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Abstract. We present a method to compute efficiently solutions of systems of ordinary differ-
ential equations that possess highly oscillatory forcing terms. This approach is based on asymptotic
expansions in inverse powers of the oscillatory parameter, and features two fundamental advantages
with respect to standard ODE solvers: firstly, the construction of the numerical solution is more ef-
ficient when the system is highly oscillatory, and secondly, the cost of the computation is essentially
independent of the oscillatory parameter. Numerical examples are provided, motivated by problems
in electronic engineering.

1. Introduction. In this paper we are concerned with an initial-value problem
involving an ODE system of the form

y′(t) = Ay(t) + gω(t)f (y(t)), t ≥ 0, y(0) = y0, (1.1)

where gω is a rapidly oscillating scalar function of a frequency related to the oscillatory
parameter ω ≫ 1, while f : R

d → R
d is an analytic function. We further asume that

the spectral abcissa α[A] is nonpositive or that the logarithmic norm µ[A] is non-
positive, so that the solution of the linear problem y′(t) = Ay(t) remains bounded.

Differential equations of this type abound in a wide variety of different contexts,
notably in the modelling of circuits in Radio Frequency communication systems, see
for instance [5], [9], [10]. In a broader context, this setting corresponds to the situation
where a physical system modelled by the differential equation is subject to a high
frequency forcing term (which could for instance be an electromagnetic wave or a
mechanical excitation) and we wish to analyse the behaviour of the system on a time
scale which is much larger than the period of the forcing function.

Oscillatory systems of differential equations have been widely studied in the lit-
erature, but in most cases it is the linear part of the equation which is responsible for
the oscillatory character, for example when A has eigenvalues with large imaginary
part, see [7], [8]. In our case the matrix A will be independent of ω, therefore the
highly oscillatory behaviour of the solution originates solely in the forcing term.

Typical examples of highly oscillatory forcing terms in this context are

gω(t) = eiωt, gω(t) = eη cosωt, gω(t) = eη(t) cosωt. (1.2)

The first example involves just a Fourier oscillator, whereas the second and third
appear in the modelling of nonlinear circuits involving diodes and subject to various
amplitude and digital modulation formats, respectively.

In terms of the structure of the forcing function, a general framework is given by
modulated Fourier expansion (MFE), that is:

gω(t) =
∞∑

j=−∞

αj(t)e
ijωt, t ≥ 0. (1.3)

Modulated Fourier expansions have already been used in the context of geometric
integration of Hamiltonian systems, see [2] and [6, Ch. XIII], but it turns out that
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Fig. 1.1. Real (solid line) and imaginary part (dashed line) of the solution of (1.4) for ω = 10
(left) and ω = 100 (right).

they provide the natural framework for the study of this type of differential equations
as well. They allow us to treat not only periodic forcing terms (in which case the
coefficients αj(t) will be independent of t), but more general cases, since the forcing
term is periodic in the variable ωt but not necessarily in t.

In order to gain intuition about the expected behaviour of the solutions of such
type of differential equations, let us consider the scalar example

y′ = 2iy + eiωty2, t ≥ 0, y(0) = 1, (1.4)

whose exact solution is

y(t) =

(
1 + 2

ω

)
e2it

1 + 2−i
ω

+ i
ω
ei(2+ω)t

.

Note that y(t) is an O(ω−1) perturbation of a periodic function. We have sketched
in Fig.1.1 the real and imaginary parts of y.

Another example is given by the equation

y′ = iy − 5eiωty2, t ≥ 0, y(0) = 1. (1.5)

This example may look similar to the previous one, except that now the vector field
is dominated by the nonlinear, high frequency term. This is reflected by the plots in
Fig.1.2.

These examples and similar ones suggest the intuitive idea that the solution of a
system of ODEs with a highly oscillatory forcing term consists of a non-oscillatory base
function superimposed with small and very fast oscillations, and that the amplitude of
these oscillations decreases when ω grows. The presence of these very small oscillations
makes the problem notoriously difficult to solve numerically using standard ODE
routines like the ones available in Matlab or Maple, because one has to use an
exceedingly small stepsize in order to control the error.

The reason for the poor performance of classical numerical methods for solv-
ing ODEs in the presence of high oscillation lies at the very heart of the stan-
dard numerical theory, which is essentially based on Taylor expansion of the solu-
tion. In any numerical method of order p with step h, the error scales roughly like
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Fig. 1.2. Real (solid line) and imaginary part (dashed line) of the solution of (1.5) for ω = 10
(left) and ω = 100 (right).

hp+1y(p+1)(t). Since the derivatives of highly oscillatory functions grow very fast,
typically y(p+1)(t) = O(ωp+1), we require h to be extremely small in order to keep
the error down to an acceptable size.

In this paper we use ideas recently developed in the theory of highly oscillatory
problems to devise an alternative and efficient method to compute the solutions of
this type of equations. More precisely, we construct combined asymptotic-numerical
solvers, based on asymptotic expansions for large values of ω rather than Taylor
expansions. The procedure presents two remarkable properties compared to the stan-
dard discretization method of ODEs: firstly, the algorithm becomes more efficient for
large values of the oscillatory parameter, and secondly, the computational effort is
essentially independent of ω.

2. General setting. In order to justify the general form of the solution as a
base function superimposed with oscillations of decreasing amplitude when ω grows,
our first step is to write the solution of (1.1) using nonlinear variation of constants,
see [7]. More precisely, considering

y′(t) = Ay(t) + gω(t)f (y(t)), y(0) = y0

as a perturbation of the linear equation with the same initial value,

z′(t) = Az(t), z(0) = y0,

we have

y(t) = z(t) + etA
∫ t

0

gω(x)e−xAf(y(x)) dx (2.1)

= etAy0 + etA
∫ t

0

gω(x)e−xAf(y(x)) dx.

Our essential ansatz in constructing asymptotic-numerical solvers is that the so-
lution y(t) admits an asymptotic expansion of the form:

y(t) ∼

∞∑

s=0

1

ωs
ψs(t) ω ≫ 1, (2.2)
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where ψs(t) ∼ O(1), ω ≫ 1, for s ∈ Z+.1

Taking into account formula (2.1) and the structure of the forcing term in (1.3),
it makes sense to look for a solution which is periodic in the variable ωt. Actually,
a reasonable assumption in these conditions is that each ψs(t) in (2.2), except when
s = 0, has itself the form of a modulated Fourier expansion:

ψs(t) =

∞∑

j=−∞

as,j(t)e
ijωt, s ≥ 1. (2.3)

In order to satisfy the initial condition, we impose ψ0(0) = y(0) = y0, which
means that ψs(0) = 0 for s ≥ 1, or equivalently

∞∑

j=−∞

a0,j(0) = y0,

∞∑

j=−∞

as,j(0) = 0, s ≥ 1.

Instead of discretizing the highly oscillatory integral in (2.2) using standard
quadrature, a procedure which is very expensive and numerically not too reliable,
we will expand that integral in inverse powers of ω and then identify the functions
ψn(t) as the terms that multiply the same inverse power of the oscillatory parameter.
Equivalently, we will try to compute the coefficients of the MFE of the different terms
ψn(t). To this end, we note that since f is analytic, we can expand it into Taylor
series around ψ0, assuming that this term will give the main contribution:

f (ψ0 + θ) =

∞∑

m=0

1

m!
ϕm(ψ0,

m times
︷ ︸︸ ︷

θ,θ, . . . ,θ).

Here ϕm is an m-tensor related to the mth derivative of f at ψ0,

ϕ0(ψ0) = f(ψ0),

ϕ1(ψ0,θ) =
∂f(ψ0)

∂y
θ,

(ϕ2(ψ0,θ,θ))k =

d∑

i=1

d∑

j=1

θi
∂2fk(ψ0)

∂yi∂yj
θj , k = 1, 2, . . . , d,

etc. In general we can write

(ϕm(ψ0,θ, . . . ,θ))k =

d∑

i1=1

· · ·

d∑

im=1

∂mfk(ψ0)

∂yi1 · · · ∂yim
θi1θi2 · · · θim , k = 1, 2, . . . , d.

Note that each ϕm(ψ0,θ, . . . ,θ) is linear in each of the θks. Substituting the Taylor

1This ansatz can be generalised to a more general expansion, e.g.
P∞

s=0
ω−κsψ

s
(t), where

{κs}s≥0 is a strictly increasing nonnegative sequence such that lims→∞ κs = +∞, but for the
sake of simplicity we will restrict ourselves to this model.

4



expansion of f into (2.1), we have

y(t) ∼
∞∑

n=0

1

ωn
ψn(t, ω) (2.4)

∼ etAy0 + etA
∫ t

0

gω(x)e−xAf

(
∞∑

n=0

1

ωn
ψn(x, ω)

)

dx

= etAy0

+ etA
∞∑

m=0

1

m!

∫ t

0

gω(x)e−xAϕm

(

ψ0(x, ω),
∞∑

n1=1

ψn1
(x, ω)

ωn1
, . . . ,

∞∑

nm=1

ψnm
(x, ω)

ωnm

)

dx

= etAy0 + etA
∞∑

m=0

1

m!

∞∑

n1,...,nm=1

1

ωn1+···+nm

∫ t

0

γm,n(x)gω(x) dx,

where the term

γm,n(x) = e−xAϕm(ψ0(x),ψn1
(x), . . . ,ψnm

(x)).

is nonoscillatory. Once we express the functions ψn(t) as modulated Fourier series,
as in (2.3), we obtain:

y(t) ∼ etAy0 (2.5)

+ etA
∞∑

m=0

1

m!

∞∑

n1,...,nm=1

1

ω|n|

∞∑

j1,...,jm=−∞

∫ t

0

γm,n,j(x)e
i|j|ωxgω(x) dx,

where the nonoscillatory term is now

γm,n,j(x) = e−xAϕm(ψ0(x),an1,j1(x), . . . ,anm,jm(x)) (2.6)

and we have used the notation |j| = j1 + j2 + . . . jm.
This is the general form of the solution, and naturally the structure (and com-

plexity) of the ψn(t) functions will depend both on the particular oscillator gω(t) that
we are considering and on the nonlinear term f , through the ϕm functions.

Now we need to expand the integrand in (2.5) in inverse powers of ω, and for each
s ≥ 1 identify the functions ψs(t) as the terms that multiply the ω−s elements. For
this it is useful, given a multi-index n = (n1, n2, . . . , nm), to define the following sets:

Is = {(m;n) : m ∈ Z+,n ∈ N
m, |n| = s}, (2.7)

where again |n| := n1 + n2 + . . .+ nm. It is understood that I0 = {(0)}, and the first
few sets are

I1 = {(1; 1)}, I2 = {(1; 2), (2; 1, 1)}, I3 = {(1; 3), (2; 2, 1), (2; 1, 2), (3; 1, 1, 1)}.

Each value of s corresponds to terms that multiply the same inverse power of ω.
However, in order to determine how many terms we should add in each step in the
Taylor expansion of f and in the modulated Fourier expansion of the forcing term, we
must take into account the characteristics of the oscillator gω(x), since integration by
parts introduces additional inverse powers of ω. In this sense, we present the following
definition:
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Definition 2.1. We say that the oscillator gω(t) is soft if, given any C∞ function
h(t), it is true that

∫ t

0

h(x)gω(x) dx ∼

∞∑

k=1

1

ωk
[hk(t)σk(t, ω) − hk(0)σk(0, ω)], ω ≫ 1. (2.8)

We say that gω(t) is hard if

∫ t

0

h(x)gω(x) dx ∼ F [h] +

∞∑

k=1

1

ωk
[hk(t)σk(t, ω) − hk(0)σk(0, ω)]. (2.9)

Here the functions σk(t, ω) are independent of h, while hk(x) is a linear combi-
nation of h(x), h′(x), . . . , h(k−1)(x), and we assume that F is a linear operator.

Equivalently, and recalling formula (1.3), an oscillator is soft if α0 = 0 and hard
otherwise.

In the case of a soft oscillator, we remark that the expansion (2.8) begins with
terms of order O(ω−1). Therefore, in order to find the O(ω−s) terms in ψs(t), we
only need to consider an expansion up to the set Is−1.

In the case of hard oscillators, however, the oscillator itself will introduce a O(1)
term, which means both that the solution of the base equation ψ0(t) may not be
explicit and also that we need all the terms up to (and including) Is in order to
obtain ψs(t). That will necessarily include the function ψs(t) inside the integral,
giving an implicit integral (or differential) equation.

In any case, we will show in the examples below that this strategy will allow us to
construct increasingly accurate approximations to the solution y(t) by adding more
terms in (2.2). A very important point to bear in mind is that we do not solve any
oscillatory ODE to obtain the solution y(t). Instead, we construct ψ0(t), which is the
solution of a nonoscillatory equation, and then add subsequent terms ψs(t), which
are computed by finding the coefficients of the modulated Fourier expansion as,j(t)
and then assembling the Fourier expansion itself.

In striking contrast to what happens in the classical setting, note that our pro-
cedure is likely to be more efficient the larger ω is, since we will need fewer terms in
the asymptotic approximation to obtain similar accuracy. Moreover, observe that the
only time-stepping needed is when solving the ODE for the zeroth term ψ0(t), which
is nonoscillatory and hence affordable with standard algorithms.

3. The linear oscillator. Let us first consider the case of a Fourier oscillator
that involves a single frequency

gω(x) = eiωx.

Upon repeated integration by parts, it is straightforward to show that for any smooth
function h(t)

∫ t

0

h(x)eiωx dx ∼ −
∞∑

k=0

1

(−iω)k+1
[h(k)(t)eiωt − h(k)(0)]. (3.1)

This is the simplest example of a soft oscillator, and the zeroth term of the
expansion is available explicitly:

ψ0(t) = etAy0. (3.2)
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In order to find higher order terms, we substitute the asymptotic expansion (3.1)
in (2.5). Note that

∫ t

0

γm,n,j(x)e
i|j|ωxgω(x) dx =

∫ t

0

γm,n,j(x)e
i(|j|+1)ωx dx

∼ −

∞∑

k=0

ik+1

((|j| + 1)ω)k+1
[γ

(k)
m,n,j(t)e

i(|j|+1)ωt − γ
(k)
m,n,j(0)]

if |j| 6= −1, otherwise the integral is nonoscillatory. This is a simple example of
resonance (understood as the multiplication of oscillatory terms that results in a
nonoscillatory integral). However, as we will see later on, when the forcing term is
a Fourier oscillator that includes only the frequency ωt, this phenomenon does not
occur.

Grouping equal powers of ω, we obtain

ψs+1(t) = −etA
s∑

k=0

∑

(m,n)∈Is−k

ik+1

m!
× (3.3)




∑

|j|6=−1

1

(|j| + 1)k+1

[

γ
(k)
m,n,j(t)e

i(|j|+1)ωt − γ
(k)
m,n,j(0)

]

+
∑

|j|=−1

∫ t

0

γm,n,j(x) dx





for s ≥ 0. Observe that in order to construct the function ψs+1(t) we need to add
contributions from all the spaces from I0 to Is.

For instance, to compute ψ1(t) we substitute p = 0 above to get

ψ1(t) = −etA
∑

(m,n)∈I0

i

m!

∞∑

j1,...,jm=−∞

[

γm,n,j(t)e
i(|j|+1)ωt − γm,n,j(0)

]

= −ietA
[

γ0,(0),0(t)e
i(|j|+1)ωt − γ0,(0),0(0)

]

.

Now, since γ0,(0),0(x) = e−xAf(ψ0(x)), we obtain

ψ1(t) = i
[
etAf (y0) − eiωtf(etAy0)

]
. (3.4)

Similarly,

ψ2(t) = −ietA
∞∑

j=−∞

j 6=−1

1

j + 1

[

γ1,(1),j(t)e
i(|j|+1)ωt − γ1,(1),j(0)

]

− ietA
∫ t

0

γ1,(1),−1(x) dx+ etA
[

γ′
0,(0),0(t)e

i(|j|+1)ωt − γ′
0,(0),0(0)

]

.

Now observe that γ1,(1),−1(x) = 0, since a1,−1(x) ≡ 0 from the previous formula
for ψ1(t). Moreover,

γ1,(1),j(x) = e−xAϕ1(ψ0(x),a1,j(x)) = e−xA
∂f(ψ0(x))

∂y
a1,j(x)
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and

γ′
0,(0),0(x) = e−xA

[

−Af(ψ0(x)) +
∂f(ψ0(x))

∂y
ψ′

0(x)

]

.

Substituting the known values, it turns out that we have the following structure,
emphasising only highly oscillatory terms:

ψ2(t, ω) = a2,0(t) + eiωta2,1(t) + e2iωta2,2(t),

where

a2,0(t) = etA
{

Af (y0) −
∂f(y0)

∂y

[
Ay0 + 1

2f (y0)
]
}

,

a2,1(t) = −Af(etAy0) + etA
∂f(etAy0)

∂y
[Ay0 + f (y0)] ,

a2,2(t) = − 1
2

∂f (etAy0)

∂y
f (etAy0).

Observe that the number of frequencies present in each of the ψs(t) functions
grows as we increase s, and actually we have a straightforward pattern in accordance
with our ansatz (2.3), in a simpler setting:

Theorem 3.1. For s ≥ 0 the functions ψs(t) have the form of (finite) modulated
Fourier expansions:

ψs(t) =

s∑

j=0

as,j(t)e
ijωt,

where each as,j(t) is non-oscillatory, and indeed independent of ω.
Proof. The result is clear for s = 0, suppose that it holds for s. It follows from

the general formula (3.3) that

ψs+1(t) = −etA
s∑

k=0

∑

(m,n)∈Is−k

ik+1

m!

∑

0≤ji≤ni

i=1,...,m

1

(|j| + 1)k+1

[

γ
(k)
m,n,j(t)e

i(|j|+1)ωt − γ
(k)
m,n,j(0)

]

.

Note that

|j| + 1 ≤ |n| + 1 ≤ s− k + 1 ≤ s+ 1,

and therefore ψs+1(t) is indeed of the stipulated form and our ansatz is true. More-
over, the coefficients of the modulated Fourier expansion of ψs(t) can be written
explicitly in the form

as,0(t) = −etA
s∑

k=1

∑

(m,n)∈Is−k

1

m!

∑

0≤ji≤ni

i=1,...,m

ik

(|j| + 1)k
γ

(k−1)
m,n,j(0),

as,j(t) = etA
s∑

k=1

∑

(m,n)∈Is−k

1

m!

∑

0≤ji≤ni

i=1,...,m

ik

(|j| + 1)k
γ

(k−1)
m,n,j(t), j = 1, . . . , s.
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Fig. 3.1. Real part of the error in the approximation of the solution of (3.5) for ω = 100. Left
to right, es(t, ω) for s = 0, 1, 2.

We observe that this result rules out the possibility of resonance, as mentioned
before, since as,−1(t) = 0 for all s ≥ 0.

To illustrate the performance of the approximation, let us go back to the examples
from the introduction:

y′ = 2iy + eiωty2, t ≥ 0, y(0) = 1, (3.5)

y′ = iy − 5eiωty2, t ≥ 0, y(0) = 1. (3.6)

We can compute the first terms of the asymptotic approximation and compare
with the exact solution. We define the absolute error

es(t) = y(t) −

s∑

m=0

ψm(t)

ωm
,

for s ≥ 0. Figures (3.1) and (3.2) display the real part of the error for s = 0, 1, 2 for
ω = 100 and ω = 500 (the imaginary part follows a similar pattern).

We note that in place of gω(t) = eiωt, we can take a more general exponential
oscillator:

gω(t) = eiωg(t),

where g′ 6= 0 in [0, t]: in that case

∫ t

0

h(x)gω(x) dx ∼ −
∞∑

k=0

1

(−iω)k+1

[

hk(t)
eiωg(t)

g′(t)
− hk(0)

eiωg(0)

g′(0)

]

,

where

h0(x) = h(x), hk+1(x) =
d

dx

hk(x)

g′(x)
, k ∈ Z+.

The results can be extended to this case without any other conceptual difficulty,
at the price of more complicated algebra.
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Fig. 3.2. Same as figure 3.1 but with ω = 500.

4. The Expcos oscillator and digital modulation. Another generalisation
of the previous model that one can consider is given by a forcing term that has a
proper modulated Fourier expansion:

gω(t) =

∞∑

j=−∞

αj(t)e
ijωt.

In this case similar analysis is possible, although the general structure of the ψs(t)
functions is bound to be more complicated. Note in particular that if α0(t) 6= 0 then
the oscillator is of hard type, according to our previous definition.

4.1. General setting. An important case, significantly more complicated than
that of the Fourier oscillator, is given by

gω(t) = eη cosωt,

already considered in [3], [4]. The Fourier expansion of the oscillator is given in terms
of modified Bessel functions:

eη cosωt = I0(η) + 2

∞∑

m=1

Im(η) cosmωt

see [1, Eq. 9.6.34]. The series converges very fast for fixed values of η due to the
asymptotic behaviour of the modified Bessel functions for large orders, see for instance
[1, Eq. 9.7.7], and the convergence is also uniform for fixed values of t.

This expansion implies that this oscillator gω(t) introduces a non-oscillatory con-
tribution, since integration term by term gives

∫ t

0

h(x)gω(x) dx = I0(η)

∫ t

0

h(x) dx+ 2

∞∑

m=1

Im(η)

∫ t

0

h(x) cosmωxdx,

for any smooth function h(t). Therefore in this case gω(t) is a hard oscillator.
A more general case of this oscillator can be obtained by allowing η to vary

y′(t) = Ay(t) + eη(t) cosωtf(y(t)), t ≥ 0, y(0) = y0. (4.1)
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In a typical example in applications, the function η(t) will be piecewise constant

η(t) ≡ ηi, t ∈ [τi, τi+1) m ∈ Z+,

where

0 = τ0 < τ1 < τ2 < · · · and θ0, θ1, . . . ∈ R

are given. We suppose that

minω(τi+1 − τi) ≫ 1,

so the oscillator cosωt undergoes many oscillations in each interval [τi, τi+1]. Thus
we want to solve the ODE

y′(t) = Ay(t) + eη(t) cosωtf(y(t)), y(τi) = yi,

where t ∈ [τi, τi+1) and the initial values yi in each subinterval are given. Naturally,
if η(t) is constant we will set i = 0 and τi = 0. Also, in order to simplify notation, we
will omit the subscript i in the sequel, in the understanding that η or τ stand for ηi
or τi if needed.

As before, we assume that y(t) admits an asymptotic representation in inverse
powers of ω, where each term ψn(t) can be expressed as a modulated Fourier series:

ψn(t) =

∞∑

j=−∞

an,j(t)e
ijωt, n ∈ N. (4.2)

The first term, ψ0(t), obeys the base nonoscillatory ODE:

ψ′
0(t) = Aψ0(t) + I0(η)f (ψ0(t)), t ≥ 0, ψ0(τ) = y(τ). (4.3)

Note than, unlike what happened in the case of the Fourier oscillator, this base
equation is in general nonlinear, and the solution may be not be available analytically.
Yet, being nonoscillatory, it can be computed easily with conventional numerical
software.

Using the linearity of ϕm, we have

∞∑

n=0

1

ωn
ψn(t)

= etAy0

+
∞∑

m=0

1

m!

∞∑

n1,...,nm=1

1

ω|n|
etA
∫ t

τ

e−xAϕm(ψ0(x),ψn1
(x), . . . ,ψnm

(x))eη cosωx dx

= etAy0 + etA
∫ t

τ

e−xAf (ψ0(x))e
η cosω(x+τ) dx

+
∞∑

m=1

1

m!

∞∑

n1,...,nm=1

1

ω|n|

∞∑

j1,...,jm=−∞

etA
∫ t

τ

γm,n,j(x)e
i|j|ωxeη cosωx dx

where as usual

γm,n,j(x) = e−xAϕm(ψ0(x),an1,j1(x), . . . ,anm,jm(x)).
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Now we need an asymptotic expansion of the last integral in inverse powers of ω.
Given q ∈ N and a smooth function h(t), we observe that

∫ t

τ

h(x)eiqωxeη cosωx dx

∼ Iq(η)

∫ t

τ

h(x) dx +

∞∑

k=0

(−1)k

ω2k+1
[h(2k)(t)αq,k(t) − h

(2k)(τ)αq,k(τ)]

+

∞∑

k=0

(−1)k

ω2k+2
[h(2k+1)(t)βq,k(t) − h

(2k+1)(τ)βq,k(τ)],

where, for every q ∈ N, k ∈ Z+,

αq,k(x) = −i

∞∑

j=1

Iq−j(η)e
ijωx − Iq+j(η)e

−ijωx

j2k+1
,

βq,k(x) =

∞∑

j=1

Iq−j(η)e
ijωx + Iq+j(η)e

−ijωx

j2k+2
.

Since for all x ∈ R

αq,k(x) = α−q,k(x), βq,k(x) = β−q,k(x),

we can extend the definition of αq,k and βq,k to all q ∈ Z and obtain an asymptotic
expansion valid for all q ∈ Z, q 6= 0. Moreover, for q = 0 we have

α0,k(x) = Sk(x), β0,k(x) = Ck(x),

where

Sk(x) = 2

∞∑

m=1

Im(η)

m2k+1
sinmωx, Ck(x) = 2

∞∑

m=1

Im(η)

m2k+2
cosmωx. (4.4)

In the sequel we will omit the parameter η if no confusion arises, in order to
simplify notation. We also observe that given the asymptotic behaviour of the mod-
ified Bessel functions for large order m, the previous series converge absolutely and
uniformly for fixed values of η and k and for x ∈ R.

Using this expansion, we can write

y(t) ∼

∞∑

n=0

1

ωn
ψn(t)

= etAy0 +
∞∑

s=0

1

ωs

∑

(m,n)∈Is

1

m!

∞∑

j1,...,jm=−∞

{

I|j|(η)e
tA

∫ t

τ

γm,n,j(x) dx

+

∞∑

k=0

(−1)k

ω2k+1
etA
[

γ
(2k)
m,n,j(t)α|j|,k(t) − γ

(2k)
m,n,j(τ)α|j|,k(τ)

]

+
∞∑

k=0

(−1)k

ω2k+2
etA
[

γ
(2k+1)
m,n,j (t)β|j|,k(t) − γ

(2k+1)
m,n,j (τ)β|j|,k(τ)

]
}
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The procedure now consists of collecting all the O(ω−p) terms on the right and
equating them to ω−pψp(t). We do so separately for odd and even p. Thus, for any
p ∈ Z+,

ψ2p+1(t) =
∑

(m,n)∈I2p+1

1

m!

∞∑

j1,...,jm=−∞

I|j|(η)e
tA

∫ t

τ

γm,n,j(x) dx (4.5)

+

p
∑

k=0

∑

(m,n)∈I2(p−k)

(−1)k

m!

∞∑

j1,...,jm=−∞

etA
[

γ
(2k)
m,n,j(t)α|j|,k(t) − γ

(2k)
m,n,j(τ)α|j|,k(τ)

]

+

p−1
∑

k=0

∑

(m,n)∈I2(p−k)−1

(−1)k

m!

∞∑

j1,...,jm=−∞

etA
[

γ
(2k+1)
m,n,j (t)β|j|,k(t) − γ

(2k+1)
m,n,j (τ)β|j|,k(τ)

]

.

Likewise, for all p ∈ Z+,

ψ2p+2(t) =
∑

(m,n)∈I2p+2

1

m!

∞∑

j1,...,jm=−∞

I|j|(η)e
tA

∫ t

τ

γm,n,j(x) dx (4.6)

+

p
∑

k=0

∑

(m,n)∈I2(p−k)+1

(−1)k

m!

∞∑

j1,...,jm=−∞

etA
[

γ
(2k)
m,n,j(t)α|j|,k(t) − γ

(2k)
m,n,j(τ)α|j|,k(τ)

]

+

p
∑

k=0

∑

(m,n)∈I2(p−k)

(−1)k

m!

∞∑

j1,...,jm=−∞

etA
[

γ
(2k+1)
m,n,j (t)β|j|,k(t) − γ

(2k+1)
m,n,j (τ)β|j|,k(τ)

]

.

We remark that when we try to solve for the modulated Fourier coefficients of,
say, ψ2s+1(t), those coefficients appear on the right hand side under the integral sign
as well, due to the presence of the index (2p+1, (1, 1, . . . , 1)) ∈ I2p+1 in the first sum.
The standard procedure in this case is first to identify the coefficients a2s+1,j(t) for
j 6= 0 and then solve a differential (or integral) equation for the non-oscillatory term
a2s+1,0(t). Similar reasoning, with obvious changes, applies to the computation of
ψ2s+2(t).

We illustrate this idea in the next subsections by computing ψ1(t) and ψ2(t).

4.2. The first term. Using (4.5) with p = 0 we obtain:

ψ1(t) =
∑

(m,n)∈I1

1

m!

∞∑

j1,...,jm=−∞

I|j|(η)e
tA

∫ t

τ

γm,n,j(x) dx

+
∑

(m,n)∈I0

1

m!

∞∑

j1,...,jm=−∞

etA
[
γm,n,j(t)α|j|,0(t) − γm,n,j(τ)α|j|,0(τ)

]

=

∞∑

j=−∞

Ij(η)e
tA

∫ t

τ

γ1,(1),j(x) dx+ etA
[

γ0,(0),0(t)α0,0(t) − γ0,(0),0(τ)α0,0(τ)
]

.

Since for all x ∈ R

γ0,(0),0(x) = e−xAϕ0(ψ0(x)) = e−xAf (ψ0(x)),
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γ1,(1),j(x) = e−xAϕ1(ψ0(x),a1,j(x)) = e−xA
∂f(ψ0(x))

∂y
a1,j(x),

and α0,0(x) = S0(x), it follows that if we write ψ1(t) in modulated Fourier series,
then

ψ1(t) =
∞∑

j=−∞

a1,j(t)e
ijωt = etA

∞∑

j=−∞

Ij(η)

∫ t

τ

e−xA
∂f(ψ0(x))

∂y
a1,j(x) dx

+ f(ψ0(t))S0(t) − e(t−τ)Af(y(τ))S0(τ).

Note the presence of the coefficients a1,j(t) on both sides of the equation due to
the first index (1, (1)), as we mentioned before. Identifying coefficients we get

a1,j(t) =
−iIj(η)

j
f (ψ0(t)), j 6= 0,

and a1,j(t) = −a1,−j(t) for j ≥ 1, using the fact that for integer orders I−n(η) =
In(η), see for instance [1, Eq. 9.6.6]. The nonoscillatory term a1,0(t) is implicitly
defined by

a1,0(t) = etAI0(η)

∫ t

τ

e−xA
∂f(ψ0(x))

∂y
a1,0(x) dx − e(t−τ)Af (y(τ))S0(τ).

Observe that because of the symmetry of the coefficients a1,j(t) for j 6= 0, the
only remaining term in the sum is the one corresponding to j = 0. Multiplying by
e−tA, differentiating, multiplying by etA and rearranging term results in the ODE

a′
1,0(t) =

[

A+ I0(η)
∂f (ψ0(t))

∂y

]

a1,0(t), a1,0(τ) = −f(y(τ))S0(τ). (4.7)

In general, we cannot write the solution of (4.7) (with the given initial values)
explicitly, but it can be approximated very well with standard numerical methods for
ODEs, since there are no oscillatory components present. In fact, we can write:

a1,0(t) = −Ω(t)f(y(τ))S0(τ), (4.8)

where Ω(t) is the solution of the matrix ODE

Ω′(t) =

[

A+ I0(η)
∂f (ψ0(t))

∂y

]

Ω(t), Ω(τ) = I. (4.9)

Incidentally, note that this is the variational equation corresponding to the ODE (4.3).

Finally, assembling everything we obtain

ψ1(t) = f (ψ0(t))S0(t) − Ω(t)f (y(τ))S0(τ), (4.10)

Observe that ψ1(τ) = yi, which is consistent with the way we have imposed the
initial conditions in (4.3).
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4.3. The second term. Once we substitute p = 0 in (4.6), we obtain

ψ2(t) =
∑

(m,n)∈I2

1

m!

∞∑

j1,...,jm=−∞

I|j|(η)e
tA

∫ t

τ

γm,n,j(x) dx (4.11)

+
∑

(m,n)∈I1

1

m!

∞∑

j1,...,jm=−∞

etA
[
γm,n,j(t)α|j|,0(t) − γm,n,j(τ)α|j|,0(τ)

]

+
∑

(m,n)∈I0

1

m!

∞∑

j1,...,jm=−∞

etA
[
γ′
m,n,j(t)β|j|,0(t) − γ

′
m,n,j(τ)β|j|,0(τ)

]
.

The first term comprises two different sums, originating in the two indices in I2,
which are (m,n) = (1; 2) and (m,n) = (2; 1, 1). Specifically:

σ1(t) =
∞∑

j=−∞

Ij(η)e
tA

∫ t

τ

γ1,(2),j(x) dx =
∞∑

j=−∞

Ij(η)e
tA

∫ t

τ

e−xAϕ1(ψ0(x),a2,j(x)) dx,

and

σ2(t) = 1
2

∞∑

j1,j2=−∞

Ij1+j2(η)e
tA

∫ t

τ

γ2,(1,1),(j1,j2)(x) dx

= 1
2

∞∑

j1,j2=−∞

Ij1+j2(η)e
tA

∫ t

τ

e−xAϕ2(ψ0(x),a1,j1(x),a1,j2(x)) dx,

With regard this last sum σ2(t), we can prove the following
Proposition 4.1. The term σ2(t) satisfies:

σ2(t) = etAρ

∫ t

τ

e−xAϕ2(ψ0(x),f (ψ0(x)),f (ψ0(x))) dx

+ 1
2I0(η)S

2
0(τ)etA

∫ t

τ

e−xAϕ2(ψ0(x),Ω(x)f (y(τ)),Ω(x)f (y(τ))) dx + O
(
ω−1

)
,

where

ρ = I0(η)

∞∑

j=1

I2
j (η)

j2
.

Proof. We note that if we substitute the explicit value of the coefficients a1,j(t),
then we obtain

1
2

∞∑

j1,j2=−∞

Ij1+j2(η)e
tA

∫ t

τ

e−xAϕ2(ψ0(x),a1,j1(x),a1,j2(x)) dx,

= − 1
2

∑

j1,j2 6=0

Ij1+j2(η)
Ij1 (η)

j1

Ij2 (η)

j2
etA
∫ t

τ

e−xAϕ2(ψ0(x),f (ψ0(x)),f (ψ0(x)) dx,

+ 1
2I0(η)S

2
0 (τ)etA

∫ t

τ

e−xAϕ2(ψ0(x),Ω(x)f (y(τ)),Ω(x)f (y(τ))) dx + O(ω−1).
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Observe that when only one of the indices j1 or j2 is equal to 0 then all the terms
in the sum cancel because of the symmetry of the coefficients a1,j(t) with respect to
j, except when j1 = j2 = 0, which corresponds to the last integral above.

Now, using again the property that I−n(η) = In(η) for integer n and the fact that
we can reorder the double sum due to absolute convergence, we have

− 1
2

∑

j1,j2 6=0

Ij1+j2(η)
Ij1 (η)

j1

Ij2(η)

j2

= −

∞∑

j1,j2=1

Ij1 (η)Ij2 (η)

j1j2
[Ij1+j2(η) − Ij1−j2(η)]

= −

∞∑

j1,j2=1

Ij1 (η)Ij2 (η)Ij1+j2(η)

j1j2(j1 + j2)
(j1 − j2) + I0(η)

∞∑

j=1

I2
j (η)

j2

= I0(η)

∞∑

j=1

I2
j (η)

j2
,

since the first sum vanishes due to symmetry.
The second term in (4.11) yields

σ3(t) =

∞∑

j=−∞

[
ϕ1(ψ0(t),a1,j(t))αj,0(t) − etAϕ1(ψ0(τ),a1,j(τ))αj,0(τ)

]
.

Finally, the last one is

σ4(t) = etA
[

γ′
0,(0),0(t)β0,0(t) − γ

′
0,(0),0(τ)β0,0(τ)

]

= etA
[

γ′
0,(0),0(t)C0(t) − γ

′
0,(0),0(τ)C0(τ)

]

.

Note that γ0,(0),0(x) = e−xAf(ψ0(x)), and therefore

γ′
0,(0),0(x) = e−xA

[

−Af(ψ0(x)) +
∂f(ψ0(x))

∂y
ψ′

0(x)

]

,

where we can substitute the base equation ψ′
0(x) = Aψ0(x)+ I0(η)f (ψ0(x)). Assem-

bling everything together, we get:

∞∑

j=−∞

a2,j(t)e
ijωt =

∞∑

j=−∞

Ij(η)e
tA

∫ t

τ

e−xAϕ1(ψ0(x),a2,j(x)) dx (4.12)

+ etAρ

∫ t

τ

e−xAϕ2(ψ0(x),f (ψ0(x)),f (ψ0(x))) dx

+ 1
2I0(η)S

2
0(τ)etA

∫ t

τ

e−xAϕ2(ψ0(x),Ω(x)f (y(τ)),Ω(x)f (y(τ))) dx

+
∞∑

j=−∞

[ϕ1(ψ0(t),a1,j(t))αj,0(t) − etAϕ1(y(τ),a1,j(τ))αj,0(τ)]

+ etA
[

γ′
0,(0),0(t)C0(t) − γ

′
0,(0),0(τ)C0(τ)

]

.
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Identifying oscillatory terms, we deduce that for j 6= 0

a2,j(t) = −
∂f(ψ0(t))

∂y
f (ψ0(t))

∑

s6=0

Is(η)Ij−s(η)

js
+ etAγ ′

0,(0),0(t)
Ij(η)

j2
(4.13)

+ i
∂f(ψ0(t))

∂y
Ω(t)f (y(τ))S0(τ)

Ij(η)

j

In order to construct the term a2,0(t), we observe first that

∑

j 6=0

Ij(η)e
tA

∫ t

τ

e−xAϕ1(ψ0(x),a2,j(x)) dx

= −
∑

j 6=0

Ij(η)
∑

s6=0

Is(η)Ij−s(η)

js
etA
∫ t

τ

e−xA
[
∂f(ψ0(x))

∂y

]2

f(ψ0(x)) dx

+ 2

∞∑

j=1

I2
j (η)

j2
etA
∫ t

τ

∂f(ψ0(x))

∂y
γ′

0,(0),0(x) dx

= −2ρetA
∫ t

τ

e−xA
[
∂f(ψ0(x))

∂y

]2

f(ψ0(x)) dx

+ 2

∞∑

j=1

I2
j (η)

j2
etA
∫ t

τ

∂f(ψ0(x))

∂y
γ′

0,(0),0(x) dx.

Multiplying (4.12) by e−tA, differentiating and multiplying by etA, we get

a′2,0(t) =

[

A+ I0(η)
∂f (ψ0(t))

∂y

]

a2,0(t) +B(t), (4.14)

where

B(t) = ρ

(

ϕ2(ψ0(t),f (ψ0(t)),f (ψ0(t)) − 2

[
∂f(ψ0(t))

∂y

]2

f(ψ0(t))

)

(4.15)

+ 2
∞∑

j=1

I2
j (η)

j2
etA

∂f(ψ0(t))

∂y
γ ′

0,(0),0(t)

+ 1
2I0(η)S

2
0(τ)ϕ2(ψ0(t),Ω(t)f (y(τ)),Ω(t)f(y(τ))),

with the initial condition given by ψ2(τ) = 0, that is

a2,0(τ) = −
∑

j 6=0

a2,j(τ)e
ijωτ

=
∂f(y(τ))

∂y
f (y(τ))

∑

j 6=0

eijωτ
∑

s6=0

Is(η)Ij−s(η)

js
− γ ′

0,(0),0(τ)C0(τ)

+
∂f(y(τ))

∂y
f (y(τ))S2

0 (τ)

=
∂f(y(τ))

∂y
f (y(τ))

∞∑

s=1

Is(η)

s

∞∑

j=1

Ij−s(η) − Ij+s(η)

j
cos jωτ − γ′

0,(0),0(τ)C0(τ)

+
∂f(y(τ))

∂y
f (y(τ))S2

0 (τ).
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We note that for implementation purposes all these series should be truncated
once a certain prescribed accuracy is reached. Due to the very rapid decay of the
modified Bessel functions when the order increases, in most cases we need only to
consider a few terms.

4.4. Examples. In this section we present several examples that illustrate the
construction that we have explained in the previous sections. In all cases we will
compare the approximation given by the first few terms of the asymptotic-numerical
solver with the exact solution (which may be analytically available or either computed
numerically with standard Matlab routines up to prescribed accuracy).

We stress that the values of ω that we use are much smaller than the ones normally
present in applications. This restriction is essentially imposed by the fact that the
comparison with the exact solution should be reliable and affordable. Increasing ω
will benefit the asymptotic-numerical solver, since the approximation with a fixed
number of terms will be more accurate, and the computational cost will be roughly
similar.

In our first example we will take η(t) to be constant, and for simplicity we deal
with a scalar equation:

y′ = iy + ecosωty2, t ≥ 0, y(0) = 1. (4.16)

The exact solution

y(t) =
eit

1 −
∫ t

0 eix+cosωx dx

cannot be expressed in a finite manner by elementary functions.
The solution of (4.16) is periodic with period 2π. This is not easily visible from

the explicit form of y(t) but can be seen from our asymptotic expansion. It is enough
to show that the integral in y(t) is periodic of the given period. However, it follows
from the Expcos asymptotics that

∫ t

0

eix+cosωx dx ∼ −iI0(1)(eit − 1) + eit
∞∑

k=0

Sk(t)

ω2k+1
+ i

∞∑

k=0

1

ω2k+2
[Ck(t)e

it − Ck(0)],

where Sk(t) and Ck(t) are given by (4.4) and are clearly periodic with period 2π, as
of course is eit. Therefore, it follows at once that

∫ 2π

0

eix+cosωx dx = 0

and y is indeed periodic of period 2π. The base function satisfies the ODE

ψ′
0(t) = iψ0(t) + I0(1)ψ2

0(t), ψ0(0) = 1,

which can be solved analytically:

ψ0(t) =
eit

1 + iI0(1)(eit − 1)
.

Higher order functions ψs(t) can be obtained from the results of previous sections.
Note that we can take i = 0 and τ0 = 0 throughout, since η(t) is constant, and also

18



that ψs(t) ≡ 0 for s ≥ 3, which greatly simplifies the results. For instance, from (4.10)
we deduce that

ψ1(t) = S0(t)ψ
2
0(t),

since S0(0) = 0. Actually the variational equation (4.9) can be solved explicitly as
well, since

Ω(t) = exp

(

tA+ I0(1)

∫ t

0

∂f(ψ0(s))

∂y
ds

)

,

and in this case

I0(1)

∫ t

0

∂f(ψ0(s))

∂y
ds = 2I0(1)

∫ t

0

ψ0(s) ds = −2 log(1 + iI0(1)(eit − 1)),

and thus Ω(t) = e−itψ2
0(t).

The solution of the equation and the errors in the approximation when considering
the first few terms are sketched in Fig. 4.1.
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Fig. 4.1. The exact solution of (4.16) for ω = 100 (top left, real part in solid line and imaginary
part in dashed line) and the real part of the errors e0(t) (top right), e1(t) (bottom left) and e2(t)
(bottom right).

As a matter of fact, we can obtain more ψss by direct expansion. Thus, expanding
the integral in the denominator of y(t), we have

y(t) ∼
ψ0(t)

1 − 1
ω
S0(t)ψ0(t) −

i
ω2 [C0(t) − e−itC0(0)]ψ0(t) −

1
ω3S1(t)ψ0(t) + . . .

≈ ψ0(t) +
1

ω
S0(t)ψ

2
0(t) +

1

ω2
{i[C0(t) − e−itC0(0)]ψ2

0(t) + S2
0(t)ψ3

0(t)}

+
1

ω3
{S1(t)ψ

2
0(t) + 2iS0(t)[C0(t) − e−itC0(0)]ψ3

0(t) + S3
0(t)ψ4

0(t)}.
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Fig. 4.2. The exact solution of (4.16) for ω = 1000 (top left) and the real part of the errors
e0(t) (top right), e1(t) (bottom left) and e2(t) (bottom right).

Note that ψ1 is exactly as predicted by our theory.

We make a remark on the wide discrepancy of the error – up to three degrees of
magnitude. The reason is in the relative size of |y| in different parts of the period (cf.
Fig. 4.1 and 4.2). It is easy to check that

ψm(t) = Sm0 (t)ψm+1
0 (t) + lower-order terms in ψ0.

Since ψ0(t) ≈ y(t), this means that, when |ψ0(t)S0(t)| > 1, the mth component
ψm(t)/ωm scales roughly like |ψ0(t)S0(t)/ω|

m. On the other hand, when |ψ0(t)| is
small,

ψm(t) =

{
i[Cn−1(t) − e−itCn−1(0)]ψ2

0(t), m = 2n,
Sn(t)ψ

2
0(t), m = 2n+ 1

+higher-order terms in ψ0.

Hence, in this regime ψm(t)/ωm scales roughly like |ψ0(t)|
2/ωm. This explains the

different scaling of the error.

As a second example, we present an equation whose solution is not explicitly
available:

y′(t) = 2iy(t) + ecosωt tanh(y(t)), y(0) = 1. (4.17)

In this case, all the computations have to be carried out numerically in Matlab,
using a grid of points on the interval of interest. As a comparison, we have solved the
equation with the standard ode45 solver, using reltol and abstol equal to 10−12.

In order to construct the asymptotic-numerical solver, we need to solve the fol-
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Fig. 4.3. The exact solution of (4.17) for ω = 100 (top left, real part in solid line and imaginary
part in dashed line) and the real part of the errors e0(t) (top right), e1(t) (bottom left) and e2(t)
(bottom right).

lowing 3 × 3 (nonoscillatory) system:





ψ0(t)
Ω(t)
a2,0(t)





′

=






A 0 0

0 A+ I0(1)∂f(ψ0(t))
∂y

0

0 0 A+ I0(1)∂f(ψ0(t))
∂y










ψ0(t)
Ω(t)
a2,0(t)





+





I0(1) + f(ψ0(t))
0

B(t)



 ,

where in this example A = 2i, f(y(t)) = tanh(y(t)) and B(t) is given in (4.15). Note
that this system is significantly cheaper to solve than the original equation using
standard ODE routines, since it is nonoscillatory. Of course, it is possible to add more
terms if needed, for example a3,0(t), at the price of more complicated computations.

Once ψ0(t), Ω(t) and a2,0(t) are constructed (on a certain grid given by the
tolerance we impose in Matlab), we can compute ψ1(t) using (4.10). Note that in
this case τ = 0, so

ψ1(t) = S0(t)f(ψ0(t)) = S0(t) tanh(ψ0(t)),

which can be easily computed on the same grid as ψ0(t). Observe that the series S0(t)
converges fast for fixed t due to the rapid decay of the modified Bessel functions. The
same is true for the different series that we have to compute for the coefficients a2,j(t)
given in (4.13).

In Figures 4.3 and 4.4 we illustrate the approximations using ψs(t) for s ≤ 2.
For the sake of clarity and space we only plot the real part of the errors, since the
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Fig. 4.4. Same as Figure 4.3 but with ω = 1000.
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Fig. 4.5. The exact solution of (4.18) for ω = 100 (top left) and the real part of the errors
e0(t) (top right), e1(t) (bottom left) and e2(t) (bottom right).

imaginary part follows an analogous pattern. As before, we use the notation

es(t) = y(t) −

s∑

m=0

ψm(t)

ωm
, s ≥ 0.

The final example that we present includes a variable η. For simplicity we re-
strict ourselves to the case where η(t) is piecewise constant, and if fact we take η(t)
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Fig. 4.6. Similar to Figure 4.5, but with a different random grid and ω = 1000.

alternating between 1 and −1 on a grid that we generate randomly in Matlab. The
ODE that we take as an example is

y′(t) = 2iy(t) + eη(t) cosωte−y(t), (4.18)

with y(τi) = 1 fixed for all i. Figures 4.5 and 4.6 depict the solution and absolute
errors for ω = 100 and ω = 1000.
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