG-transform the equation. This means that we consider a change of variable z(x), z′(x) > 0
in (0, 1) and the functions

y(z(x)) = √
z′(x) exp

(
1

2

∫ x

B(t) dt

)
w(x), (11)

where w(x) is any solution of Eq. (5). The functions y(z) satisfy an equation in normal form in
the z variable (4), where

�(z) = ẋ(z)Ã(x(z)) + 1

2
{x, z}, Ã(x) = A(x) − B ′(x)

2
− B(x)2

4
, (12)

and {x, z} is the Schwarzian derivative of x with respect to z (see [4, p. 191]).
Obviously, the new functions y(z(x)) have the same zeros as w(x) if B(x) is continuous, as

is the case of Gauss hypergeometric equation in the interval (0, 1). The resulting differential
equation for y(z) can then be used for extracting information on the zeros of the solutions of the
initial equation.

Theorem 1 provides information on the spacing between zeros, for any oscillatory solution of
the hypergeometric equation, provided we are able to determine the monotonicity properties of
�(z) or, equivalently (because z′(x) > 0), the properties of

�(x) ≡ �(z(x)) = 1

z′(x)2

(
A(x) − B ′(x)

2
− B2(x)

4
+ 3z′′(x)2

4z′(x)2 − z′′′(x)

2z′(x)

)
. (13)

The problem is to determine the changes of variable for which the analysis of the monotonic-
ity properties of �(z) or �(x) is affordable and provides global information. This requirement
drastically restricts the possible changes of variables that can be taken into account.
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2.2. Admissible changes of variable

Let us first consider the trivial change z(x) = x. The associated LG transformation takes the
hypergeometric equation to normal form in the original variable. In this case we have

�(x) = 1

4

[
L2 − �2 − �2 + 1

x(1 − x)
+ 1 − �2

x2 + 1 − �2

(1 − x)2

]
. (14)

Then we can write �(x) = x−2(1 − x)−2P(x), where P(x) is a second degree polynomial.
This seems a tractable function, however, when computing the derivative we get

�′(x) = x−3(1 − x)−3Q(x), (15)

Q(x) being a polynomial of third degree with coefficients depending on three parameters. Al-
though information may be obtained for some parameter values, the problem is hard to solve in
general; to begin with, we would need to solve a third degree equation depending on three param-
eters (n, � and �) and to distinguish the cases depending on the number of real roots. Furthermore,
even for particular cases for which this analysis is feasible, it hardly provides global information
for all the zeros.

As an illustration of this, let us consider the symmetrical case |�| = |�|, then we have

�(x) = − L2 − 1
4x2(1 − x)2

[(
x − 1

2

)2

+ � − 1

4

]
, � = (�2 − 1)/(L2 − 1),

�′(x) = − L2 − 1
4x3(1 − x)3 (2x − 1)

[(
x − 1

2

)2

+ 2� − 1

4

]
.

(16)

In this simple case, the situation can be very varied depending on the values of the parameters
�, � and n (or L). For instance, when � = � > 1, � has a positive maximum in (0, 1) and
goes to −∞ as x → 0+, 1−. However, depending on the value of n, it may have three positive
relative extrema (two maxima and one minimum) or only one. As we depart from this symmetrical
case, the analysis becomes much more difficult because we have a third degree polynomial in the
derivative and we can no longer factor out the trivial factor x − 1

2 .
It is necessary to further simplify the analysis in order to obtain truly global properties which

hold for all the zeros in (0, 1) and hold independently on n (or L).
The idea is to consider changes of variable such that �(x) has a first derivative of the type

�′(x) = xm(1 − x)rQ(x), (17)

Q(x) being a second degree polynomial. This suggests considering changes of variable

z′(x) = xp−1(1 − x)q−1. (18)

For this, the LG-transformation provides the following �(x):

�(x) = 1

4
x−2p+2(1 − x)−2q+2

×
(

L2 − �2 − �2 + 1 − 2(p − 1)(q − 1)

x(1 − x)
+ p2 − �2

x2 + q2 − �2

(1 − x)2

)
, (19)
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which has derivative

�′(x) = 1
4x−2p−1(1 − x)−2q−1P(x). (20)

P(x) = a3x
3 + a2x

2 + a1x + a0 is a polynomial of degree 3 with coefficients depending on L,
�, �, p and q. Solving �′(x) = 0 will be equivalent to solving a quadratic equation when we can
extract a factor x or (1 − x) or when a3 = 0. We have that

a3 = 1
2 (1 − p − q)[L2 − (1 − p − q)2], (21)

P(0) = − 1
2p(p2 − �2), (22)

P(1) = 1
2q(q2 − �2). (23)

Therefore, choosing p+q = 1, p = 0 or q = 0 we have the desired simplification, independently
of the parameters �, � and n. The analysis of the functions �(x) and �′(x) will reveal the ranges
of values of the parameters for which global Sturm properties (valid for any solution, for all real
zeros and for any n) are available.

There are other possible choices which lead to a second degree equation for the derivative, but
the properties which are obtained are implicit with respect to the parameters in the sense that the
definition of the change of variable for the LG transformation depends on one or several of the
parameters n, � or �. In particular, for the choice |L| = |1 − p − q|, z(x) depends on n, � and �
through L. For the cases |p| = |�| and |q| = |�|, the change of variable depends on |�| or |�|.

We will briefly outline the implicit properties but we will mainly focus on the set p + q = 1
(which has Szegö’s properties [5] and Grosjean’s inequality [3] as particular cases), and p = 0
(or q = 0), which includes not only Grosjean’s inequality but other logarithmic inequalities too
[1]. The explicit properties apply for all values of n; the maximum and minimum values of �(z),
Theorem 1, will depend on n, but not the change of variables, which will be also independent of
� and �.

Note that from Eq. (19) it follows that interchanging p and q is equivalent to interchanging �
and � and x and 1 − x. This symmetry property can be used to further reduce the study of the
changes of variable to

(1) p + q = 1, p� 1
2 (or q � 1

2 );
(2) q = 0 (or p = 0).

Summarizing the procedure will be as follows. We will consider those changes of variable
of the form (18) which convert the hypergeometric equation (5) to a LG-transformed equation
ÿ + �(z)y = 0, where �(z(x)) is given by Eq. (14). The values of p and q are chosen in such
a way that solving �′(x) = 0 is equivalent to solving a quadratic equation, which restricts the
changes of variables to four families, two of them implicit. The fact that the replacements p ↔ q,
� ↔ �, x ↔ 1 − x leave �(x) invariant simplifies the analysis. For each of these families of
changes of variable, we analyze the monotonicity properties of �(x) (which are the same as those
of �(z) because z′(x) > 0). Then, Theorem 1 will be applied for obtaining Sturm properties in
the z variable, particularly for the explicit changes of variable.

The Sturm properties will involve differences �zk (3), where zj = z(xj ), xk and xk+1 are
consecutive zeros of any solution of (5), 0 < xk < xk+1 < 1, and z(x) is one of the admissible
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changes. Therefore, we will obtain bounds for the distances

�zk ≡ �k(p, q) ≡
∫ xk+1

xk

tp−1(1 − t)q−1 dt, (24)

as well as monotonicity properties in the k index. Because the differences �k(p, q) vary contin-
uously with respect to p and q we will obtain Sturm properties depending continuously on these
parameters.

For certain values of p and q (0, 1
2 and 1), the differences are expressible in terms of elementary

functions [1]. In the general case, they can be written in terms of 2F1 hypergeometric functions
through the incomplete Beta function Bx(p, q). For instance, when p > 0 we can take

z(x) =
∫ x

0
tp−1(1 − t)q−1 dt = Bx(p, q) = xp

p
2F1(1 − q, p; p + 1; x) (25)

and �k(p, q) = z(xk+1) − z(xk). The expression in terms of 2F1 can be used for all p 
=
0, −1, −2, . . . . When q > 0 we can also take

z(x) = −
∫ 1

x

tp−1(1 − t)q−1 dt = −B1−x(q, p). (26)

For p = 0 or q = 0 the above changes of variable do not make sense but the limit p → 0 can
be taken in (24) (or the corresponding expression from Eq. (26)). The changes of variable show a
log(x) term when p = 0 and a log(1 − x) term when q = 0. For instance, for p = 0 we can take

z(x) = log(x) + (1 − q)x3F2(1, 1, 2 − q; 2, 2; x), (27)

which explains why the cases p = 0 and q = 0 will be named logarithmic.

2.3. Szegö–Grosjean inequalities (p + q = 1)

The case p + q = 1 includes Szegö’s inequalities [5] (p = q = 1
2 ) and Grosjean’s inequality

[3] (p = 0) as particular cases. Grosjean’s inequality was proven to hold not only for Legendre

polynomials [1] but also for Jacobi polynomials P
(�,�)
n (x), |�|�1 and, more generally, to any

solution of the corresponding second order differential equation; naturally, when |�|�1 a similar
inequality exists (corresponding to q = 0).

In order to obtain the Szegö–Grosjean inequalities, we have to determine the monotonicity
properties of

�(x) = 1
4x−2p(1 − x)2p−2P(x),

P (x) =
[
−L2x2 + (L2 + �2 − �2 + 1 − 2p)x + p2 − �2

]
,

(28)

in (0, 1).
Considering the oscillatory conditions (8), it is easy to show that P(x) has always two different

real zeros because the discriminant, as a function of p, is a parabola with a positive minimum value.
The information on the location of these zeros, together with the behaviour of �(x) around x =
0, 1, serves to elucidate when the first two cases of Theorem 1 take place. Then, for instance, when
both zeros are in (0, 1), limx→0+ �(x) < 0, limx→1− �(x) < 0 and �(x) has a positive maximum
in (0, 1); contrary, when there are no zeros in (0, 1), limx→0+ �(x) > 0 and limx→1− �(x) > 0,
then �(x) has a positive minimum in (0, 1).
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The exact location of these extrema, the computation of the maximal or minimal values and the
study of the monotonicity properties, become simpler by considering the change x = t/(t + 1),
which takes the point x = 1 to t = +∞ and preserves the monotonicity properties. Then, denoting

�(t) = �(x(t)), (29)

we have

�(t) = 1
4 t−2p

[
((p − 1)2 − �2)t2 + �t + p2 − �2

]
,

�′(t) = − 1
2 t−2p−1

[
(p − 1)((p − 1)2 − �2)t2 + (p − 1/2)�t + p(p2 − �2)

]
,

� = L2 − �2 − �2 + p2 + (p − 1)2 > 0.

(30)

From these expressions, only by considering the signs of the coefficients, it is easy to obtain
the number of zeros of �(t) and �′(t) in (0, +∞) (and therefore x ∈ (0, 1)). Combining this
information with the behaviour as t → 0+, +∞, it is easy to identify the parameter values for
which Sturm bounds (Theorem 3) or monotonicity properties (Theorem 2) take place, except for
certain parameter regions which need further analysis (Theorem 5).

Theorem 2 (Szegö–Grosjean monotonicity). Except when |�| = |�| = p = 1
2 , the distances

�k(p, 1 − p) satisfy the following properties:

(1) If p� 1
2 |�|�p and |�|�1−p, then �k(p, 1−p) is strictly decreasing as function of k ∈ N.

(2) If p� 1
2 , |�|�p and |�|�1−p, then �k(p, 1−p) is strictly increasing as function of k ∈ N.

When |�| = |�| = p = 1
2 the distances �k(p, 1 − p) are constant as a function of k ∈ N.

Theorem 3 (Generalized Szegö’s bounds). The distances �k(p, 1−p) can be bounded as follows
and in the following open regions of the (�, �)-plane:

(1) �k(p, 1 − p) < �/
√

�(xm) if |�| < p and |�| < 1 − p. �(xm) is the minimum value of � in
(0, 1).

(2) �k(p, 1 − p) > �/
√

�(xM) if |�| > p and |�| > 1 − p. �(xM) is the maximum value of �
in (0, 1).

When p 
= 1
2 , the region of validity of each inequality includes the part of the boundary of the

corresponding open region which is not included in Theorem 2.
When p = 1

2 , the inequalities can be continuously extended to all the boundaries; the minimum
or maximum at the critical cases (|�| = 1

2 or |�| = 1
2 ) is reached at x = 0 or 1.

Fig. 1 shows the different regions for which the case of Theorems 2 and 3 take place.
The proof of these theorems is lengthy but immediate, particularly in the variable t ∈ (0, +∞)

(Eq. (30)). For instance when 0 < p < 1, |p| < |�| and |p − 1| < |�| simultaneously then �(t)

verifies �(0+) = �(+∞) = −∞. It is easy to check that �(t) has two real positive roots, and
therefore it has a maximum where � is positive (which is the first case of Theorem 1). The rest
of the cases in Theorem 3 can be proved in a similar way.

On the other hand, considering the sign of the derivative �′(t) the cases for which � is monotonic
(Theorem 2) are easily obtained. For instance, when 0 < p < 1

2 , p� |�| and |p − 1|� |�| all
the coefficients of the derivative have the same sign and then � is increasing (and the third case
applies). The rest of the cases also follow by elementary considerations.
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p
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2<0

1/2<p<1

2>0

2>0

p

>>

p 1

2>0

p

2>0

Fig. 1. Regions of the (�,�)-plane where different Sturm properties for the distances �k(p, 1 − p) are available. In the
regions marked with the label “� < K”, �(x) has a minimum at certain x = xm and �k(p, 1 − p) < �/

√
�(xm). In the

regions marked with the label “� > K”, �(x) has a maximum at certain x = xM , and �k(p, 1 − p) > �/
√

�(xM). The

label “�2 > 0” means that, in the corresponding regions, the distances �k(p, 1 − p) increase with k; when “�2 < 0”
these distances decrease. In the white regions, no global Sturm properties are available for large n.

The cases already considered in [1], correspond to the first (p = 0, q = 1), third (p = q = 1
2 )

and fifth pictures (p = 1, q = 0) of Fig. 1. The first and last pictures correspond to Grosjean’s
property (generalized) and the third picture corresponds to Szegö’s properties (generalized). In
the third picture (Szegö’s), the four vertices |�| = |�| = 1

2 correspond to the Chebyshev cases.

2.3.1. The Chebyshev cases
Before computing the general bounds for the case p + q = 1, we will discuss the Chebyshev

case in detail. Particular solutions for |�| = |�| = 1
2 when n is a positive integer are Chebyshev

polynomials of the first (� = � = − 1
2 ), second (� = � = 1

2 ), third (� = − 1
2 , � = 1

2 ) and fourth
(� = 1

2 , � = − 1
2 ) kinds. For this parameter values equispacing of the zeros in the transformed

variable z(x) = cos−1(1 − 2x) takes place. These parameter values are very special cases, since
no other values of p, q, � and � exist for which this property happens.

Theorem 4 (Chebyshev cases). For the changes of variable with derivative z′(x) = xp−1(1 −
x)q−1, only when p = q = 1

2 there exist cases for which the zeros in (0, 1) are equally spaced in
the z variable; these are the four cases with values |�| = 1

2 and |�| = 1
2 , which have Chebyshev
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polynomials as particular solutions. Furthermore, the case � = � = − 1
2 is the only one for which

both the zeros and the extrema are equally spaced.
For any solution of (5) with parameter values �, � and n (Eq. (6)) consistent with oscillation

(Eq. (8)) and such that |�| = |�| = 1
2 , any two consecutive zeros xk < xk+1 in (0, 1) verify

z(xk+1) − z(xk) = �

n + (� + � + 1)/2
. (31)

If � = � = − 1
2 and x′

k < x′
k+1 are two consecutive extrema in (0, 1) then

z(x′
k+1) − z(x′

k) = �

n
. (32)

Notice that in the theorem, the restriction p + q = 1 is not considered; therefore, for proving
it we should start from the general bi-parametric case (Eq. (19)). The theorem is easily proved by
taking into account that for �(z(x)) to be constant in (0, 1) it is necessary that �(z(x)) is finite
and positive as x → 0+, 1−; then, none of the terms on the right-hand side of Eq. (19) can be
unbound at these limits. For the last term this implies that |q| = |�| or q �0, but if q < 0 then
�(z(x)) → 0 as x → 1− and if q = 0 this limit is negative (the last term is dominant in this
limit); therefore |q| = |�|. Using the same argument with the second term, we have |p| = |�|
and then both the second and last terms must be zero. Then, when |p| = |�| and |q| = |�| and
considering (10) we have that the numerator of the first term is positive; the first term is then finite
and positive as x → 0+, 1− only if p = q = 1

2 . Then only when |p| = |q| = � = � = 1
2 is

�(z(x)) constant.
On the other hand, the result for the extrema follows from the fact that, if y is a solution of

the hypergeometric equation with parameter values a, b and c (�, � and n in the Jacobi notation),
then the derivative y′ is a solution of the hypergeometric equation with parameter values a + 1,
b + 1, c + 1 (n − 1, � + 1, � + 1). Therefore, the extrema for the case � = � = − 1

2 and some
given n are zeros for the case � = � = 1

2 , n − 1; these zeros are equispaced in the z variable with
a distance given by Eq. (31), with n replaced by n − 1 and � = � = 1

2 . For any other Chebyshev
case different to � = � = − 1

2 equispacing of the extrema cannot occur for any solution, because
the derivatives are not Chebyshev cases anymore.

2.3.2. Computation of the bounds for p + q = 1
The bounds in Theorem 3 are easily obtained by combining the equation �′(t) = 0, t > 0,

with the expression for �(t). Indeed, if �′(t0) = 0 then (1−p)((p−1)2 −�2)t2
0 = (p− 1

2 )�t0 +
p(p2 − �2), and substituting in �(t) we have

�(t0) = 1
4 t

−2p
0 (1 − p)−1

[
1
2 �t0 + p2 − �2

]
. (33)

Similarly, we can write

�(t0) = 1
4 t

−2(p−1)
0 p−1

[
1
2 �t−1

0 + (p − 1)2 − �2
]
. (34)

Here t0 is the only extrema for which �(t) is positive, namely

t0 = −(p − 1/2)� ±√
D1

2(p − 1)[(p − 1)2 − �2] = 2p(p2 − �2)

−(p − 1/2)� ∓√
D1

, (35)
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where the upper sign is for the cases when �(t) has a positive maximum (Theorem 3(2)) and the
lower sign when it is a minimum (Theorem 3(1)) and

D1 = (p − 1/2)2�2 − 4[(p − 1/2)2 − 1/4](p2 − �2)((p − 1)2 − �2). (36)

If p = 1
2 , t0 =

√
�2 − 1/4
�2 − 1/4

, independently of � (and n), and we obtain Szegö’s bounds (in an

improved and generalized version, see [1, Theorem 4]). If p 
= 1
2 we have

t0 = (1/2 − p)�

(�2 − (p − 1)2)(1 − p)
(1 + O(�−2)) (37)

whenever |�| > p, |�| > 1 − p, p� 1
2 (maximum) or |�| < p, |�| < 1 − p, p� 1

2 (minimum). In
this case, the extremum moves to the right as � increases. This means that the Sturm inequality
tends to be sharper for the largest zeros as n increases.

On the other hand, we have

t0 = p(�2 − p2)

(p − 1/2)�
(1 + O(�−2)) (38)

whenever |�| > p, |�| > 1 − p, p� 1
2 (maximum) or |�| < p, |�| < 1 − p, p� 1

2 (minimum),
and the extremum tends to 0+ as n increases.

Combining (35) with (33) and (34) we can write the bounds as follows:

�k(p, 1 − p) >

{
K1, |�| > p, |�| > 1 − p, p < 1/2,

K2, |�| > p, |�| > 1 − p, p > 1/2,

�k(p, 1 − p) <

{
K2, |�| < p, |�| < 1 − p, p < 1/2,

K1, |�| < p, |�| < 1 − p, p > 1/2,

(39)

where

K1 = 2
√

2�

[
1/2 − p

�2 − (p − 1)2

]p−1/2 (
�

1 − p

)p−1
(1 + O(�−2)),

K2 = 2
√

2�

[
p − 1/2
�2 − p2

]1/2−p (
�
p

)−p

(1 + O(�−2)).

(40)

This expression also gives the correct asymptotic behaviour for p = 1
2 when � → ∞, which can

be seen by taking p → 1
2 . Furthermore, when the bounds can be extended to the boundary of the

open (�, �)-region where they are valid (for example |�| = p, 0 < p� 1
2 , see Theorem 3) the

dominant term in the estimations are the exact bounds.

2.3.3. Analysis of the remaining cases (p + q = 1)
In the white regions in Fig. 1 neither Theorem 2 nor 3 apply. As we will now see, in this regions

the function �(x) changes its behaviour as n increases in such a way that for large enough n no
Sturm properties are available.
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For these parameter ranges, it turns out that there are two possibilities for the behaviour of �(x)

as x → 0+, 1− :

(1) �(0+) = +∞, �(1−) = −∞ when 0 < p < 1
2 , |�| < |p|, |�| > |1 − p|,

(2) �(0+) = −∞, �(1−) = +∞ when 1
2 < p < 1, |�| > |p|, |�| < |1 − p|.

Therefore, bounds for �k(p, 1 − p), as in Theorem 3, will not take place; but these distances
could be monotonic as a function of k (increasing in the first case, decreasing in the second). How-
ever, there are parameter values for which two extrema exist (one maximum and one minimum)
such that �(x) is positive at these extrema and therefore �k(p, 1 − p) is not monotonic.

From the signs of the coefficients of �′(t) one observes that the polynomial part of �′(t) either
has two positive real roots or none; additionally, when two extrema appear, �(t) is positive at
these extrema. Indeed, using Eq. (33) we observe that �(t0), t0 corresponding to any of the two
extrema, is positive when 0 < p < 1

2 , |�| < |p|. When 1
2 < p < 1 we can proceed similarly

using Eq. (34), which shows that �(t0) > 0 when 1
2 < p < 1 and |�| < |p − 1|.

Therefore, we have monotonicity when the discriminant D1 (Eq. (36)) of the polynomial part
of �′(t) is such that ��0. As a function of �, the discriminant changes sign at

�0 =
√

4((p − 1/2)2 − 1/4)(p2 − �2)((p − 1)2 − �2)

(p − 1/2)2 , (41)

being negative when � < �0 and positive when � > �0.
As a consequence, we have

Theorem 5 (Restricted monotonicity). Let p ∈ (0, 1) and (p2 − �2)((p − 1)2 − �2) < 0. Let �
given by (30) and let �0 be given by (41).

Then, if ���0

(1) If |p| > |�| and p < 1
2 then �k(p, 1 − p) is increasing as a function of k.

(2) If |p| < |�| and p > 1
2 then �k(p, 1 − p) is decreasing as a function of k.

If � > �0 no global Sturm properties are available because �(x) has two positive local extrema
and �(0+) = ±∞, �(1−) = ∓∞.

2.4. Logarithmic inequalities (p = 0 or q = 0)

In this case, the analysis is similar but slightly more involved. We provide some details of the
analysis for q = 0. The analysis of the case p = 0 follows easily by symmetry: in each equation,
we should interchange � and �, q and p and x and � = 1 − x.

In terms of t = x/(1 − x) we have, when q = 0,

�(t) ≡ �(x(t)) = 1
4 t−2p(1 + t)−2+2pP (t), P (t) =

(
−�2t2 + �t + p2 − �2

)
,

� = L2 − �2 − �2 − 1 + 2p.
(42)

It can be checked (using (8)) that, as a function of p, the discriminant of the equation P(t) = 0
is a parabola with a positive minimum. Therefore, P(t) has two real roots. Considering the signs of
the coefficients, the number of positive roots of �(t) can be determined. Taking also into account
the values of �(t) at 0+ and +∞ (and using that � > 0 if p�0 or |p|� |�| and (8) holds), the
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cases for which �(t) reaches a maximum where �(t) is positive can be identified. This takes place
when |�| > p, and also when |�| = p and p� 1

2 .
For locating the extrema and obtaining the value at the extremum, and also for studying mono-

tonicity properties, one needs to compute the derivative of �(t) (or �(x)). The analysis of these
properties is slightly more involved in this case than in that of Szegö–Grosjean properties. First
we summarize the corresponding results, including the case p = 0, and later on we give additional
details regarding the computation of the bounds and the proof of the monotonicity properties.

Theorem 6 (Logarithmic monotonicity). The distances �k(p, q) verify the following:

(1) �k(p, 0) is an strictly increasing function of k ∈ N when p� 1
2 , |�|�p.

(2) �k(0, q) is an strictly decreasing function of k ∈ N when q � 1
2 , |�|�q.

Theorem 7 (Logarithmic bounds). The distances �k(p, q) for p = 0 or q = 0 verify

(1) �k(p, 0) > �/
√

�(xM) if |�| > p.
(2) �k(0, q) > �/

√
�(xM) if |�| > q.

xM ∈ (0, 1) is the value for which �(x) is maximum.
When p, q 
= 1

2 the region of validity of each inequality includes the part of the boundary which
is not included in Theorem 6.

If |�| = p = 1
2 or |�| = q = 1

2 the bounds still hold but the maximum value of �(x) is reached
at x = 0 or 1, respectively.

Theorem 8 (Restricted monotonicity). The following restricted monotonicity properties hold:

(1) If q = 0, 0 < p < 1
2 , |�| < p, let

F = L2 + �2 − �2 − p2 − (p − 1)2

and

F0 =
√

4(p − 1/2)2 − 1

(p − 1/2)2 ((p − 1)2 − L2)(p2 − �2).

Then

(a) If F �F0, �k(p, 0) is a strictly increasing function of k.
(b) If F > F0, no global Sturm properties are available because �(x) has two positive local

extrema and �(0+) = +∞ while �(1−)�0.

(2) If p = 0, 0 < q < 1
2 , |�| < q, let

F = L2 − �2 + �2 − q2 − (q − 1)2

and

F0 =
√

4(q − 1/2)2 − 1

(q − 1/2)2 ((q − 1)2 − L2)(q2 − �2)
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Fig. 2. Regions of the (�,�)-plane where different Sturm properties are available for the distances �k(p, 0) (upper figures)
and �k(0, q) (lower figures). The meaning of the labels is as in Fig. 1.

then

(a) If F �F0, �k(0, q) is a strictly decreasing function of k.
(b) If F > F0, no global Sturm properties are available because �(x) has two positive local

extrema and �(0+)�0 while �(1−) = +∞.

Fig. 2 illustrates the different possibilities described in Theorems 6–8.
The proof of Theorem 6 was outlined before. With respect to the monotonicity properties and

the restricted monotonicity theorem the proof can be made relatively simple by writing, when
q = 0

�(x) = 1
4x−2pP (x), �′(x) = − 1

2x−2p−1Q(x),

P (x) = Ex2 + Fx + G,

Q(x) = (p − 1)Ex2 + (p − 1/2)Fx + pG,

E = (p − 1)2 − L2, G = (p2 − �2), F = −E − G − �2

(43)

and the analogous relations if p = 0.
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For proving monotonicity properties (restricted or not) in the case q = 0, which take place
when p > 0, |�|�p, it is useful to analyze the sign of the coefficients of �′(x). Because (as can
be observed from (42)), �(x) has opposite sign as x → 0+ and x → 1−, then �(x) either has
two extrema in (0, 1) or none. We can prove both monotonicity theorems by considering Vieta’s
formulas and the signs of the coefficients of Q(x).

For the case of Theorem 6, p� 1
2 , the signs of the coefficients is such that there cannot be two

positive solutions of �′(x) = 0 when p�L + 1; when p > L + 1 there may be two positive
roots, but there cannot be two roots in (0, 1), because, using Vieta’s formulas, it is immediate to
check that the roots are such that x1x2 > 1. This proves the case q = 0 in Theorem 6. The case
p = 0 is proven in a similar way.

When 0 < p < 1
2 , Vieta’s formulas for the coefficients of Q(x), together with the oscillatory

conditions, can be used to prove that the roots of the equation Q(x) = 0 verify 0 < x1 + x2 < 1,
0 < x1x2 < 1. When the discriminant is positive there are two roots of Q(x) in (0, 1); furthermore,
�(x) is positive at these extrema (which can be checked using Eq. (44)), and therefore no Sturm
property is available. Contrary, when the discriminant of the equation is negative there are no
roots of Q(x) and the monotonicity properties then apply. When the discriminant is exactly zero,
there is a single root of �(x) and it is an inflexion point; the monotonicity properties also apply
in this case.

For computing the bounds of Theorem 7, it is useful to combine the equation �′(x) = 0, with
�(x); with this, we have that if �′(x0) = 0, x0 ∈ (0, 1) then, for the case q = 0

�(x0) = 1
4 x

−2p
0 (1 − p)−1 [ 1

2 Fx0 + G
]
. (44)

Solving the equation �(x) = 0, and substituting into Eq. (44), we obtain the bounds

�k(p, 0) > K, K = �/
√

�(x0), (45)

where x0 is the maximum of �(x) in (0, 1) (�(x0) > 0).
A quite straightforward but rather lengthy analysis shows that the value x0 always corresponds

to the same root of the equation Q(x) = 0, namely

x0 = −(p − 1/2)F +√
D2

2(p − 1)E
= −2pG

(p − 1/2)F +√
D2

. (46)

D2 is the discriminant of the equation, that is

D2 = (p − 1/2)2F 2 − (4(p − 1/2)2 − 1)EG. (47)

For large L (L ∼ 2n when n is large, n corresponding to the degree in the polynomial case),
we have the estimations

x0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1/2 − p

1 − p
(1 + O(L−2)), p < 1/2,√

�2 − 1/4

L2 − 1/4
, p = 1/2,

p(�2 − p2)

(p − 1/2)L2 (1 + O(L−2)), p > 1/2.

(48)

For large values of n, when p < 1
2 the maximum is reached close to x0 ≈ ( 1

2 − p)/(1 − p),
which approaches 0+ as p → (1/2)−. For larger p, the maximum also tends to 0+ as L becomes
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large. On the contrary, as p becomes a large negative number (for large L) the maximum tends
to move toward x = 1. Of course, the bound is finer for zeros close to the maximum.

In the case p = 0, the results are the same interchanging � and �, p and q and x and � = 1 −x.
Here when p� 1

2 the maximum approaches 1− as L → +∞ while for negative q it tends to be
closer to x = 0 as |q| is larger.

With this estimations for the location of the maximum, the bounds in the case q = 0 (45) can
be estimated as follows:

K =

⎧⎪⎪⎨
⎪⎪⎩

2�
√

2(1 − p)

(
1 − p

1/2 − p

)−p+1/2

L−1(1 + O(L−2)), p < 1/2,

2�
√

2p

(
p(�2 − p2)
p − 1/2

)p−1/2

L−2p(1 + O(L−2)), p > 1/2.

(49)

The case p = 0 is analogous, with the usual replacements.

3. Implicit properties

The analysis of the two previous cases (Szegö–Grosjean properties and logarithmic inequalities)
does not exhaust the possible Sturm properties which can be obtained through the analysis of the
monotonicity properties of �(x).

There are additional selections of the parameters, namely |p| = |�| (or the similar case |q| =
|�|) and |L| = |1 − p − q|, for which the analysis of Sturm properties is also possible. These
properties are implicit in the sense that in the definition of �k(p, q), p and/or q depend on one
or several of the parameters n, � and �. We will not analyze these cases in detail, but only give
the functions � and the derivative and describe some examples.

3.1. The cases |p| = |�| and |q| = |�|

In this section we describe Sturm properties for the distances �k(±�, q) (|p| = |�|). The case
|q| = |�| is equivalent, with the changes of the parameters described before. These implicit
properties are more easily described as a function of p and q, given fixed values of � and �.

As a function of t = x/(1 − x), when |p| = |�|, the function �(t) = �(x(t)) and its derivative
read:

�(t) = 1
4 t−2p+1(1 + t)2(p+q−1)

[
(q2 − �2)t + H

]
,

�′(t) = 1
2 t−2p(1 + t)2p+2q−3

[
q(q2 − �2)t2 + �t + (1/2 − p)H

]
,

H = L2 − �2 − �2 − 1 + 2(p + q − pq),

� = (1 − p)(q2 − �2) + (q − 1/2)H.

(50)

From the expression of �(t) and H , we observe that, for fixed L, |�|, |�| and p, H (and �(0+))

may be positive or negative depending on q. Indeed, at q equal to

qc = L2 − �2 − �2 − 1 + 2p

2(p − 1)

H changes sign. Therefore, the behaviour of �(t) changes at a q-value which depends on n, which
complicates the analysis; the properties are then not global in the sense that they depend on n.
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However, when restricting the study to values |q|� |�|, then H > 0 and the behaviour at
t = 0+, +∞ (corresponding to x = 0+, 1−) becomes independent on n.

Let us briefly describe the case |q| < |�|; later we describe the case |q| = |�|. Only by
considering the behaviour at t = 0+, +∞ it is possible to show that �(t) has a positive maximum
when p� 1

2 , and therefore the first case of Theorem 1 applies and upper bounds for �k(p, q)

are available. On the other hand, when |q| < |�|, taking into account the values at t = 0+, +∞
and that the �′(t) as two positive roots at most, it is possible to show that the last case of
Theorem 1 applies when q < 0, p > 1

2 , and therefore that �k(p, q) is an increasing function
of k.

All that remains, when |q| < |�|, is the case q > 0, p� 1
2 , where partial information can be

obtained. When 0 < q � 1
2 and 1

2 �p�1, considering the signs of the coefficients of �′(t) one
sees that, again, �k(p, q) is an increasing function of k.

In summary, �k(p, q) when |q| < |�| is an increasing function of k when

(1) q < 0 and p� 1
2 ,

(2) 0 < q � 1
2 , 1

2 �p�1.

In the cases where p� 1
2 not included in the previous two it is more difficult to decide, and there

will be cases where the monotonicity property takes place and others where, like in Theorems 5
and 8, monotonicity may hold only for a restricted range of n-values. From the sign of � in Eq.
(50), and taking into account the behaviour at t = 0+, +∞, we observe that as L becomes large
(and then as n is large) �(t) becomes strictly decreasing when 0 < q < 1

2 , whereas no Sturm
properties are available when q > 1

2 (because there are two extrema where �(t) is positive),
similarly as in Theorems 5 and 8.

The case |q| = |�|, |p| < |�| can be analyzed similarly, with the corresponding replacements,
yielding similar results (but with �(t) increasing when it is monotonic).

3.1.1. The case |p| = |�|, |q| = |�|
When both |p| = |�| and |q| = |�| the analysis is straightforward because the expression for

�(x) is trivial, namely

�(x) = 1
4x−2p+1(1 − x)−2q+1H, (51)

with H as defined in Eq. (50).
Solving �′(x) = 0, we see that the derivative is zero at

xm = p − 1/2

p + q − 1
. (52)

When p > 1
2 , q > 1

2 this corresponds to a minimum in (0, 1) and when p < 1
2 , q < 1

2 to a
maximum.

On the other hand, when p < 1
2 , q > 1

2 , �(x) is decreasing, while it is increasing when p > 1
2 ,

q < 1
2 .

Putting all this information together, also with the cases p = 1
2 and/or q = 1

2 , we have the
following two results.
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Theorem 9 (Sturm bounds for |p| = |�|, |q| = |�|). Let p, q be such that |p| = |�|, |q| = |�|
and let

K(p, q) = 2�√
H

(
p − 1/2

p + q − 1

)p−1/2 (
q − 1/2

p + q − 1

)q−1/2

(53)

with H given by Eq. (50), then

(1) If p� 1
2 , q � 1

2 (not both equal to 1
2 ) then �k(p, q) < K(p, q).

(2) If p� 1
2 , q � 1

2 (not both equal to 1
2 ) then �k(p, q) > K(p, q).

(3) If p = 1
2 , q = 1

2 then �k(p, q) = K( 1
2 , 1

2 ) = 2�/
√

H = �/(n + (� + � + 1)/2) (Chebyshev
case).

In the previous theorem, it is understood that K( 1
2 , q), K(p, 1

2 ), K( 1
2 , 1

2 ) are the corresponding
limits in Eq. (53).

Theorem 10 (Monotonicity for |p| = |�|, |q| = |�|). Let p, q be such that |p| = |�|, |q| = |�|,
then

(1) If p� 1
2 , q � 1

2 (but not both p and q equal to 1
2 ), then �k(p, q) is strictly decreasing as a

function of k ∈ N.
(2) If p� 1

2 , q � 1
2 (but not both p and q equal to 1

2 ), then �k(p, q) is strictly increasing as a
function of k ∈ N.

3.2. The case |L| = |1 − p − q|

In this case, the functions �(t) and �′(t) are

�(t) = 1
4 t−2p(1 + t)2p+2q−1((q2 − �2)t + (p2 − �2)),

�′(t) = 1
2 t−2p−1(1 + t)2(p+q−1)

[
q(q2 − �2)t2 + �t − p(p2 − �2)

]
,

� = ( 1
2 − p)(q2 − �2) + (q − 1

2 )(p2 − �2).

(54)

It is easy to check from Eq. (8) that |L| = |1−p−q| implies that either |p| > |�| or |q| > |�|.
From Eq. (54), a number of properties can be obtained. The different values which make zero

the coefficients of �(t) and �′(t) separate those regions where different properties take place.
Particularly the values |p| = |�|, |q| = |�|, p = 0 and q = 0 are important, and also p = 1

2 and
q = 1

2 are relevant, given the expression for �.
The analysis would follow the lines of all previous analysis. However, the type of properties

that can be obtained depend on n in the very same definition of �k(p, q), because p and/or q

depend on n through L. Besides, there is an implicit dependence on n in the expressions of �(t)

and �′(t), which further complicates the analysis (particularly for analyzing the behaviour for
large n). The properties are doubly implicit in n and very difficult to handle. We will not insist on
analyzing this type of properties.
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