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Abstract

We introduce and analyze a framework and corresponding method for compressed sensing in infinite
dimensions. This extends the existing theory from finite-dimensional vector spaces to the case of separable
Hilbert spaces. We explain why such a new theory is necessary by demonstrating that existing finite-
dimensional techniques are ill-suited for solving a number of key problems.

This work stems from recent developments in generalized sampling theorems for classical (Nyquist
rate) sampling that allows for reconstructions in arbitrary bases. A conclusion of this paper is that one
can extend these ideas to allow for significant subsampling of sparse or compressible signals. Central to
this work is the introduction of two novel concepts in sampling theory, the stable sampling rate and the
balancing property, which specify how to appropriately discretize an infinite-dimensional problem.
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1 Introduction
Compressed sensing (CS) has, with little doubt, been one of the great successes of applied mathematics in the
last decade [16, 20, 21, 23, 25, 26, 33]. It allows one to sample at rates dramatically lower than conventional
wisdom suggests – namely, the Nyquist rate – provided the signal to be recovered is sparse in a particular
basis, and the sampling vectors are incoherent.

However, the standard theory of CS is finite dimensional. It concerns the recovery of vectors in some
finite-dimensional space (usually RN or CN ) whose nonzero entries with respect to a particular basis are
small in number in comparison to N . Herein lies a problem. Real-world signals are often analog, or
continuous-time, and thus are modelled more faithfully in infinite-dimensional function spaces [14]. Any
finite-dimensional model may therefore not be well suited to such problems.

Although this issue has been quite widely recognized [24, 56, 60], there have been few attempts made
thus far to extend the existing theory to infinite-dimensional models (see §1.4). The purpose of this paper is
to provide such a generalization.

To do this, we move away from the usual matrix-vector model and consider the following scenario. A
signal f is viewed as an element of a separable Hilbert space H, and its measurements are modelled as a
sequence of linear functionals ζj : H → C, j ∈ N, giving rise to the countable collection

ζ1(f), ζ2(f), ζ3(f), . . . (1.1)

of samples of f . Suppose now that the signal f is sparse or compressible in some orthonormal basis {ϕj}j∈N
ofH. The main questions we address in this paper are the following: can we recover f by subsampling from
the collection (1.1), and if so, how can this realized by a numerical algorithm? In doing so, we obtain a
framework for so-called infinite-dimensional compressed sensing in Hilbert spaces, valid for a large class of
sampling schemes {ζj}j∈N and reconstruction bases {ϕj}j∈N.
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This work stems from recent developments in classical sampling of signals. In [2, 3, 5] a sampling
theory, known as generalized sampling, was introduced for stable reconstructions of signals in arbitrary
bases {ϕj}j∈N from their samples (1.1) (see §1.3 and §3 for further details). The contribution of this paper
is a continuation of this work in which sparsity is exploited to allow for substantial subsampling.

1.1 An example
Magnetic Resonance Imaging (MRI) was one of the original motivations for CS [20]. Developed extensively
by the work of Lustig et al. [46], the application of CS in MRI is now a subject of intensive research.

However, the MRI problem is inherently infinite-dimensional, as are a number of related applications,
such as X-ray CT and electron microscopy [8]. In these problems, an image, modelled as a function f ∈ H =
L2(−1, 1)2, is measured by taking pointwise samples of its continuous Fourier transform. If the samples are
assumed to be taken on the usual Cartesian lattice, then the collection of measurements {ζj(f)}j∈N are
precisely the continuous Fourier coefficients of f . To put this example into the above formulation, one
usually assumes that f is approximately sparse in an appropriate orthonormal wavelet basis {ϕj}j∈N.

On the other hand, the standard means of applying CS techniques in this setting is based on discretiza-
tion. Namely, one replaces f by a finite vector (or array) of pixel values, and replaces the continuous Fourier
transform by its discrete analogue [34]. This gives a finite-dimensional recovery problem amenable to stan-
dard CS tools. Yet, as we explain further in §2.1, modelling the inherently infinite-dimensional problem in
this way can quite easily lead to problems due to samples mismatch, even in simple examples (see §2.1).
Moreover, such approaches are also susceptible to the well-known “inverse crime” [39].

Note that the above continuous/infinite-dimensional formulation of the MRI reconstruction problem has
recently been employed by Guerquin-Kern, Haberlin, Pruessmann & Unser [38, 39] (for earlier work, see
Fessler et al. [58]). However, there are currently no recovery guarantees for this problem. The general results
we prove in this paper seek to address this gap. For a demonstration of the advantages of the continuous
formulation in electron microscopy, we refer to [53].

This aside, the MRI problem also illustrates another aspect of this paper. In many problems of interest
the samples (1.1) are fixed, and cannot be altered. In MRI this is due to the particular design of the physical
scanner. Although much of research in CS has been devoted to the topic of designing good sampling systems
[16, 33], for many problems one does not necessarily have this luxury. Thus we require theorems and
techniques for infinite-dimensional CS that allows one to work with fixed measurements.

1.2 Discretizing infinite-dimensional problems
At this stage, it is worth asking whether or not a new framework is needed. In order to solve the above
problem one must at some stage discretize. It may therefore seem plausible that finite-dimensional CS
techniques and theory could be applied once one had restricted the problem from the Hilbert space H to a
suitable finite-dimensional space. If f is sparse in an, albeit countably-infinite, basis {ϕj}j∈N, it might seem
reasonable to treat the corresponding recovery problem using solely existing finite-dimensional CS tools.

In some limited cases this may be possible. However, as we discuss in §2, in general this problem cannot
be tackled in such a way. Indeed, ‘discretizing’ the problem so as to make it amenable to computations is
a subtle process (see §2). The most obvious discretizations may well destroy the original structure of the
problem. This means that exact (or, more generally, stable) recovery may not be possible since the key
structure that allows for subsampling is not carried over to the discretization

In this paper, we provide new techniques for discretizing the infinite-dimensional reconstruction prob-
lem. Loosely speaking, these are based on the following guiding principle: Seek to retain as much of the
infinite-dimensional structure and key properties of the original problem as possible when discretizing. By
following this principle we obtain a framework for infinite-dimensional CS that overcomes these potential
issues. Specifically, we first devise an appropriate infinite-dimensional formulation of the problem, and
then truncate carefully in the second step. This leads to a finite-dimensional problem which retains the key
features of the original problem, but which can be solved numerically.

It is worth noting that this principle is quite general and is by no means unique to this particular problem.
Whilst found in many areas of numerical analysis, most relevantly for this paper it was recently employed
in [40, 41] to solve the long-standing computational spectral problem. A number of ideas in this article stem
from [41], and the contributions of this paper may be viewed as a continuation of this work. Note that similar
versions of this principle have also been advanced by Stuart et al. for solving inverse problems [57].
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1.3 Generalized sampling (GS)
The framework we propose in this paper is based on recent developments in classical sampling known as
generalized sampling (GS) [2, 3, 5] (see also [10, 29, 43, 62, 63]). GS is a novel sampling theory which
incorporates the key issues of approximation and stability via the so-called stable sampling rate [5]. This
allows for guaranteed recovery of any signal in an arbitrary basis from a collection of its samples in a
manner which is both numerically stable and, in a certain sense, optimal. In this paper we extend this work
by showing that when the signal to be reconstructed is sparse or compressible, reconstruction can also be
performed with significant subsampling. We refer to the corresponding technique as generalized sampling
with compressed sensing (GS–CS).

One important instance of both GS and GS–CS is recovery from Fourier samples (the MRI problem,
in particular). Although classical Fourier analysis allows for reconstruction in terms of an infinite series
of complex exponentials, the slow convergence of this series and the appearance of the Gibbs phenomenon
[44] renders such approximations impractical. Nonetheless, in many circumstances it is well known that
the given signal can be well-represented (i.e. it is sparse or has rapidly decaying coefficients) in a new basis
of functions; be they splines, wavelets, curvelets, etc [31]. GS and GS–CS allow one to reconstruct in
such a basis in manner that is both accurate, numerically stable and, in the case of the latter, amenable to
subsampling when the signal is sparse or compressible.

1.4 Relation to other work and contributions of the paper
There have been a number of recent attempts to generalize CS to infinite dimensions. In [30, 47, 48], an
infinite-dimensional CS approach is described for analog-to-digital conversion based on a union of sub-
spaces signal model, which is related to previous research of finite rates of innovation [14, 27, 64]. In [42],
the approach of [30, 47, 48] was applied to inverse and ill-posed problems. The application of CS tech-
niques to the recovery of functions was considered by Rauhut & Ward. By devising an appropriate sampling
distribution to ensure a restricted isometry property, they prove near-optimal recovery guarantees for the
reconstruction of sparse sums of Legendre polynomials [52] or spherical harmonics [51]. Note that the sam-
pling mechanism in this work is limited to pointwise samples of the function itself, as opposed to its Fourier
transform. Hence it is not applicable to the MRI problem, for example.

Besides medical imaging, infinite-dimensional problems are found in other applications including radar,
sonar, and remote sensing [56]. Use of standard, finite-dimensional CS in such problems is susceptible to
gridding error (also known as basis mismatch) [22]. Although the setting here is somewhat different to
that which we consider in this paper, the same issue arises: poor discretization of an infinite-dimensional
problem leads to inferior reconstructions. Recent works [32, 60] have sought to address this by applying
essentially the same guiding principle followed in this paper. Closely related to this is the work of Candès &
Fernandez–Granda on super-resolution [17], wherein an analog model is employed for reconstruction from
low bandwidth Fourier samples using convex optimization.

Note that most of the above works describe CS in infinite dimensions for some particular class of prob-
lem, and do not address the general scenario of arbitrary sampling schemes {ζj}j∈N and reconstruction bases
{ϕj}j∈N in a Hilbert spacesH. Our GS–CS framework aims to do this. It is therefore a natural way to extend
standard finite-dimensional CS. In this light, it should not come as a surprise that certain finite-dimensional
CS results (specifically, those related to the incoherence-based theory of CS [18, 34]) become corollaries of
our main theorems.

Having said this, we remark that the intent of this paper is to present only a first step towards extending
CS fully to the Hilbert space setting. Finite-dimensional CS has been the subject of many papers over the
last decade (see [34] for a comprehensive treatment). Unsurprisingly, there are some key aspects of the
finite-dimensional theory whose extensions to infinite dimensions are either beyond the scope of this paper
or currently unknown. See §6 and §10 for further details.

Notation. In the remainder of the paper we use the following notation. If l2(N) is the standard space of
square-summable sequences in C we write ‖·‖ for its standard norm (all other norms will be specified).
Let {ej}j∈N be the natural basis on l2(N), and, for Γ ⊂ N define PΓ to be the orthogonal projection onto
cl(span{ej : j ∈ Γ}). If Γ = {1, . . . , N}, then we simply write PN . We shall also use similar notation
when working in finite-dimensional vector spaces. Finally, if U is a bounded operator on either l2(N) or CN ,
we write ‖U‖ for its induced operator norm.
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Figure 1: Graphs of fN,m(t) (left) and f(t)− fN,m(t) (right) against t for 2N = 256 and m = 130, where
fN,m(t) =

∑2N
j=1 ξjϕj(t) and ξ = {ξj}2Nj=1 is a minimizer of (2.3).

2 The need for an infinite-dimensional framework
Consider the following simple model problem, which will form the primary example throughout this paper:

Problem 2.1. Suppose that f ∈ L2(R) has support contained in [−1, 1], and let {ϕj}j∈N be the orthonormal
basis of Haar wavelets on L2(−1, 1). Define

ζj(f) = Ff(j/(2T )), j ∈ Z, (2.1)

to be the Fourier coefficients of f , where Ff denotes the Fourier transform of f , and T ≥ 1 is arbitrary.
Throughout, we shall take T = 1. Assume that f is sparse, or compressible, in the basis {ϕj}j∈N. Then the
problem is to recover f from a small number of the measurements (2.1).

Recall that f can be recovered from the infinite collection {ζj(f)}j∈Z via its Fourier series. However,
since f is known to be sparse in the Haar wavelet basis {ϕj}j∈N, this raises the possibility of reconstructing
f from a small and finite number of its samples, which is the focus of this paper.

2.1 The discrete model
Let us consider the simplest possible case, where f = χ[0,1/2) − χ[1/2,1) is the Haar mother wavelet and
is by definition one-sparse in the Haar basis. The usual approach to recover f used in applications such as
sparse MRI [46] involves two steps. First, one discretizes f to an equispaced grid of 2N points and replaces
the infinite collection of samples (2.1) by the finite vector

y = ζ(f) = {ζj(f) : j = −N + 1, . . . , N}, N ∈ N. (2.2)

Second, one uses a combination of the discrete Fourier and discrete wavelet transforms (DFT and DWT re-
spectively) to formulate the corresponding discrete recovery problem. Specifically, let Udf , Vdw ∈ C2N×2N

be the matrices of these transforms. The classical discrete approximation to the problem of inverting the
Fourier transform is then given by y = Udfx, where x is a vector approximating the grid values of f . Since
f is sparse in the Haar basis one may think that x0 = Vdwx is also sparse, and therefore we could recover f
perfectly from only relatively few of its samples y = ζ(f) by using standard CS techniques. In particular, if
Ω ⊂ {1, . . . , 2N}, |Ω| = m < 2N is chosen uniformly at random, one solves

min
η∈C2N

‖η‖l1 subject to PΩUdfV
−1
dw η = PΩy. (2.3)

If ξ is a minimizer of this problem, then one might expect ξ to agree with the vector x0 with high probability,
and hence we could recover f via x = V −1

dw x0.
To test whether this is the case or not, we consider an example with 2N = 256 and m = 130, i.e. we use

nearly 50% of the measurements in the range −N + 1, . . . , N . Figure 1 displays the reconstruction of f by
fN,m, where fN,m =

∑2N
j=1 ξjϕj and ξ is a minimizer of (2.3). As is evident, f is not recovered anywhere

near exactly, and the reconstruction fN,m computed from (2.3) commits a rather large error. This occurs
despite the fact that f is one-sparse Haar wavelet basis and we used m = 130 Fourier samples.
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Figure 2: Graphs of fN (t) (left) and f(t)− fN (t) (right) against t for 2N = 256.

2.1.1 The DFT destroys sparsity

The source of the poor reconstruction in (2.3) is the discretization used to approximate the continuous Fourier
transform of a function by the discrete Fourier transform a vector. The result is a mismatch between the data,
which are continuous Fourier samples, and their modelling as discrete Fourier samples.

To explain in more detail, consider the matrix U−1
df , which maps the vector of Fourier coefficients ζ(f)

of a function f to a vector consisting of pointwise values on an equispaced 2N -grid in [−1, 1]. This mapping
commits an error: for an arbitrary function f , the result is only an approximation to the grid values of f .
Indeed, consider the vector x ∈ C2N defined by Udfx = ζ(f). It is straightforward to see that x consists
precisely of the values of the function

fN (t) =
1

2

N∑
j=−N+1

Ff(j/2)eπijt, (2.4)

on the equispaced 2N -grid. This function is nothing more than the truncated Fourier series of f , and there-
fore the approximation resulting from modelling the continuous Fourier transform with Udf is equivalent to
replacing a function f by its partial Fourier series fN .

Now consider the discrete wavelet transform x0 = Vdwx ∈ C2N of x. The right-hand side of the equality
constraint in (2.3) then reads PΩUdfV

−1
dw x0, and therefore for the method (2.3) to be successful we require

x0 = Vdwx to be a sparse vector. However, this can never happen. Sparsity of x0 is equivalent to stipulating
that the partial Fourier series fN be sparse in the Haar wavelet basis. Yet the function fN consists of smooth
complex exponentials, and thus cannot have a sparse representation in a basis of piecewise smooth functions.
In other words, by using the DFT to discretize the problem, we have destroyed some of its key structure –
namely, the sparsity – thus going against the guiding principle of §1.2.

2.1.2 The DFT leads to the Gibbs phenomenon

Given that η is not sparse in Haar wavelets, suppose now, as an exercise, we forgo any subsampling and let
m = 2N . The problem (2.3) then has a unique solution η. However, the entries of η are not the Haar wavelet
coefficients of f , but rather those of fN . Thus, by solving (2.3) (both with and without subsampling) we
are not actually computing Haar wavelet coefficients of f , but those of the partial Fourier series fN instead.
Thus, we cannot expect to obtain a better (i.e. more accurate) reconstruction of f than fN .

Unfortunately, since f is piecewise smooth, fN is a very poor approximation to f . As N →∞, fN does
not converge uniformly to f , and only converges very slowly in the weaker L2 norm. One also witnesses
the Gibbs phenomenon, with its characteristic O (1) oscillations, near each jump in f . These effects are
visualized in Figure 2. The fact that (2.3) leads to a Haar wavelet approximation to fN , as opposed to f , can
be observed by noting the similarities between the left panels in Figures 2 and 1 respectively.

2.1.3 Relation to the inverse and wavelet crimes

The poor reconstruction seen above is due to a mismatch between the data and the model. Had the data been
simulated using the DFT, then no such problems would have occurred, and one would have seen perfect
recovery. However, this improvement is artificial and an example of the well-known inverse crime [39]. That
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is to say, unrealistic simulation of the data leads to spuriously good reconstructions, but when realistic data
is used (i.e. arising from the continuous Fourier transform) such as in the above examples, the reconstruction
quality substantially declines.

Besides this, the above approach also incurs the wavelet crime. Recall that the discrete wavelet transform
is an infinite-dimensional operator that takes as input the coefficients of the expansion of the function cor-
responding to the scaling function. The output of the discrete wavelet transform are the wavelet coefficients
as well as the scaling coefficients corresponding to the next level. In the discretization model above the
vector x contains approximate pointwise samples of the function f . Thus, at best we can interpret x as the
coefficient vector corresponding to an expansion using the scaling function of the Haar wavelet (which is the
step function). However, in all other cases of Daubechies wavelets (where the scaling is different from the
step function), the vector x0 = Vdwx is just an approximation to the actual wavelet coefficients of f . This
effect is referred to as the “wavelet crime” by Strang and Nguyen [55, p. 232].

2.2 Discretization via finite sections
Since discretization via the DFT caused the above problems, it may at first seem reasonable to overcome
these issues by replacing the DFT-DWT matrix UdfV

−1
dw by the new measurement matrix

UN =

 ζ1(ϕ1) · · · ζ1(ϕ2N )
...

. . .
...

ζ2N (ϕ1) · · · ζ2N (ϕ2N )

 . (2.5)

If Ω ⊂ {1, . . . , 2N}, |Ω| = m, is chosen uniformly at random, one now finds a minimizer ξ to the problem

min
η∈C2N

‖η‖l1 subject to PΩUNη = PΩζ(f), (2.6)

and forms the reconstruction fN,m =
∑2N
j=1 ξjϕj (note that in this case we have, for convenience, reindexed

the Fourier samples {ζj}j∈N over N rather than Z). Clearly this approach preserves the sparsity of the
original problem, unlike (2.3).

We now consider an example of (2.6) where N = 384 and f =
∑2N
j=1 αjϕj is such that |supp(f)| =

|{αj : αj 6= 0}| = 5. In Figure 3 we display the reconstruction given by (2.6) using m = 760 samples. Un-
fortunately, this reconstruction is still poor. Despite using 98% of its Fourier samples in the range 1, . . . , 2N ,
the function f is recovered nowhere near exactly by (2.6). Repeating the experiment with different random
draws of Ω yields very similar results.

Why does this happen? On the face of it, (2.6) looks like a standard CS problem: a measurement matrix
is formed by taking inner products of the first 2N elements of two orthonormal bases (the Fourier and Haar
wavelet bases in this case) and then one subsamples randomly from its rows. The issue lies with the fact that
UN is not an isometry: in fact, its condition number in this instance is at least 1016 in magnitude.

This lack of isometric structure can be traced to the underlying infinite-dimensionality of the problem. In
general, a matrix UN of the form (2.5) will only be an isometry if and only if the N basis elements span the
same space. This is clearly not the case in (2.5), where the sampling and reconstruction bases consist of the
first N (smooth) complex exponentials and (piecewise constant) Haar wavelets respectively. In other words,
simply thinking (since f has only finitely many non-zero Haar wavelet coefficients) that the problem can be
viewed as a finite-dimensional one in CN is problematic. As noted above, UN is not an isometry, whereas
the “infinite change of basis matrix”

U =

 ζ1(ϕ1) ζ1(ϕ2) · · ·
ζ2(ϕ1) ζ2(ϕ2) · · ·
...

...
. . .

 , (2.7)

formed by combining the full countably-infinite bases is. It is precisely the loss of this structure when
“discretizing” U via UN that is the source of the poor reconstruction observed above.

2.3 A new approach
With these two examples in mind, in the remainder of this paper we introduce a new approach that allows for
successful recovery by discretizing in a way that preserves the two key properties highlighted (sparsity and
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Figure 3: The errors f(t) − fN,m(t) against t (left) and f(t) − gÑ,m̃(t) (right). Note that fN,m requires
m = 760 samples whereas gÑ,m̃ requires only m̃ = 50 samples.

the isometric structure). This approach will be introduced formally in the next sections. However, we first
give a brief numerical demonstration. Let f(t) =

∑M
j=1 αjϕj(t) be as in §2.2, and let U be given by (2.7).

For Ñ ∈ N, we now choose Ω ⊂ {1, . . . , Ñ}, |Ω| = m̃, uniformly at random and compute a minimizer ξ to

inf
η∈l1(N)

‖η‖l1 subject to PΩPÑUPMη = PΩy, y = {ζ1(f), ζ2(f), . . .}, (2.8)

where M ∈ N, and let gÑ,m̃ =
∑M
j=1 ξjϕj be the reconstructed approximation to f . In Figure 3 we

apply this algorithm with Ñ = 1351, m̃ = 50 and M = 768. Note the significant improvement over
the approach of §2.2. In particular, when averaged over 50 trials, the error ‖f − gÑ,m̃‖L2 is found to be
roughly 1.15 × 10−11 in comparison to ‖f − fN,m‖L2 ≈ 2.43 for the previous approach. Moreover, this
new reconstruction uses fewer than 4% of the Fourier coefficients, whereas fN,m used roughly 98% and was
still a poor approximation.

The purpose of remainder of this paper is to explain precisely why (2.8) leads to such a marked improve-
ment. As we explain, the key to this is the judicious choice of the parameter Ñ , which is selected according
to what we refer to as the balancing property (see §5.1). This property guarantees a faithful discretization of
the operator U , which, unlike in (2.5) ensures that the isometry structure is approximately preserved when
discretizing with the finite matrix PÑUPM .

We note in passing that the notion of keeping the structure when discretizing infinite-dimensional oper-
ators is of course not new, and the delicate issues are indeed widely recognized. See, for example [11, 12],
although this framework is not specific to the CS setting.

3 Generalized sampling: signal recovery in infinite dimensions
Suppose thatH is a separable Hilbert space over C. Let {ϕj}j∈N be an orthonormal basis, f =

∑∞
j=1 αjϕj

and suppose that we have access to the countable collection of samples

ζ1(f), ζ2(f), ζ3(f), . . . , (3.1)

where ζj : H → C are continuous linear functionals on H. Our aim is to recover the coefficients {αj}j∈N,
and therefore f , from the samples (3.1). Before discussing how to recover infinite-dimensional sparse or
compressible signals, it is first necessary to address the classical case where no sparsity is assumed. Only
once this problem has been solved can one consider the issue of subsampling.

To do this we shall use the technique of generalized sampling (GS) [2, 3, 4, 5], which we now recap.
Under some assumptions on {ζj}j∈N (e.g. each ζj is continuous and ζj(·) = 〈·, ψj〉 where {ψj}j∈N is an
orthonormal basis ofH), we can view the full recovery problem as the infinite system of equations

Uα = ζ(f), (3.2)

where α = {α1, α2, . . .}, ζ(f) = {ζ1(f), ζ2(f), . . .} andU is the infinite measurement matrix (2.7). Clearly,
if we were able to invert U , and provided we had access to all samples of f , then we could recover α (and
hence f ) exactly. Of course, this is never the case in practice and so we instead consider truncations of (3.2),
and look to compute approximations α̃1, . . . , α̃N to the first N coefficients of α.
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3.1 Uneven sections and generalized sampling (GS)
The most obvious approach for discretizing (3.2) follows by taking a finite section UN , i.e. the leadingN×N
submatrix of U , and solving the resulting N × N linear system. However, finite sections can be extremely
problematic in practice, leading in general to both poor approximations and numerical instability [2, 5]. As
noted in §2.2, this is due to the loss of isometric structure when discretizing U via UN .

Fortunately, there is a simple way to overcome the problems associated with the finite section method,
based on taking rectangular, as opposed to square, sections of U (see [2, 35] and references therein). In
particular, we replace the finite section method with

Aα̃[M ] = PMU
∗PNζ(f), A = PMU

∗PNUPM , (3.3)

where M ∈ N (the number of coefficients α̃1, . . . , α̃M computed) is appropriately chosen (typically M ≤
N ). The result is known as generalized sampling (GS). Note that A = (PNUPM )∗PNUPM , where
PNUPM is the N ×M uneven section of U .

The main idea now is to allow M and N to vary independently of each other – in particular, selecting
M ≤ N sufficiently small – to ensure a numerically stable and accurate reconstruction of the first M
coefficients α1, . . . , αM . To this end, the main theorem proved in [2, 5] is as follows:

Theorem 3.1. Let U ∈ B(l2(N)) be an isometry and suppose that α ∈ l2(N) satisfies Uα = ζ(f) for some
ζ(f) ∈ l2(N). Let N0 be the least N such that CN,M < 1, where

CN,M = ‖PM − PMU∗PNUPM‖. (3.4)

Then there is a unique solution α̃[M ] to (3.3) and we have the sharp bound

‖α− α̃[M ]‖ ≤ 1√
1− CN,M

‖P⊥Mα‖. (3.5)

It can be shown that the quantity CN,M – a measure of how close the uneven section PNUPM is to an
isometry – tends to zero as N →∞, for any fixed M . Thus, α̃[M ] can be made arbitrarily close to PMα (the
best approximation to α from PM (l2(N))) by varying N suitably. Furthermore, the method is also stable,
since the condition number of the matrix A scales like 1/

√
1− CN,M [5]. That is to say, precisely the

same quantity that ensures that the isometric structure of U is approximately retained by the discretization
PNUPM also guarantees accuracy and numerical stability of the reconstruction.

In practice, we need a way in which to quantify the required scaling of N and M . To do this, in [5] the
stable sampling rate

Θ(M ; θ) = min
{
N ∈ N : CN,M < 1− θ2

}
, θ ∈ (0, 1), (3.6)

was introduced. In particular, sampling at a rate N ≥ Θ(M ; θ) ensures that
√

1− CN,M ≥ θ, and therefore
stability and accuracy of α̃[M ] up to the magnitude of θ.

Remark 3.2 Note that Θ(M ; θ) can be computed numerically [5], since CN,M is just the 2-norm of an
M ×M matrix (see (3.4)). Hence the conditions of Theorem 3.1 can be verified a priori via a straightfor-
ward calculation. Analytical bounds are also possible [2, 3, 5, 6]. In [6] it was proved that Θ(M ; θ) ∼ c(θ)M
for Fourier sampling with wavelets as the reconstruction system, the principal example of this paper. Typi-
cally, c(θ), whilst greater than one, is not too large. However, any attempt to sample much below this rate
necessarily fails. In [6] it was also shown that setting N = M (this corresponds to the finite section), or
in fact N = c̃M for any c̃ less than some critical threshold c0 > 1, leads to exponential instability and
divergence. For some earlier related results, see [35].

3.2 Generalized sampling with Fourier samples
Suppose {ζj(f)}j∈Z correspond to the Fourier samples (2.1). In practice, the Fourier series (2.4) based on
the first N samples leads to a very poor reconstruction of f . However, suppose now we know another basis
{ϕj}j∈N in which f is well represented. We can then apply GS to obtain an improved reconstruction

fN,M =

M∑
j=1

α̃jϕj , (3.7)
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Figure 4: The errors f(t)− fN (t) (left) f(t)− fN,M (t) (right) against t for N = 51 and M = 12.

in this basis, where the coefficients α̃j are the solution of (3.3). The key point is that, if we know that f is
well-represented in {ϕj}j∈N, then we can recover f optimally (up to a multiplicative constant) in terms of
the first M basis function ϕ1, . . . , ϕM using only its first N Fourier coefficients.

To demonstrate, consider the function f(t) = t5e−t, t ∈ [−1, 1]. Suppose we can sample the Fourier
coefficients of f , namely, {Ff(j/2)}j∈Z. To reconstruct f from these samples we will consider two different
techniques. First, we test the truncated Fourier series fN defined in (2.4). Due to the fact that f is not periodic
we cannot expect rapid convergence of fN to f . However, GS allows us to reconstruct in any basis. Thus,
(due to analyticity of f ) we will choose the reconstruction basis {ϕj}j∈N consisting of orthonormal Legendre
polynomials on [−1, 1] and define fN,M as in (3.7). In Figure 4 we have displayed the errors f − fN and
f − fN,M . Note that both reconstructions, fN and fN,M , use the same samples, yet the improvement of
fN,M over fN is significant: anO (1) error is reduced to roughly machine precision. We remark that for this
choice of reconstruction basis the stable sampling rate Θ(M ; θ) is quadratic in M [3]. Moreover, a lower
scaling (in particular, N = M ) necessarily results in extreme ill-conditioning [9].

4 Infinite-dimensional compressed sensing
We are now in a position to introduce sparsity and subsampling into the reconstruction problem. The infinite-
dimensional compressed sensing approach we introduce next is based on the ideas of generalized sampling
and we refer to it as generalized sampling with compressed sensing (GS–CS).

4.1 Sparsity and compressibility in infinite dimensions
First, we need to notions of sparsity and compressibility in infinite dimensions. We shall say that f =∑∞
j=1 αjϕj is sparse in the basis {ϕj}j∈N if there exists an M ∈ N such that

∆ = supp(f) ⊂ {1, . . . ,M} supp(f) = {j ∈ N : αj 6= 0}, (4.1)

Note that we do not know ∆, but we usually have estimates for |∆| and M . If |∆| = r, we say that f is
(r,M)-sparse in the basis {ϕj}j∈N.

It is important in this definition that the nonzero entries of f are restricted to some finite bandwidth M .
We cannot expect stable recovery from a finite number of samples if the |∆| nonzero entries are allowed to
have arbitrary locations in N, regardless of the reconstruction algorithm used [15]. This is one of several
ways in which infinite-dimensional CS differs from its finite-dimensional counterpart, and means that in
practice so-called uniform recovery is not achievable in infinite dimensions without bandwidth restrictions.
We discuss this point further in §10.

Typically, f will not be perfectly sparse, and moreover, exact knowledge of the effective sparsity |∆|
and bandwidth M may be lacking. In finite-dimensional CS, it is standard to address this by considering
compressible signals, i.e. those whose r-term approximation error decays rapidly. In the infinite-dimensional
setting, we require a slightly different notion that takes into account the bandwidth M . To this end, we let

σr,M (α) = min{‖α− η‖l1 : η is (r,M)-sparse},

9



be the error of the best approximation of f by a (r,M)-sparse vector. Loosely speaking, we shall say that f
is compressible if this term is small.

4.2 Models
Having defined sparsity, we now introduce the signal models we consider in the remainder of this paper:

(i) Semi-infinite dimensional model. Here we assume f is either sparse with bandwidth M , or that

f = g + h, ∆ = supp(g) ⊂ {1, . . . ,M}, supp(h) = {1, . . . ,M}. (4.2)

In other words, f is (r,M)-compressible for some r and σM,M (x) = 0. This model is semi-infinite
dimensional: although f has only finite support in {ϕj}j∈N, we may draw samples from the countable
collection (3.1).

(ii) Fully-infinite dimensional model. Here we consider the significantly more general setting:

f = g + h, ∆ = supp(g) ⊂ {1, . . . ,M}, supp(h) ⊆ N. (4.3)

This model is termed fully infinite-dimensional since the support of f can be infinite.

4.3 Generalized sampling with compressed sensing (GS–CS)
Suppose now that f =

∑∞
j=1 αjϕj is sampled via {ζj}j∈N, and let Ω ⊆ N of size |Ω| = m ∈ N be the index

set of the measurements taken. We first propose the infinite-dimensional optimization problem

min
η∈l1(N)

‖η‖l1 subject to PΩUη = PΩζ(f), (4.4)

where U is the infinite matrix (2.7) and ζ(f) = {ζ1(f), ζ2(f), . . .} is the infinite vector of samples.
Recall that GS relies on a well-posed infinite-dimensional recovery problem (3.2) before discretization

can proceed. Seeking similar notions for (4.4), we are led to the following questions:

(i) How do we choose Ω? Obviously there is no unique choice, but it makes sense to choose Ω uniformly
at random from {1, . . . , N}, where N ∈ N is some fixed number. This raises the question following
question: how large must N be?

(ii) Suppose that η is a minimizer of (4.4) (note that η need not be unique). How large is ‖η−α‖, where α
is the infinite vector of coefficients of f in the basis {ϕj}j∈N. In particular, how does ‖η−α‖ depend
on both m (the total number of samples) and N (the range from which the samples are drawn)?

(iii) If f is exactly sparse in {ϕj}j∈N, do we recover its coefficient vector α exactly (with high probability)
from (4.4), and what are the conditions on m and N that ensure this recovery?

Suppose for the moment that we have answers to these questions. Besides special circumstances, we cannot
solve (4.4) numerically, hence we must discretize. For this, we follow the same ideas that lead to generalized
sampling. Thus, we introduce a parameter k ∈ N and consider the finite-dimensional optimization problem

min
η∈CM

‖η‖l1 subject to PΩUPkη = PΩζ(f). (4.5)

We refer to this as generalized sampling with compressed sensing (GS–CS).
This formulation leads to a further set of questions:

(iv) When will (4.5) have a solution? Note that (4.5) need not have a solution for all k, since PΩζ(f) need
not be in the range of PΩUPk (although, as we shall show, this is always the case for sufficiently large
k). However, this raises the following question: will solutions of (4.5) converge to solutions of (4.4)
as k →∞?

(v) If f is not sparse but compressible, how large is the error ‖η − α‖ when η is a solution to (4.5) and α
is the vector of coefficients of f? In particular, if f belongs to either of the models (4.2) or (4.3), can
‖η − α‖ be bounded above in terms of σr,M (f) for appropriate r and M?

10



Answers to these questions will be provided in §6, where we state the main results of this paper.

Remark 4.1 The reader may at first be concerned that replacing (4.5) by (4.4) is problematic since there is no
possibility with (4.5) of recovering signals for which supp(f) is not fully contained in the range {1, . . . , k}.
However, recall that we cannot, with any algorithm, expect stable recovery of coefficients with arbitrary
locations in N. So there is no issue with replacing (4.4) by (4.5) provided k is chosen sufficiently large (see
question (iv)).

5 Additional notation and definitions
We now introduce some additional notation that will be used in the remainder of this paper. From now on,
let H = l2(N), and if ξ ∈ H and j ∈ N, then write ξ(j) = ξj = 〈ξ, ej〉. For Γ ⊂ N, we denote the natural
embedding operator from l2(Γ) to H by ιΓ. Note that ι∗Γη = η|Γ for η ∈ H. For any vector ξ ∈ H we write
supp(ξ) = {j ∈ N : ξ(j) 6= 0}, and we define the sign sgn(ξ) ∈ l∞(N) of ξ ∈ l∞(N) as follows:

sgn(ξ)(j) =

{
ξ(j)/|ξ(j)| if ξ(j) 6= 0

0 otherwise.

For an operator U ∈ B(H) we let

υ(U) = sup
i,j∈N

|uij |, uij = 〈Uej , ei〉, (5.1)

be the coherence parameter, i.e. the max norm of the operator U with respect to {ej}j∈N. Also, we define
the maximum row norm of U by ‖U‖mr = supi∈N(

∑
j∈N |uij |2)1/2. This quantity forms a vector space

norm on the vector space of all infinite matrices (although not an algebra norm). Finally, for convenience,
we define the following function that will be used frequently in the exposition. For M ∈ N and U ∈ B(H)
let ω̃M,U : {1, . . . ,M} × R+ × N→ N ∪ {0} be given by

ω̃M,U (r, s,N) =

∣∣∣∣∣∣∣
i ∈ N : max

Γ1⊂{1,...,M},|Γ1|=r
Γ2⊂{1,...,N}

‖PΓ1
U∗PΓ2

Uei‖ > s


∣∣∣∣∣∣∣ . (5.2)

Observe that the mapping s 7→ ω̃M,U (r, s,N) is a decreasing function. Moreover, since

‖PΓ1U
∗PΓ2Uei‖ ≤ ‖PΓ1U

∗PΓ2‖‖PΓ2Uei‖ ≤ ‖PMU∗PN‖‖PNUP⊥i−1‖,

where the term ‖PNUP⊥i−1‖ is decreasing in i → ∞, we see that can be bounded above by the simpler, but
admittedly less sharp quantity

ω̃M,U (r, s,N) ≤ min
{
i ∈ N : ‖PMU∗PN‖‖PNUP⊥i ‖ ≤ s

}
. (5.3)

5.1 The balancing property
For GS, the stable sampling rate (3.6) determines how to discretize the recovery problem in line with the
principle of §1.2. For GS–CS we require an analogous quantity, known as the balancing property.

Definition 5.1. Let U ∈ B(H) be an isometry and M, |∆| ∈ N. Then N and m satisfy the weak balancing
property with respect to U, M and |∆| if

‖PMU∗PNUPM − PM‖ ≤

(
4

√
log2

(
4N
√
|∆|/m

))−1

, (5.4)

max
|Γ|=|∆|,Γ⊂{1,...,M}

‖PMP⊥Γ U∗PNUPΓ‖mr ≤
1

8
√
|∆|

. (5.5)

We say that N and m satisfy the strong balancing property with respect to U, M and |∆| if (5.4) holds, and
(5.5) is replaced by

max
|Γ|=|∆|,Γ⊂{1,...,M}

‖P⊥Γ U∗PNUPΓ‖mr ≤
1

8
√
|∆|

. (5.6)
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The balancing property dictates how large a bandwidth M the |∆| nonzero coefficients can lie, given m
measurements in the range {1, . . . , N}. Note that there is a strong analogy between this and the stable sam-
pling rate (3.6), the main differences being due to the additional complications that enter when subsampling.
Indeed, condition (5.4) ensures that PNUPM is close to an isometry, and is very similar to (3.6).

The following proposition establishes that the balancing property is well defined:

Proposition 5.2. If U , M and |∆| are as in Definition 5.1, then there always exists integers N and m that
satisfy the weak and strong balancing properties with respect to U, M and |∆|.

Proof. First let m = cN for some 0 < c < 1. Now note that since PN → I strongly as N → ∞ we
have that PNU → U strongly. However, for any Γ ⊂ N with |Γ| < ∞ we have that PNUPΓ → UPΓ in
norm as N → ∞ by compactness. Notice also that ‖V ‖mr ≤ ‖V ∗‖ for any V ∈ B(H). The fact that U
is an isometry now shows that the left-hand sides of (5.4)–(5.6) can be made arbitrarily small by taking N
sufficiently large.

Remark 5.3 The inequality in (5.5) is somewhat inconvenient. However, it can be replaced by the far
simpler, although stronger, condition

‖PMU∗PNUPM − diag(PMU
∗PNUPM )‖mr ≤

1

8
√
|∆|

. (5.7)

Here diag(B) denotes the diagonal part of the matrix B. In particular, condition (5.7) is the requirement
on the magnitude of the off-diagonal entries of the matrix PMU

∗PNUPM . In much the same manner,
(5.6) can also be replaced by the much more convenient (however stronger) condition ‖U∗PNUPM −
diag(U∗PNUPM )‖mr ≤ 1

8
√
|∆|
.

6 Main results
We now present our main results. Proofs of these results form the content of the remainder of this paper. To
avoid pathological examples we from now on assume that the sparsity r = |∆| ≥ 3.

6.1 The semi-infinite dimensional model
The first results concern the semi-infinite dimensional model (see §4.2):

Theorem 6.1. Let U ∈ B(H) be an isometry,M ∈ N, ε > 0 and suppose that x0 ∈ l∞(N) with supp(x0) =
∆, where ∆ ⊂ {1, . . . ,M}. Suppose that N and m satisfy the weak balancing property with respect to U,
M and |∆|, and let Ω ⊂ {1, . . . , N} be chosen uniformly at random with |Ω| = m. If ζ = Ux0 then, with
probability exceeding 1− ε, the problem

inf
η∈l1(N)

‖η‖l1 subject to PΩUPMη = PΩζ, (6.1)

has a unique solution ξ and this solution coincides with x0, provided that m satisfies

m ≥ C ·N · υ2(U) · |∆| ·
(
log
(
ε−1
)

+ 1
)
· log

(
MN

√
|∆|

m

)
, (6.2)

for some universal constant C. Furthermore, if m = N then ξ is unique and ξ = x0 with probability 1.

This theorem states that a sparse signal x0 can be recovered perfectly (with high probability) by sub-
sampling from the coefficients ζ, provided (5.4), (5.5) and (6.2) hold. The main estimate (6.2) is similar to
a standard finite-dimensional CS bound, in that it relates the number of measurements m to the coherence
υ(U), the sparsity |∆| and several log factors. The primary difference is that the parameter N in the estimate
(the range from which the samples Ω are drawn) differs from the term M (the range of ∆). The precise
relation between the two is given by (5.4) and (5.5), i.e. the weak balancing property. Note that this result
addresses the questions (i) and (iii) posed in §4.
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Remark 6.2 Much like the stable sampling rate (see Remark 3.2), the weak and strong balancing properties
depend completely on the matrix U . In particular, there is no universal choice (for all isometries U ) of N
given M . For analysis of the balancing properties in the case of the Fourier/wavelets matrix (in which case
N can be taken to be linear in M , up to log factors) we refer to [7, 50].

Recall that the second scenario in the semi-infinite dimensional model corresponds to signals y0 = x0+h,
where x0 is sparse and supp(h) ⊂ {1, . . . ,M}. The following theorem concerns this case:

Theorem 6.3. Let U ∈ B(H) be an isometry, M ∈ N, ε > 0 and suppose that y0 ∈ l∞(N) with supp(y0) ⊂
{1, . . . ,M}. Suppose that N and m satisfy the weak balancing property with respect to U, M and |∆|, and
let Ω ⊂ {1, . . . , N} be chosen uniformly at random with |Ω| = m. If ζ = Uy0 and ξ ∈ H is a minimizer of
(6.1) then, with probability exceeding 1− ε, we have that

‖ξ − y0‖ ≤ 8

(
1 +

2N

m

)
σr,M (y0), r = |∆|, (6.3)

provided m satisfies (6.2). If m = N then (6.3) holds with probability 1.

This theorem demonstrates recovery for compressible signals of the form (4.2). Specifically, we wit-
ness perfect recovery, up to an error determined by the best (r,M)-term approximation and a constant
proportional to N/m (see Remark 6.7 below). In particular, this result answers question (v) for the semi
infinite-dimensional model.

6.2 The fully infinite-dimensional model
The semi-infinite dimensional model (4.2) places the restriction that the support of the nonsparse term h is
contained in {1, . . . ,M}. As discussed in §3, this assumption is quite rare in practice, and a more realistic
setting is provided by the fully infinite-dimensional model in which we assume that y0 = x0 + h, where x0

is sparse and |supp(h)| is infinite.
To address this setting, it is first necessary to consider the infinite-dimensional optimization (4.4):

Theorem 6.4. Let U ∈ B(H) be an isometry, ε > 0 and suppose that y0 ∈ l1(N). Suppose that N and
m satisfy the strong balancing property with respect to U, M and |∆| and let Ω ⊂ {1, . . . , N} be chosen
uniformly at random with |Ω| = m. If ζ = Uy0 and ξ ∈ H is a minimizer of

inf
η∈l1(N)

‖η‖l1 subject to PΩUη = PΩζ, (6.4)

then

‖ξ − y0‖ ≤ 8

(
1 +

2N

m

)
σr,M (y0), r = |∆|, (6.5)

with probability exceeding 1− ε, provided

m ≥ C ·N · υ2(U) · |∆| ·
(
log
(
ε−1
)

+ 1
)
· log

(
ωN
√
|∆|

m

)
, (6.6)

where ω = ω̃M,U (|∆|, s,N) (recall (5.2)), s = m

128N
√
|∆| log(e4ε−1)

andC is a universal constant. Ifm = N

then (6.5) holds with probability 1.

Remark 6.5 Using (5.3), the quantity ω in (6.6) can also be replaced by a much more convenient (and of
correspondingly less sharp) estimate. In particular we have that ω ≤ M̃ , where

M̃ = min

{
r ∈ N : ‖PNUP⊥r ‖ ≤

m

128N
√
|∆| log(e4ε−1)

}
.

Observe that ‖PNUP⊥r ‖2 = ‖PNUU∗PN − PNUPrU∗PN‖, which is similar to the quantity Cr,N intro-
duced in (3.4). Hence, M̃ can be estimated in much the same way the stable sampling rate is estimated in
GS (see Remark 3.2). For the case of the Fourier/wavelets matrix, we refer to [7, 50].
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This theorem, much like Theorem 6.3, confirms recovery of y0 up to an error determined solely by
σr,M (y0). Note that it provides answers to questions (i)–(iii) posed in §4. However, observe that the
optimization problem (6.4) is infinite-dimensional. In practice, one always replaces (6.4) with the finite-
dimensional problem

inf
η∈l1(N)

‖η‖l1 subject to PΩUPkη = PΩζ, (6.7)

where k ∈ N is suitably chosen. The obvious question now arises: how do solutions of (6.7) compare to
those of (6.4) as k →∞? For this we have the following:

Proposition 6.6. Let U ∈ B(H), x0 ∈ l1(N) and PΩ be a finite rank projection. Then, for each sufficiently
large k ∈ N there exists a ξk ∈ H such that

ξk ∈ argmin
η∈l1(N)

{‖η‖l1 : PΩUPkη = PΩUx0} .

Moreover, for every ε > 0, there is a K ∈ N such that, for all k ≥ K, we have ‖ξk − ξ̃k‖l1 ≤ ε, where

ξ̃k ∈ argmin
η∈l1(N)

{‖η‖l1 : PΩUη = PΩUx0} . (6.8)

In other words, solutions of (6.7) will be approximate minimizers of (6.4) for all sufficiently large k,
and in particular, will approximately satisfy (6.5). Note that when (6.8) has a unique minimizer z it is
straightforward to show that ξk = z for all large k. We do not include this result since it is a rarity in practice
for minimizers to be unique. Conversely, this proposition demonstrates that having multiple minimizers is not
problematic. We remark also that this proposition does not show how to determine k in a signal-independent
way. Yet this can be done, and is discussed further in [1, 7].

We now make several further comments on the above theorems:

Remark 6.7 The error bounds (6.3) and (6.5) are close to optimal in the sense that they involve the best
approximation error σr,M (y0), yet multiplied by a factor proportional to N/m. Such a factor is not found
in analogous finite-dimensional results. However, this term is the reciprocal subsampling percentage, and in
practice will usually not be much larger than 100 in magnitude (this would correspond to 1% subsampling).
Also unlike finite-dimensional results, we do not address the issue of noisy data in this work.1

Remark 6.8 Neither the bandwidth M nor the sparsity r = |∆| need be known in Theorem 6.3 or 6.4.
Specifically, these results state the following: given m and N (the parameters of the sampling), any vector
y0 is recovered up to an error proportional to σr,M (y0), where r and M are determined implicitly through
the balancing property and (6.6). This is typical in applications such as MRI, where the sampling resolution
N is fixed (due to the physical limitations of the scanner), as is the total number of samples m.

Remark 6.9 The amount of subsampling depends on the coherence parameter υ(U). For a given operator
U this is a fixed (although arbitrarily small) number, and this suggests that subsampling will not be possible
whenM is large. That is, we must takem = N . However, if U has the property that υ(UP⊥k ), υ(P⊥k U)→ 0
as k → ∞, then one can actually circumvent this problem using so-called multilevel random subsampling
techniques. This is not within the scope of this paper but is treated in detail in [7].

6.3 Theorems on finite-dimensional CS
As mentioned, GS–CS extends finite-dimensional CS from finite-dimensional vector spaces to separable
Hilbert spaces. It is therefore unsurprising, but important to note nonetheless, that similar results to existing
theorems for finite-dimensional CS can be obtained as straightforward corollaries of Theorems 6.1–6.4. In
particular, we have

Theorem 6.10. Let U ∈ Cn×n be an isometry, and suppose that x0 ∈ Cn with supp(x0) = ∆. For ε > 0
suppose that m ∈ N is such that

m ≥ C · n · υ2(U) · |∆| ·
(
log(ε−1) + 1

)
· log n, (6.9)

1Since writing this paper it has subsequently been shown that the term N/m can be removed and that noise can be incorporated in
the data and recovery guarantees. See [7] for details.
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for some universal constant C, and let Ω ⊂ {1, . . . , n} be chosen uniformly at random with |Ω| = m. If
ζ = Ux0 then, with probability exceeding 1− ε, the problem

min
η∈Cn

‖η‖l1 subject to PΩUη = PΩζ,

has a unique solution ξ and this solution coincides with x0.

Theorem 6.11. Let U ∈ Cn×n be an isometry, and suppose that y0 = x0 + h ∈ Cn with supp(x0) = ∆.
For ε > 0 suppose that m ∈ N satisfies (6.9), and let Ω ⊂ {1, . . . , n} be chosen uniformly at random with
|Ω| = m. If ζ = Uy0 then, with probability exceeding 1− ε, any minimizer ξ of the problem

min
η∈Cn

‖η‖l1 subject to PΩUη = PΩζ,

satisfies

‖ξ − y0‖ ≤ 8

(
1 +

2n

m

)
‖h‖l1 .

Proof of Theorems 6.10 and 6.11. The matrix U extends in the obvious way to a partial isometry Ũ on H.
Note that (Ũ)∗PN Ũ = PN , for N = n. We may now, in an obvious way, extend Ũ to an isometry Û on H
such that υ(Û) = υ(U). Therefore, the weak balancing property is automatically satisfied for M = N and
any m ∈ N. We now apply Theorem 6.1 or Theorem 6.3.

These results are similar to existing nonuniform recovery results for finite-dimensional CS proved re-
cently by Candès & Plan [18]. The main difference is the larger factor n/m in the error bound and the
absence of noise in the data (see Remark 6.9).

7 Numerical examples
Before giving proofs of these theorems, it is useful to present some further examples of GS–CS. In doing
so, we will demonstrate the main premises of this paper. Firstly, if knows that a function f has a good
representation in terms of a different basis then one can obtain a far better reconstruction of f than that
stemming from its Fourier series. Secondly, by using GS–CS it is possible to get a substantial improvement
over finite-dimensional CS techniques.

Consider the problem of reconstructing g = Ff and f from the samples {ζj(f)}j∈N where ζj(f) =
Ff(ρ(j)/2) and ρ is defined by

ρ(1) = 0, ρ(2) = 1, ρ(3) = −1, ρ(4) = 2, ρ(5) = −2 . . . .

We now compare three methods for approximating f and g:

(i) The partial Fourier series fN (see (2.4)) and its Fourier transform gN = FfN .
(ii) The GS reconstructions fN,M (see (3.7)) and gN,M = FfN,M .

(iii) The GS–CS reconstructions

fN,m,k(t) =

k∑
j=1

αjϕj(t), gN,m,k(t) =

k∑
j=1

αjFϕj(t),

where α = {α1, . . . , αk} is computed via the convex optimization problem (4.5).

Note that fN,M and gN,M use exactly the same samples as fN and gN , yet fN,m,k and gN,m,k use only a
subset of those samples.

If f is sparse or has rapidly decaying coefficients in Haar wavelets, then we expect (i) to give a very poor
reconstruction. However, both the GS and GS–CS methods should give very good reconstructions, with the
latter taking advantage of the sparsity to reduce the number of Fourier coefficients sampled (recall that GS
does not exploit any sparsity – it offers guaranteed recovery for all functions f by using the full range of
Fourier coefficients). Note that in the first example below the samples in the case of GS–CS are chosen such
that half of them are fixed (from the first indices) and the other half is chosen uniformly at random. This is
to improve results because of coherence issues (see Remark 6.9).
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Figure 5: The errors |g(t)− gN (t)| (left), |g(t)− gN,M (t)| (middle) and |g(t)− gN,m,k(t)| (right) against t,
for N = 601, M = 200, m = 230 and k = 650.

N ‖g − gN‖L∞ ‖g − gN,M‖L∞ ‖g − gN,m,k‖L∞ (avg. 20 trls)

601 1.43 4.74× 10−5, (M = 200) 4.73× 10−5, (m = 230, k = 550)
1201 0.85 2.36× 10−5, (M = 400) 2.38× 10−5, (m = 460, k = 1400)

Table 1: The errors for the reconstructions gN , gN,M and gN,m,k.

7.1 First example
As a first example, let us consider the function g = Ff , where

f(t) =

200∑
j=1

αjϕj(t) + cos(2πt)χ[ 1
2 ,

9
16 ](t), t ∈ [0, 1], (7.1)

{ϕj}j∈N are Haar wavelets on [0, 1] and χ[ 1
2 ,

9
16 ] is the indicator function of the interval [ 1

2 ,
9
16 ]. Suppose

that |{j : αj 6= 0}| = 25, so that f can be decomposed into a sparse component and a remainder. Note
that the remainder has infinite support in the Haar wavelet basis, so this function belongs to the fully-infinite
dimensional model (see §4.2).

In Figure 5 we display the errors committed by the approximations (i)–(iii) for this function. As expected,
the expansion gN gives an extremely poor reconstruction, whereas both the GS and GS–CS give far better
approximations, both reducing the error by a factor of roughly 10, 000. Moreover, and also as expected, the
GS–CS approximation attains the same numerical error as the GS approximation using only around 38% of
the Fourier samples. These observations are confirmed in Table 1.

Whilst GS and GS–CS give very similar numerical errors it is important to notice that the reconstructions
are typically very different. In particular, in GS one reconstructs approximately the first M Haar wavelet
coefficients α1, . . . , αM , where M < N . On the other hand, in GS–CS one computes k such coefficients,
where typically (although not always) k > N . This difference can be explained by examining equations (3.3)
and (4.5). In GS, which corresponds to (3.3), one requires M < N to ensure invertibility of the operator A.
On the other hand, unless k is taken sufficiently large, (4.5) need not have a solution, since the right-hand
side PΩζ(f) may not lie in the range of the (finite-dimensional) section PΩUPk : Ck → C|Ω|. In particular,
this may well be the case whenever k < N . Fortunately, as shown in Proposition 6.6, this cannot happen if
k is sufficiently large. The effect of increasing k for the example (7.1) is illustrated in Table 2. As is evident,
once k is sufficiently large, the problem (4.5) has a solution, and the error drops accordingly.

7.2 Second example
This example was first introduced in [53] and demonstrates the difference between finite-dimensional CS
techniques and the proposed infinite-dimensional GS-CS techniques in a practical electron microscopy setup.
In this setting, the sampling procedure is completely dictated by the physics behind the microscope and
corresponds to radial line sampling in Fourier space. Note that we use exactly the same sampled data in
both cases, and seek to recover the function f(x, y) = exp(−x− y) cos2(x+ y) from m = 16120 (6.15%)
continuous Fourier samples taken radially from a 512× 512 grid. We commence with the finite-dimensional
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N EN,m,k = ‖g − gN,m,k‖L∞ (avg. 20 trials)

601 EN,230,200 =∞ EN,230,350 =∞ EN,230,550 = 4.759× 10−5 EN,230,850 = 4.727× 10−5

1201 EN,460,400 =∞ EN,460,500 =∞ EN,460,1000 = 2.384× 10−5 EN,460,1300 = 2.392× 10−5

Table 2: The error ‖g − gN,m,k‖L∞ for different values of N,m and k (the notation EN,m,k = ∞ means
that (4.5) does not have a solution).

Figure 6: Left to right: (i) Original, (ii) zoomed original, (iii) Finite-dimensional CS reconstruction using
periodic Daubechies-6 wavelets, (iv) Infinite-dimensional CS reconstruction using boundary Daubechies-6
wavelets.

approach (see §2.1), and solve

min
z∈Cn

‖z‖1 subject to PΩUdfV
−1
dw z = PΩy,

where Udf and V −1
dw denote the discrete Fourier and discrete wavelet transforms respectively. Next we solve

min
z∈Pk(`2(N))

‖z‖1 subject to PΩUPkz = PΩy,

where U is as in (2.7). As Figure 6 displays, the infinite-dimensional approach shows a substantial improve-
ment over the finite-dimensional technique. The reason behind the superior reconstruction is, as discussed
in §2.1, the use of UdfV

−1
dw implies that the error is dominated by the truncated Fourier series, whereas in

the GS-CS approach the discretization is faithful to the guiding principle of §1.2, and hence the error is
dominated by the actual wavelet decay, which is much faster than the Fourier decay.

8 Infinite-dimensional optimization
The remainder of this paper is largely devoted to proving the results of §6, which will be the specific focus of
§9. Before doing so, however, we first discuss the topic of infinite-dimensional optimization in a little more
detail. As the informed reader will have noticed, all our results are really questions of infinite-dimensional
optimization: for example, in the case of Proposition 6.6, showing the existence of minimizers to the finite-
rank discretizations of an infinite-dimensional optimization problem, and their convergence to minimizers of
that problem. For this reason, we now recap some of the basics of this field.

8.1 Background
The field of infinite-dimensional convex optimization is certainly not new [28, 49]. However, it is much less
standard than the more thoroughly investigated topic of finite-dimensional convex optimization. We now
cover some of the basic tools that will subsequently prove useful.

We consider complex vector spaces. Standard optimization theory is usually considered over the reals,
and this is also the case in [28] (the main reference we consider herein for the field of infinite-dimensional
optimization). To be able to able to quote [28] freely we use the standard trick and consider any complex
Banach space X as a real vector space. In particular, if X̃ is the real Banach space induced by X then

X̃∗ = {Re(x∗) : x∗ ∈ X∗}.
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This follows by the observation that if x∗ ∈ X∗ and u = Re(x∗) then u is a real linear functional. Also, if
u ∈ X̃∗ and x∗ : X → C is defined by x∗(x) = u(x)− iu(ix), then x∗ ∈ X∗. To avoid unnecessary clutter
we will (with slight abuse of notation) use X as the notation for X̃ .

Definition 8.1. Let X be a Banach space and let F : X → R. The polar function F ∗ : X∗ → R is defined
by

F ∗(x∗) = sup
x∈X
{Re(x∗(x))− F (x)},

where R = R ∪ {−∞,∞}.

Definition 8.2. Let X be a Banach space, F : X → R be convex and consider the following problem

(P ) : inf{F (x) : x ∈ X}.

If Y is a Banach space and Φ : X × Y → R ∪ {∞} is a convex lower semi-continuous function such that
Φ(x, 0) = F (x) for all x ∈ X , then the dual problem P ∗ with respect to Φ is defined by

(P ∗) : sup{−Φ∗(0, y∗) : y∗ ∈ Y ∗}.

If Φ is not specified we will say that (P ∗) is a dual problem for (P ).

Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ) and y0 ∈ Y . Consider the problem

(P1) : inf{‖x‖ : x ∈ X, Tx = y0}.

Note that (P1) can be written as the equivalent convex optimization problem:

(P̃1) : inf{F (x) +G(Tx), x ∈ X}, (8.1)

where F (x) = ‖x‖ and G : Y → R ∪ {∞} is defined by G(z) = δ{0}(z − y0). Here the function
δC : Y → R ∪ {∞}, where C ⊂ Y is convex, is defined by δC(z) = 0 if z ∈ C and δC(z) = ∞ if z /∈ C.
Moreover, by letting Φ : X × Y → R ∪ {∞} be defined by

Φ(x, y) = F (x) +G(Tx+ y), (8.2)

and observing that
Φ∗(x∗, y∗) = F ∗(x∗ − T ′y∗) +G∗(y∗),

where T ′ : Y ∗ → X∗ denotes the dual mapping, we also obtain the following dual problem with respect to
Φ:

(P ∗1 ) : sup{−F ∗(−T ′y∗)−G∗(y∗) : y∗ ∈ Y ∗}.

Much like (P1) and (P̃1), the dual problem (P ∗1 ) also has an equivalent form. In fact, since F ∗(x∗) = 0 if
‖x∗‖X∗ ≤ 1 and F ∗(x∗) =∞ if ‖x∗‖X∗ > 1, together with the observation that

G∗(y∗) = sup{Re(y∗(y))− δ{0}(y − y0), y ∈ Y } = Re(y∗(y0)),

we find that
(P ∗1 ) : sup{Re(y∗(y0)) : ‖T ′y∗‖X∗ ≤ 1, y∗ ∈ Y ∗}.

Using these ideas we obtain the following well-known result [28]:

Proposition 8.3. Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ) and y0 ∈ Y. If T is onto,
then

inf{‖x‖ : x ∈ X, Tx = y0} = sup{Re(y∗(y0)) : ‖T ′y∗‖X∗ ≤ 1, y∗ ∈ Y ∗}.
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8.2 Stability analysis for infinite-dimensional convex optimization
We now consider the issue of stability of the optimization problem

min
η∈l1(N)

‖η‖l1 subject to PΩUη = PΩU(x0 + h), (8.3)

and its finite-dimensional approximations

min
η∈l1(N)

‖η‖l1 subject to PΩUPkη = PΩU(x0 + h), (8.4)

where x0, h ∈ l1(N) and h is small in norm. Note that this is the first step towards a proof of Theorems
6.3 and 6.4 concerning the recovery of compressible signals which are described by the semi/fully infinite-
dimensional models §3. However, at this moment we do not consider either sparsity or randomness. This
comes in §9, in which the results proved in this and the previous section are applied to the sparse recovery
problems (6.1) and (6.4) to yield proofs of Theorems 6.1–6.4.

Stability turns out to be a rather subtle issue. We now illustrate why.

Definition 8.4. Let Ω,∆ be finite subsets of N, U ∈ B(l2(N)) and let f : R+ → R+ be a continuous
function such that limt→0 f(t) = 0. Suppose that ξ ∈ H, supp(ξ) = ∆, is the unique minimizer of

inf{‖η‖l1 : PΩUη = PΩUξ}. (8.5)

If, for any ε > 0 and ζ ∈ H such that ‖ξ − ζ‖l1 ≤ ε, we have that ‖x− ξ‖l1 ≤ f(ε), where x is a minimizer
of inf{‖η‖l1 : PΩUη = PΩUζ}, then we say that {U,Ω,∆} is locally f -stable at ξ. If f(t) = Ct for some
constant C > 0 then {U,Ω,∆} is said to be locally linearly stable at ξ. We say that {U,Ω,∆} is globally
f -stable (linearly stable) if the above statements hold for all ξ ∈ l2(N), supp(ξ) = ∆, such that ξ is the
unique minimizer of (8.5).

Proposition 8.5. Let U ∈ B(l2(N)) be unitary and real, and let Ω,∆ be finite subsets of N. Suppose that
{U,Ω,∆} is globally f -stable. Suppose also that there exists a real x ∈ l2(N), supp(x) = ∆, such that x
is the unique minimizer of inf{‖η‖l1 : PΩUη = PΩUx}. Then, if (PΩUP∆)∗PΩUP∆|P∆l2(N) is invertible,
and y ∈ H, supp(y) = ∆, is arbitrary, then y is the unique minimizer of inf{‖η‖l1 : PΩUη = PΩUy}.

Proposition 8.6. Let U ∈ B(l2(N)) be unitary and real, and let Ω,∆ be finite subsets of N. Suppose that for
any real ξ ∈ l2(N), supp(ξ) = ∆, it holds that ξ is the unique minimizer of inf{‖η‖l1 : PΩUη = PΩUξ},
and also that (PΩUP∆)∗PΩUP∆|P∆l2(N) is invertible. Then, {U,Ω,∆} is globally linearly stable when the
vector space l2(N) is considered over the reals.

These results establish the relationship between global stability and the existence of unique minimizers
(proofs are given in the Appendix). In particular, existence of unique minimizers for all y with supp(y) = ∆
is (almost) equivalent to global stability. Thus, global stability is a rather strict condition and may be difficult
to achieve. However, we will be concerned with a fixed signal to recover and hence global stability may not
be necessary. Conditions in order to establish local stability are the topic in the next section.

8.3 The key result
The key result of this section, which will later lead to the proofs of Theorems 6.1–6.4, is the following (see,
for example, [34, Thm. 4.33] for a related finite-dimensional version):

Proposition 8.7. Let U ∈ B(H) with ‖U‖ ≤ 1, and suppose that ∆ and Ω are finite subsets of N. Let x0, h ∈
H be such that supp(x0) = ∆, supp(h) ∩∆ = ∅ and ‖h‖l1 < ∞, and suppose that ∆ ⊂ {1, . . . ,M} for
some M ∈ N. Let ξ, ξM ∈ H such that

ξ ∈ argmin
η∈l1(N)

{‖η‖l1 : PΩUη = PΩU(x0 + h)} , (8.6)

ξM ∈ argmin
η∈l1(N)

{‖η‖l1 : PΩUPMη = PΩU(x0 + PMh)} .

If there exists ρ ∈ ran(U∗PΩ) and q > 0 with the following properties:
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(i) ‖(q−1P∆U
∗PΩUP∆)−1‖ ≤ 2,

(ii) ‖P∆ρ− sgn(x0)‖ ≤ q/8,

(iii) ‖P⊥∆ ρ‖l∞ ≤ 1/2,

then

‖ξ − x0‖ ≤
(

16

q
+ 7

)
‖h‖l1 . (8.7)

Also, if (i) and (ii) hold and (iii) is replaced with ‖PMP⊥∆ ρ‖l∞ ≤ 1/2 then

‖ξM − x0‖ ≤
(

16

q
+ 7

)
‖PMh‖l1 . (8.8)

Proof. Note that (8.6) and (i) yield

PΩU(x0 − P∆ξ) = PΩU(P⊥∆ ξ − h)

⇒ P∆U
∗PΩU(x0 − P∆ξ) = P∆U

∗PΩU(P⊥∆ ξ − h)

⇒ x0 − P∆ξ = (P∆U
∗PΩUP∆)−1P∆U

∗PΩU(P⊥∆ ξ − h).

(8.9)

(note that (i) implies that P∆U
∗PΩUP∆ is invertible). Hence, from (i) and (8.9), and by using the fact that

‖U‖ ≤ 1 we obtain
‖x0 − P∆ξ‖ ≤ 2/q‖P⊥∆ ξ − h‖. (8.10)

Thus,

‖x0 − ξ‖ ≤
2

q
‖P⊥∆ ξ − h‖+ ‖P⊥∆ ξ‖ ≤

(
2

q
+ 1

)
‖P⊥∆ ξ‖l1 +

2

q
‖h‖l1 . (8.11)

The rest of the proof is therefore devoted to showing that ‖P⊥∆ ξ‖l1 is bounded by a constant times ‖h‖l1 .
The fact that ρ ∈ ran(U∗PΩ) and PΩU(ξ − (x0 + h)) = 0 implies that 〈ξ, ρ〉 = 〈x0 + h, ρ〉. Thus, it

follows, by appealing to (iii), that

Re(〈x0, ρ〉) + Re(〈h, ρ〉) = Re(〈ξ, ρ〉) ≤ Re(〈ξ, P∆ρ〉) +
1

2

∑
j∈∆c

|ξ(j)|. (8.12)

Thus, since supp(h) ∩∆ = ∅, we have

Re 〈x0 − ξ, P∆ρ〉 = Re 〈x0, ρ〉 − Re 〈ξ, P∆ρ〉 ≤ −Re 〈h, ρ〉+
1

2
‖P⊥∆ ξ‖l1

= −Re 〈h, P⊥∆ ρ〉+
1

2
‖P⊥∆ ξ‖l1 ≤

1

2

(
‖h‖l1 + ‖P⊥∆ ξ‖l1

)
.

We will return to this equation, but for the meantime we will continue to investigate the quantity Re(〈x0 −
ξ, P∆ρ〉). Observe that

Re 〈x0 − ξ, P∆ρ〉 = Re 〈x0 − ξ, P∆ρ− sgn(x0)〉+ ‖x0‖l1 − Re 〈ξ, sgn(x0)〉
≥ Re 〈x0 − ξ, P∆ρ− sgn(x0)〉+ ‖x0‖l1 − ‖P∆ξ‖l1
= Re 〈x0 − P∆ξ, P∆ρ− sgn(x0)〉+ ‖x0‖l1 − ‖ξ‖l1 + ‖P⊥∆ ξ‖l1 .

Since ‖x0 + h‖l1 ≥ ‖ξ‖l1 we obtain

Re 〈x0 − ξ, P∆ρ〉 ≥ Re 〈x0 − ξ, P∆ρ− sgn(x0)〉 − ‖h‖l1 + ‖P⊥∆ ξ‖l1 . (8.13)

Moreover, using (ii) and (8.10), we get |〈x0 − P∆ξ, P∆ρ− sgn(x0)〉| ≤ 1
4‖P

⊥
∆ ξ − h‖. Hence, substituting

this into (8.13) now gives

Re 〈x0 − ξ, P∆ρ〉 ≥ −
1

4
‖P⊥∆ ξ − h‖ − ‖h‖l1 + ‖P⊥∆ ξ‖l1

≥ −5

4
‖h‖l1 +

3

4
‖P⊥∆ ξ‖l1 . (8.14)

Combining (8.13) and (8.14) and rearranging now gives ‖P⊥∆ ξ‖l1 ≤ 7‖h‖l1 . Substituting this into (8.11)
now yields (8.7). The proof of (8.8) is almost identical, and we omit the details.

20



8.4 Proof of Proposition 6.6
To end this section, we now present a proof of Proposition 6.6. We first require the following:

Lemma 8.8. Let U ∈ B(H) and P be a finite rank projection. Then, for every χ ∈ Ran(PU), there exists
ξ ∈ H such that

ξ ∈ argmin
η∈l1(N)

{‖η‖l1 : PUη = χ} .

Proof. Recall that (c0)∗ = l1. By weak∗ compactness there is a sequence {ξk} ⊂ l1 and a ξ ∈ l1 such that
PUξk = χ, ‖ξk‖l1 ↘ inf{‖η‖l1 : PUη = χ} and 〈ξk, ej〉 → 〈ξ, ej〉 as k → ∞ for all j ∈ N. Hence
‖ξ‖l1 ≤ limk→∞ ‖ξk‖l1 . Since ξk → ξ weakly as elements in H it follows by the fact that PU is compact
(since P is of finite rank) that PUξk → PUξ. Thus PUξ = χ as required.

Proof of Proposition 6.6. To see the existence of ξk for large k it suffices to observe that Ran(PΩU) and
Ran(PΩUPk) coincide for all sufficiently large k, since PΩ has finite rank.

For the second part of the proposition, it is easy to see that it suffices to show that every subsequence of
{ξk}k∈N has a convergent subsequence in the l1 norm with limit ξ satisfying

‖ξ‖l1 = inf
η∈H
{‖η‖l1 : PΩUη = PΩUx0} . (8.15)

Therefore. let {ξk}k∈N be a subsequence of the original sequence (we use the same notation for simplicity).
Since ‖ξk‖l1 ≥ ‖ξk+1‖l1 for all large k it follows that {ξk} is bounded. So by weak∗ compactness of the
l1 ball we have that, by possibly passing to a subsequence, there is a ξ ∈ H such that ξk → ξ weakly (as
elements in H) as k → ∞. By compactness of PΩU we find that PΩUξk → PΩUξ as k → ∞, and, since
PΩUξk = PΩUx0, it follows that PΩUξ = PΩUx0.

To see that ξ satisfies (8.15) we argue as follows. We claim that for any λ > 0 we have

‖ξk‖l1 ≤ inf
η∈H
{‖η‖l1 : PΩUη = PΩUx0}+ λ, (8.16)

for all sufficiently large k. Let r = dim(Ran(PΩU)) < ∞, and let ê1, . . . , êr be coordinate vectors
such that span{PΩUêj}rj=1 = Ran(PΩU). Then every η ∈ Ran(PΩU) with ‖η‖ = 1 can be written
as η = c1PΩUê1 + . . . + crPΩUêr, where the cjs are bounded by, say, 1 ≤ c < ∞. Now let ξ̃ be a
minimizer of (8.15) (the existence of such a minimizer is guaranteed by Lemma 8.8), and choose k so large
that {êj}rj=1 ⊂ Ran(Pk), ‖PΩUP

⊥
k ξ̃‖ ≤ λ/(2cr) and ‖P⊥k ξ̃‖ ≤ λ/2. Let c1, . . . , cr be chosen such that

PΩUP
⊥
k ξ̃/‖PΩUP

⊥
k ξ̃‖ = c1PΩUê1 + . . .+ crPΩUêr, and set η̃ = Pk ξ̃+ (c1ê1 + . . . cr êr)‖PΩUP

⊥
k ξ̃‖. It

follows that PΩUη̃ = PΩUξ̃ = PΩUx0, ‖η̃‖l1 ≤ ‖ξ̃‖l1 + λ and η̃ ∈ Ran(Pk). Hence ‖ξk‖l1 ≤ ‖ξ̃‖l1 + λ
and we have shown (8.16). Now choosem ∈ N such that ‖P⊥mξ‖l1 ≤ λ. Then ‖ξ‖l1 ≤ ‖Pmξ‖l1 +‖P⊥mξ‖l1 .
But Pmξk → Pmξ and ξk satisfies (8.16), thus ‖ξ‖l1 ≤ infη∈H{‖η‖l1 : PΩUη = PΩUx0} + 2λ for any
λ > 0. Therefore ξ satisfies (8.15), as required.

For the final part of the proof, we are required to show that ‖ξk − ξ‖l1 → 0 as k → ∞. By possibly
passing to another subsequence, it follows by (8.16) that

‖ξk‖l1 ≤ inf
η∈H
{‖η‖l1 : PΩUη = PΩUx0}+ 1/k. (8.17)

Note also that, for fixed m ∈ N, we have Pm(ξk − ξ) → 0 as k → ∞. But by (8.17) we also have
‖Pmξk‖l1 + ‖P⊥mξk‖l1 ≤ ‖Pmξ‖l1 + ‖P⊥mξ‖l1 + 1/k. So

lim
m→∞

lim sup
k→∞

‖P⊥mξk‖l1 = 0.

It thus follows that ξk → ξ (in l1) as k →∞, and the proof is complete.

9 Proofs of the main results

9.1 Key ideas
Before we present proofs of Theorems 6.1–6.4, we would like to sketch the key ideas. Our approach is to
use Proposition 8.7 to show the existence of a ρ ∈ ran(U∗PΩ) with the following properties

(i) ‖θ−1P∆U
∗PΩUP∆ − P∆‖ ≤ 1/2, (ii) ‖P∆ρ− sgn(x0)‖ ≤ θ/8 (iii) ‖PMP⊥∆ ρ‖l∞ ≤ 1/2,
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for some θ > 0 (recall the setup in Theorems 6.1 and 6.3).
Throughout the paper we will be concerned with randomly choosing a set Ω ⊂ {1, . . . , N}. In our

models we will choose Ω uniformly at random, however, in some of the proofs we will also use another ap-
proach that renders the analysis possible, whilst not affecting the model unduly. Therein we take a sequence
{δ1, . . . δN} of independent identically distributed Bernoulli random variables taking values 0 and 1 with
P(δj = 1) = q for all j. We then set Ω = {j : δj = 1}. We will refer to this type of random selection of Ω
as the Bernoulli model and we will denote such a procedure by {N, . . . , 1} ⊃ Ω ∼ Ber(q).

Note that transitioning from the uniform sampling model to the Bernoulli sampling model in this way
has become standard approach in the literature. In particular, one can show that the Bernoulli model implies
(up to a constant) the uniform sampling model in each of the conditions in Proposition 8.7. We refer to
[19, 20, 34] for details.

From now on, we thus consider (without loss of generality) the Bernoulli sampling scheme. We assume
that {N, . . . , 1} ⊃ Ω ∼ Ber(θ), for some finite N ∈ N. However, we will construct Ω in an equivalent, but
slightly different way. Namely, we let

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωµ, Ωj ∼ Ber(qj),

where the specific value of µ will be determined later. Note that as long as the qjs are chosen according to θ
this is equivalent to letting Ω ∼ Ber(θ). Indeed, we have that Ω ∼ Ber(θ) is equivalent to Ωc ∼ Ber(1− θ).
So, for k ∈ {1, . . . , N}, we have

P(k ∈ Ωc) = (1− θ),

where Ωc = {1, . . . , N}\Ω. But

P(k ∈ (Ω1 ∪ Ω2 ∪ · · · ∪ Ωµ)c) = (1− q1)(1− q2) · · · (1− qµ).

Thus, if we let
(1− q1)(1− q2) · · · (1− qµ) = (1− θ) (9.1)

it is easy to see (by independence) that the two models are equivalent. Note that there might be overlaps
between the Ωj’s. This automatically gives us the following:

q1 + q2 + . . .+ qµ ≥ θ.

This observation will be used several times in the arguments that follow.

9.2 The golfing scheme
We can now present the golfing scheme. Let U ∈ B(H) be an isometry and let {N, . . . , 1} ⊃ Ωj ∼ Ber(qj)
for j = 1, . . . , µ and some µ ∈ N where the qjs satisfy (9.1) for some 0 < θ ≤ 1. Suppose also that x0 ∈ H.
Define the operator

EΩj = U∗PΩjU, j = 1, . . . , µ.

The construction of ρ is based on the following idea. Let

ρ = Yµ, Yi =

i∑
j=1

q−1
j EΩjZj−1

Zi = sgn(x0)− P∆Yi, Z0 = sgn(x0),

(9.2)

where the specific value of µ will be determined later. The construction suggested in (9.2) will be referred
to as the golfing scheme, and is a variant of the original scheme introduced in [36] by D. Gross. The actual
construction will differ slightly from the one suggested here, however, this should give the reader an idea
about the approach.

Before we can prove the main results we need to establish some ancillary results that will be crucial in
the construction of ρ.
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9.3 The proofs
We first require the following three results. Proofs are found in the Appendix. For related finite-dimensional
versions, see [18] or [34, Chpt. 12].

Proposition 9.1. Let U ∈ B(H) be an isometry, {N, . . . , 1} ⊃ Ω ∼ Ber(q) for some 0 < q ≤ 1, and ∆ ⊂ N
with |∆| < ∞. Also, let M ∈ N be sufficiently large so that ∆ ⊂ {1, . . . ,M} and define EΩ = U∗PΩU .
Then, for η ∈ H and t, γ > 0

P
(
‖q−1PMP

⊥
∆EΩP∆η‖l∞ > (t+ ‖PMP⊥∆U∗PNUP∆‖mr)‖η‖

)
≤ γ (9.3)

provided

q ≥

(
4

t2
+

2
√

2

3t

√
|∆|

)
· log

(
4

γ
|∆c ∩ {1, . . . ,M}|

)
· υ2(U).

Also,
P
(
‖q−1P⊥∆EΩP∆η‖l∞ > (t+ ‖P⊥∆U∗PNUP∆‖mr)‖η‖

)
≤ γ (9.4)

whenever

q ≥

(
4

t2
+

2
√

2

3t

√
|∆|

)
· log (4ω/γ) · υ2(U),

where ω = ω̃M,U (|∆|, tq,N) and ω̃M,U is as in (5.2). In addition, if q = 1,the left-hand sides of (9.3) and
(9.4) are equal to zero.

Proposition 9.2. Let U ∈ B(H) be an isometry, ∆ ⊂ N with |∆| < ∞ and {N, . . . , 1} ⊃ Ω ∼ Ber(q) for
some 0 < q ≤ 1. Then, for fixed η ∈ H and 0 < t, γ ≤ 1, we have

P
(∥∥(q−1P∆U

∗PΩUP∆ − P∆

)
η
∥∥ > (t+ ‖P∆U

∗PNUP∆ − P∆‖) ‖η‖
)
≤ γ,

provided
q(1− q)−1 ≥ 4t−2 · υ2(U) · |∆|,

and

log

(
1 +

t

4

)
≥ 2K

t
max{q−1 − 1, 1} · υ2(U) · |∆| · log

(
3

γ

)
,

where K is the constant in Talagrand’s Theorem (Theorem 11.2).

Theorem 9.3. There exists a constant C > 0 with the following property. Suppose that U ∈ B(H) is an
isometry, ∆ is a finite subset of N and {N, . . . , 1} ⊃ Ω ∼ Ber(θ) for some 0 < θ ≤ 1 . Then, for ε > 0 and
γ > 1 we have

P
(∥∥θ−1P∆U

∗PΩUP∆ − P∆

∥∥ ≥ 1

γ
+ ‖P∆U

∗PNUP∆ − P∆‖
)
≤ ε, (9.5)

provided

θ ≥ C · γ · υ2(U) · |∆| · log(|∆|),

θ ≥ C · γ · υ2(U) · |∆| · log(Cε−1) ·
(

log

(
1 +

1

4γ

))−1

.
(9.6)

If θ = 1 then the left hand side of (9.5) is equal to zero.

With these results in hand, we can now give the proofs of the main results:

Proof of Theorem 6.1 and Theorem 6.3. The set Ω ⊂ {1, . . . , N} is chosen uniformly at random with
|Ω| = m. By Proposition 8.7 it suffices to show that there exists a ρ ∈ ran(U∗PΩ) such that

(i) ‖θ−1P∆U
∗PΩUP∆−P∆‖ ≤ 1/2, (ii) ‖P∆ρ− sgn(x0)‖ ≤ θ/8, (iii) ‖PMP⊥∆ ρ‖l∞ ≤ 1/2, (9.7)

with high probability. As discussed, we may (without loss of generality) replace this way of choosing Ω
with the model that {N, . . . , 1} ⊃ Ω ∼ Ber(θ) for θ = m/N (θ will have this value throughout the
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proof). Doing so may only change the constant C in (6.2). Note that, as discussed in Section 9.1, the model
{N, . . . , 1} ⊃ Ω ∼ Ber(θ) is equivalent to choosing Ω as

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωµ, Ωj ∼ Ber(qj),

for some µ ∈ N with
(1− q1)(1− q2) · · · (1− qµ) = (1− θ). (9.8)

The latter model is the one we will use throughout the proof and the specific value of µ will be chosen later.
The theorems will follow if we can show that the conditions in (9.7) occur with probability exceeding 1− ε,
and what follows is a setup to ensure this eventuality. We will focus on (ii) and (iii) in (9.7) first and deal
with (i) at the end of the proof. The proof proceeds in a number of steps.

Step I (The construction of ρ): Let ν be a positive number such that ν ≤ µ and let {α1, . . . , αµ} and
{β1, . . . , βµ} be sequences of positive numbers. The values of µ, ν, {αi}µi=1 and {βi}µi=1 will be carefully
chosen later in the proof. Consider now the following construction of ρ : let

Z0 = sgn(x0),

and define recursively the sequences {Zi}µi=0 ⊂ H, {Yi}µi=1 ⊂ H and {Θi}µi=1 ⊂ N as follows. First, let

Zi = sgn(x0)− P∆Yi, Yi =

i∑
j=1

q−1
j EΩjZj−1, i = 1, 2,

where EΩj = U∗PΩjU, and {q1, . . . , qµ} stem from (9.8). The precise values of the qj’s will be chosen
later. Let also Θ1 = {1} and Θ2 = {1, 2}. Then, for i ≥ 3, define recursively the following:

Θi =


Θi−1 ∪ {i} if

∥∥(P∆ − q−1
i P∆EΩiP∆

)
Zi−1

∥∥ ≤ αi ‖Zi−1‖ ,
and

∥∥q−1
i PMP

⊥
∆EΩiP∆Zi−1

∥∥
l∞
≤ βi‖Zi−1‖,

Θi−1 otherwise,
(9.9)

Yi =

{∑
j∈Θi

q−1
j EΩjZj−1 if i ∈ Θi,

Yi−1 otherwise,

Zi =

{
sgn(x0)− P∆Yi if i ∈ Θi,

Zi−1 otherwise.

Now, let {Ai}2i=1 and {Bi}4i=1 denote the following events

Ai :
∥∥(P∆ − q−1

i P∆EΩiP∆

)
Zi−1

∥∥ ≤ αi ‖Zi−1‖ , i = 1, 2,

Bi :
∥∥q−1
i PMP

⊥
∆EΩiP∆Zi−1

∥∥
l∞
≤ βi‖Zi−1‖, i = 1, 2,

B3 : |Θµ| ≥ ν,
B4 : (∩2

i=1Ai) ∩ (∩3
i=1Bi),

(9.10)

where |Θµ| denotes the length of Θµ. Also, let τ(j) denote the jth element in Θµ (e.g. τ(1) = 1, τ(2) = 2
etc, we also let τ(0) = 0). Finally, define ρ by

ρ =

{
Yτ(ν) if B4 occurs ,
sgn(x0) otherwise.

Note that ρ ∈ ran(U∗PΩ) if B4 occurs. Now make the following observations. Since Z0 = sgn(x0) yields,
for i ≤ |Θµ|, we have

Zτ(i) = sgn(x0)− P∆

(
q−1
τ(1)EΩτ(1)

sgn(x0) + q−1
τ(2)EΩτ(2)

Z1 + . . .+ q−1
τ(i)EΩτ(i)

Zτ(i−1)

)
= Zτ(i−1) − q−1

τ(i)P∆EΩτ(i)
P∆Zτ(i−1) = (P∆ − q−1

τ(i)P∆EΩτ(i)
P∆)Zτ(i−1).

(9.11)
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Hence, if the event B4 occurs, then

‖P∆ρ− sgn(x0)‖ = ‖Zτ(ν)‖ ≤
√
|∆|

ν∏
i=1

ατ(i), (9.12)

‖PMP⊥∆ ρ‖l∞ ≤
ν∑
i=1

‖q−1
τ(i)PMP

⊥
∆EΩτ(i)

Zτ(i−1)‖l∞

≤
ν∑
i=1

βτ(i)‖Zτ(i−1)‖ ≤
√
|∆|

ν∑
i=1

βτ(i)

i−1∏
j=1

ατ(j),

(9.13)

and ρ ∈ ran(U∗PΩ) (note that in the above equation we interpret α0 = 1). We will now show that with a
certain choice of parameters ν, {βj}µj=1 and {αj}µj=1 then (ii) and (iii) in (9.7) are satisfied when the event
B4 occurs. We delay specifying a the value for µ until Step IV. Let L ≥ 2, (we will give a value for L in a
moment) and

α1 = α2 =
1

2 log
1/2
2 (L)

, αi = 1/2, 3 ≤ i ≤ µ,

β1 = β2 =
1

4
√
|∆|

, βi =
log2(4θ−1

√
|∆|)

4
√
|∆|

, 3 ≤ i ≤ µ.

It follows that √
|∆|

ν∏
i=1

ατ(i) =

√
|∆|

2ν log2(L)
.

Hence, if
ν =

⌈
log2

(
8θ−1

√
|∆|
)⌉
, (9.14)

then it follows by (9.12) that
‖P∆ρ− sgn(x0)‖ ≤ θ/8

(recall that L ≥ 2) yielding (ii) in (9.7). Also, after inserting the values of ν, {βj}µj=1 and {αj}µj=1 into
(9.13) we get:

√
|∆|

ν∑
i=1

βτ(i)

i−1∏
j=1

ατ(j)

=
1

4

(
1 +

1

2

1

log
1/2
2 (L)

+
1

4

log2(4θ−1
√
|∆|)

log2(L)
+

1

8

log2(4θ−1
√
|∆|)

log2(L)
+ . . .+

1

2ν−1

log2(4θ−1
√
|∆|)

log2(L)

)

≤ 1

2
,

if we let L = 4θ−1
√
|∆|. Thus, by (9.13) we have

‖PMP⊥∆ ρ‖l∞ ≤ 1/2,

yielding (iii) in (9.7). In particular, we have showed that, if ν, {βj}µj=1 and {αj}µj=1 are chosen as above,
then (ii) and (iii) are satisfied when B4 occurs.

Thus, we have now obtained a means to show that (ii) and (iii) in (9.7) hold with a certain probability.
To do this, we will make a careful choice of µ and then provide bounds on P(Bc4). The way this latter step is
carried out is by giving estimates for P(Ac1∪Ac2), P(Bc1 ∪Bc2) and P(Bc3). This is the content of Steps II–IV.

Step II: We claim that if γ > 0 then P(Ac1 ∪Ac2) ≤ 2γ, provided N , q1, q2 are chosen such that

‖P∆U
∗PNUP∆ − P∆‖ ≤

1

4 log
1/2
2 (4θ−1

√
|∆|)

, (9.15)

and
q1 = q2 ≥ C · υ2(U) · |∆| ·

(
log
(
γ−1

)
+ 1
)
· log

(
θ−1
√
|∆|
)
, (9.16)
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for some universal constant C > 0. Also, if q1 = q2 = 1, then P(Ac1 ∪Ac2) = 0.
To deduce the claim, we first observe that by Proposition 5.2 these requirements are well defined. Now

note that Proposition 9.2 gives, for i = 1, 2 and 0 < t, γ ≤ 1 that

P
(∥∥(q−1

i P∆U
∗PΩiUP∆ − P∆

)
Zi−1

∥∥ > (t+ ‖P∆U
∗PNUP∆ − P∆‖) ‖Zi−1‖

)
≤ γ, (9.17)

if
qi(1− qi)−1 ≥ 4t−2 · υ2(U) · |∆|, (9.18)

and

log

(
1 +

t

4

)
≥ 2K

t
max{q−1 − 1, 1} · υ2(U) · |∆| · log

(
3

γ

)
, (9.19)

where K is the constant in Talagrand’s Theorem (Theorem 11.2). Thus, by (9.17), (9.18) and (9.19) (and a
small computation using Taylor’s Theorem), we can choose t = αi/2 and deduce the first assertion in Step
II. As for the second assertion, clearly, if q1 = q2 = 1 then the right hand side of (9.17) is zero as required.

Step III: We claim that P(Bc1 ∪Bc2) ≤ 2γ for γ > 0 if N , q1 and q2 are chosen such that

‖PMP⊥∆U∗PNUP∆‖mr ≤
1

8
√
|∆|

, (9.20)

and
q1 = q2 ≥ C · υ2(U) · |∆| ·

(
log
(
γ−1M

)
+ 1
)
, (9.21)

for some universal constant C > 0. Also, if q1 = q2 = 1, then P(Bc1 ∪Bc2) = 0.
To prove the claim, recall that Proposition 9.1 gives, for i = 1, 2 and t, γ > 0, that

P
(∥∥q−1

i PMP
⊥
∆EΩiP∆Zi−1

∥∥
l∞

> (t+ ‖PMP⊥∆U∗PNUP∆‖mr)‖Zi−1‖
)
≤ γ,

if

qi ≥

(
4

t2
+

2
√

2

3t

√
|∆|

)
· log

(
4

γ
|∆c ∩ {1, . . . ,M}|

)
· υ2(U).

Choosing t = βi/2 automatically yields the first assertion in Step III. Also, the fact that P(Bc1 ∪ Bc2) = 0,
when q1 = q2 = 1, follows automatically from Proposition 9.1.

Step IV: We claim that P(Bc3) ≤ γ, for γ > 0 if µ (recall µ and ν from Step I), N and {q3, . . . , qµ} are
chosen such that

µ = 8d3ν + log(γ−1)e, (9.22)

‖P∆U
∗PNUP∆ − P∆‖ ≤ 1/4, (9.23)

and

‖PMP⊥∆U∗PNUP∆‖mr ≤
log2(4θ−1

√
|∆|)

8
√
|∆|

, (9.24)

and also q3 = q4 = . . . = qµ = q, where

q ≥ C · υ2(U) · |∆| ·

(
log (M)

log2(4θ−1
√
|∆|)

+ 1

)
, (9.25)

for some universal constant C > 0. Also, if q3 = q4 = . . . = qµ = 1, then P(Bc3) = 0.
To prove the claim we start by determining the condition (9.22) on µ. Define the random variables

X1, . . . Xµ−2 by

Xj =

{
0 Zj+2 6= Zj+1,

1 Zj+2 = Zj+1.

We immediately observe that

P(Bc3) = P(|Θµ| < ν) = P(X1 + . . .+Xµ−2 > µ− ν).
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Unfortunately, the random variables X1, . . . Xµ−2 are not independent, which prevents the use of standard
tools such as Chernoff bounds or Hoeffding’s inequality. Note that the use of such tools have become popular
when dealing with the golfing scheme, however, the dependency issue prevents this in the general case. See
also [37] for a discussion of this phenomenon. To deal with the dependency issue, we proceed as follows:

P(X1 + . . .+Xµ−2 > µ− ν)

≤
(µ−2
µ−ν)∑
l=1

P(Xπ(l)1
= 1, Xπ(l)2

= 1, . . . , Xπ(l)µ−ν = 1)

=

(µ−2
µ−ν)∑
l=1

P(Xπ(l)µ−ν = 1 |Xπ(l)1
= 1, . . . , Xπ(l)µ−ν−1

= 1)P(Xπ(l)1
= 1, . . . , Xπ(l)µ−ν−1

= 1)

=

(µ−2
µ−ν)∑
l=1

P(Xπ(l)µ−ν = 1 |Xπ(l)1
= 1, . . . , Xπ(l)µ−ν−1

= 1)

× P(Xπ(l)µ−ν−1
= 1 |Xπ(l)1

= 1, . . . , Xπ(l)µ−ν−2
= 1) · · ·P(Xπ(l)1

= 1)

(9.26)

where π : {1, . . . ,
(
µ−2
µ−ν
)
} → Nµ−ν ranges over all

(
µ−2
µ−ν
)

ordered subsets of {1, . . . , µ − 2} of size µ − ν.
Let P > 0 (a specific value for P will be assigned later) be such that

P ≥ P(Xπ(l)1
= 1), P ≥ P(Xπ(l)µ−ν−j = 1 |Xπ(l)1

= 1, . . . , Xπ(l)µ−ν−(j+1)
= 1), (9.27)

l = 1, . . . ,

(
µ− 2

µ− ν

)
, j = 0, . . . , µ− ν − 2,

then, by (9.26),

P(X1 + . . .+Xµ−2 > µ− ν) ≤
(
µ− 2

µ− ν

)
Pµ−ν . (9.28)

We now choose P = 1/4 and claim that

P(X1 + . . .+Xµ−2 > µ− ν) ≤ exp

(
−2(µ− 2)t2 + (µ− ν) log

(
(µ− 2)e

µ− ν

))
, (9.29)

where t = (µ− ν)/(µ− 2)− P ≥ 0. To see this, note that it is a straightforward calculus exercise to show
that

µ− ν
µ− 2

log(P ) ≤ −2

(
µ− ν
µ− 2

− P
)2

,
µ− ν
µ− 2

∈ [P, 1].

By using the fact that
(
µ−2
µ−ν
)
≤
(

(µ−2)e
µ−ν

)(µ−ν)

we immediately get(
µ− 2

µ− ν

)
Pµ−ν ≤ exp

(
−2(µ− 2)t2 + (µ− ν) log

(
(µ− 2)e

µ− ν

))
,

which, after recalling (9.28), yields (9.29). So, by (9.29) we have that

P

(
µ−2∑
i=1

Xi ≥ µ− ν

)
≤ γ (9.30)

whenever
e−2(µ−2)t2+(µ−ν)(log( µ−2

µ−ν )+1) ≤ γ.

Hence, after observing that log((µ− 2)/(µ− ν)) + 1 ≤ (µ− 2)/(µ− ν), we deduce that (9.30) is satisfied
whenever

µ ≥ x, (x− 2)

(
x− ν
x− 2

− P
)2

− log
(
γ−1/2

)
− x− 2

2
= 0 (9.31)
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where x is the largest root satisfying (9.31). In particular, we have shown that P(Bc3) ≤ γ when (9.31) is
satisfied. The choice of P yields x ≤ 8d3ν + log(γ−1/2)e. Hence (9.22) yields (9.31).

For the rest of the proof of Step IV we need to determine the conditions on N and {q3, . . . , qµ} such that
(9.27) is satisfied with P = 1/4. Note that Xk = 1 if and only if one of the following events occur:

D1 :
∥∥(P∆ − q−1

j P∆EΩjP∆

)
Zj−1

∥∥ > αj ‖Zj−1‖ , j = k + 2,

D2 :
∥∥q−1
j PMP

⊥
∆EΩjP∆Zj−1

∥∥
l∞

> βj‖Zj−1‖, j = k + 2.
(9.32)

Observe that we may argue exactly as in the proof of Step II (via Proposition 9.2) and, regardless of the
vector Zj−1, we deduce that P(D1) ≤ 1/8 when N and qj are chosen such that

‖P∆U
∗PNUP∆ − P∆‖ ≤ αj/2,

qj ≥ C · υ2(U) · |∆| · α−2
j · (log (24) + 1) , j = k + 2,

(9.33)

for some universal constant C > 0. Observe also that we may argue exactly as in the proof of Step III (via
Proposition 9.1) and regardless of the vector Zj−1, we may deduce that P(D2) ≤ 1/8 when N and qj are
chosen such that

‖PMP⊥∆U∗PNUP∆‖mr ≤ βj/2,

qj ≥ C · υ2(U) ·

(
1

β2
j

+
1

βj

√
|∆|

)
· (log (32M) + 1) , j = k + 2,

(9.34)

for some universal constant C > 0. Thus, for l = 1, . . . ,
(
µ−2
µ−ν
)

and i = 0, . . . , µ − ν − 2, by letting
k = π(l)µ−ν−i, we find that

P(Xπ(l)µ−ν−i = 1 |Xπ(l)1
= 1, . . . , Xπ(l)µ−ν−(i+1)

= 1)

≤ P(D1 ∪D2 |Xπ(l)1
= 1, . . . , Xπ(l)µ−ν−(i+1)

= 1) ≤ P,

and similarly, by letting k = π(l)1 we get that

P(Xπ(l)1
= 1) ≤ P(D1 ∪D2) ≤ P,

whenever (9.33) and (9.34) are satisfied. In particular, (9.33) and (9.34) imply (9.27). But (9.33) and (9.34)
follow from (9.23), (9.24) and (9.25) (with a possibly different, however universal, constant C) and hence
the first part of the claim is proved. The fact that if q3 = q4 = . . . = qµ = 1 then P(Bc3) = 0 follows from
Propositions 9.2 and 9.1.

Step V: We claim that

P
(
‖P∆ρ− sgn(x0)‖ > θ/8 ∪ ‖PMP⊥∆ ρ‖l∞ > 1/2

)
≤ 5γ, (9.35)

for γ > 0 when N ∈ N and θ > 0 are chosen according to (5.4), (5.5) and

θ ≥ C · υ2(U) · |∆| ·
(
log
(
γ−1

)
+ 1
)
· log

(
Mθ−1

√
|∆|
)
, (9.36)

for some universal constant C > 0. Also, if θ = 1 then the left hand side of (9.35) is equal to zero.
To prove this, recall the events A1, A2, B1, B2, B3, B4 from Step I. We have already established in Step

I that if the event B4 occurs then ‖P∆ρ− sgn(x0)‖ ≤ θ/8 and ‖PMP⊥∆ ρ‖l∞ ≤ 1/2. It therefore suffices to
show that

P (Bc4) ≤ 5γ. (9.37)

given the conditions (5.4), (5.5) and (9.36). To do this we begin by making some observations. First

P (Bc4) ≤ P(Ac1 ∪Ac2) + P(Bc1 ∪Bc2) + P(Bc3), (9.38)

and second
q1 + q2 + . . .+ qµ ≥ θ. (9.39)
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Recall from Step II we have that P(Ac1 ∪ Ac2) ≤ 2γ whenever (9.15) and (9.16) are satisfied. Also, by Step
III, P(Bc1∪Bc2) ≤ 2γ whenever (9.20) and (9.21) are fulfilled. Finally, from Step IV we have that P(Bc3) ≤ γ
provided

µ = 8
⌈
log(γ−1) + 3

⌈
log2

(
8θ−1

√
|∆|
)⌉⌉

, (9.40)

and (9.23), (9.24) and (9.25) are satisfied. In particular, using (9.38) we find that (9.37) follows from (9.15),
(9.16), (9.20), (9.21), (9.23), (9.24) and (9.25). Thus, we must then show that these equations follow from
(5.4), (5.5) and (9.36). Now let q1 = q2 = θ/4. Then, by (9.36), we have that (9.16) follows (with a possibly
different constant), and similarly (9.21) follows. Let q = q3 = . . . = qµ. By (9.39) and (9.40) we have

16q
⌈
log(γ−1) + 3

⌈
log2

(
8θ−1

√
|∆|
)⌉⌉
≥ θ,

and hence (9.25) follows. The only thing left to do is to deal with the requirements on N . In particular, we
need to show that (9.15), (9.20), (9.23) and (9.24) follow when (5.4) and (5.5) are satisfied. Note that (9.23)
and (9.24) are weaker than (9.15) and (9.20). Thus, we only need to concentrate on (9.15) and (9.20). To see
that (5.4) and (5.5) imply (9.15) and (9.20), observe that

P∆U
∗PNUP∆ − P∆ = P∆(PMU

∗PNUPM − PM )P∆,

(since ∆ ⊆ {1, . . . ,M}) and therefore

‖P∆U
∗PNUP∆ − P∆‖ ≤ ‖PMU∗PNUPM − PM‖.

Hence (9.15) follows from (5.4). The fact that (9.20) follows from (5.5) is clear. Also, the fact that the
left-hand side of (9.35) is equal to zero when θ = 1 follows from Steps II - IV and the observation that when
θ = 1 we have q1 = . . . = qµ = 1.

Step VI: We claim that, for γ > 0,

P(‖θ−1P∆U
∗PΩUP∆ − P∆‖ > 1/2) ≤ γ, (9.41)

when N ∈ N and θ > 0 are chosen such that

‖P∆U
∗PNUP∆ − P∆‖ ≤ 1/4, θ ≥ C · υ2(U) · |∆| ·

(
log
(
γ−1|∆|

)
+ 1
)
,

for some universal constant C. Also, if θ = 1 then the left hand side of (9.41) is equal to zero.
To prove this claim note that, by Theorem 9.3, there is a K > 0 such that

P
(∥∥θ−1(PΩUP∆)∗PΩUP∆ − P∆

∥∥ ≥ 1

4
+ ‖P∆U

∗PNUP∆ − P∆‖
)
≤ γ,

provided

θ ≥ 4K · υ2(U) · |∆| · log(|∆|),

and

θ ≥ 4K · υ2(U) · |∆| · log(Cγ−1) ·
(

log

(
1 +

1

16

))−1

.

This yields the asserted claim. The fact that the left hand side of (9.41) is equal to zero when θ = 1 is clear.
Step VII: In this final step we will patch the different parts of the proof together. Recall that our initial

goal was to show that (9.7) follows with probability exceeding 1 − ε. Note that in Step V we have shown
that if γ > 0, then (ii) and (iii) in (9.7) are satisfied with probability exceeding 1 − 5γ, provided (5.4),
(5.4) and (9.36) are satisfied. We are thus only left to show that (i) follows with a certain probability.
However, we immediately recognize that the conditions in Step VI follow from (5.5) and (9.36), and hence
(i) in (9.7) follows with probability exceeding 1 − γ. This implies that (i), (ii) and (iii) in (9.7) hold with
probability exceeding 1− 6γ. By choosing γ such that 6γ = ε we observe that (9.36) follows (with possibly
a different C) from the conditions in Theorems 6.1 and 6.3. Hence we have finally proved the first assertions
in these theorems. The second assertions follow from the fact that θ = 1 when m = N (and hence also
q1 = . . . = qµ = 1), and Steps V and VI.

29



Proof of Theorem 6.4. We will follow the recipe from the of proof of Theorem 6.3 almost word for word,
pointing out only where the main differences lie. The first such difference is the set of conditions provided
by Proposition 8.7. In particular we must show that there exists a ρ ∈ ran(U∗PΩ) such that

(i) ‖θ−1P∆U
∗PΩUP∆ − P∆‖ ≤ 1/2, (ii) ‖P∆ρ− sgn(x0)‖ ≤ θ/8 (iii) ‖P⊥∆ ρ‖l∞ ≤ 1/2, (9.42)

is true with probability exceeding 1− ε (note that only (iii) is different from the proof of Theorem 6.3).
Step I: This is almost as in the proof of Theorem 6.3, except that (9.9) is replaced by

Θi =


Θi−1 ∪ {i} if

∥∥(P∆ − q−1
i P∆EΩiP∆

)
Zi−1

∥∥ ≤ αi ‖Zi−1‖ ,
and

∥∥q−1
i P⊥∆EΩiP∆Zi−1

∥∥
l∞
≤ βi‖Zi−1‖,

Θi−1 otherwise,

and the events B1 and B2 in (9.10) are now

Bj :
∥∥q−1
j P⊥∆EΩjP∆Zj−1

∥∥
l∞
≤ βj‖Zj−1‖, j = 1, 2.

Also, (9.13) must be changed to

‖P⊥∆ ρ‖l∞ ≤
ν∑
i=1

‖q−1
τ(i)P

⊥
∆EΩτ(i)

Zτ(i−1)‖l∞

≤
ν∑
i=1

βτ(i)‖Zτ(i−1)‖ ≤
√
|∆|

ν∑
i=1

βτ(i)

i−1∏
j=1

ατ(j).

Step II: Exactly as in the proof of Theorem 6.1.
Step III: We claim that, for γ > 0, then P(Bc1 ∪Bc2) ≤ 2γ, if N , q1 and q2 are chosen such that

‖P⊥∆U∗PNUP∆‖mr ≤
1

8
√
|∆|

, (9.43)

and
q1 = q2 ≥ C · υ2(U) · |∆| ·

(
log
(
γ−1ω1

)
+ 1
)
, (9.44)

where
ω1 = ω̃M,U (|∆|, q1(8

√
|∆|)−1, N),

(recall ω̃M,U from (5.2)) for some universal constant C > 0. Also, if q1 = q2 = 1, then P(Bc1 ∪ Bc2) = 0.
The claim follows exactly as in the proof of Step III in the proof of Theorem 6.1 by using the last part of
Proposition 9.1.

Step IV: We claim that, for γ > 0, then P(Bc3) ≤ γ, if µ, (recall µ and ν from Step I)N and {q3, . . . , qµ}
are chosen according to (9.22), (9.23) and

‖P⊥∆U∗PNUP∆‖mr ≤
log2(4θ−1

√
|∆|)

8
√
|∆|

, (9.45)

and also that q3 = q4 = . . . = qµ = q, where

q ≥ C · υ2(U) · |∆| ·

(
log (ω2)

log2(4θ−1
√
|∆|)

+ 1

)
, (9.46)

and

ω2 = ω̃M,U

(
|∆|, q

log2(4θ−1
√
|∆|)

8
√
|∆|

, N

)
,

(recall ω̃M,U from (5.2)) for some universal constant C > 0. Also, if q3 = q4 = . . . = qµ = 1, then
P(Bc3) = 0. The argument is almost the same as in the proof of Theorem 6.3, except that the last part of
(9.32) should read

D2 :
∥∥q−1
j P⊥∆EΩjP∆Zj−1

∥∥
l∞

> βj‖Zj−1‖, j = k + 2,
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and (9.34) should be

‖P⊥∆U∗PNUP∆‖mr ≤ βj/2,

qj ≥ C · υ2(U) ·

(
1

β2
j

+
1

βj

√
|∆|

)
· (log (32ω2) + 1) , j = k + 2.

Step V: We claim that, for γ > 0,

P
(
‖P∆ρ− sgn(x0)‖ > θ/8 ∪ ‖P⊥∆ ρ‖l∞ > 1/2

)
≤ 5γ, (9.47)

when N ∈ N and θ > 0 are chosen according to (5.4), (5.6) and

θ ≥ C · υ2(U) · |∆| ·
(
log
(
γ−1

)
+ 1
)
· log

(
ωθ−1

√
|∆|
)
, (9.48)

where
ω = ω̃M,U (|∆|, s,N), s =

θ

128
√
|∆| log(e4γ−1)

,

and ω̃M,U is defined in (5.2), for some universal constant C > 0. Also, if θ = 1 then the left hand side of
(9.47) is equal to zero.

The strategy is almost as in the proof of Step V in Theorem 6.1. In particular, we argue by using Steps
II-IV that P (Bc4) ≤ 5γ when (9.15), (9.16), (9.43), (9.44), (9.23), (9.45) and (9.46) are satisfied, and thus
(9.47) follows. We then need to show that these equations follow from (5.4), (5.6) and (9.48). To do this, let
q1 = q2 = θ/4. Then, by (9.48), we have that (9.16) follows with a possibly different constant. To show that
(9.44) is implied by (9.48) it suffices to show that ω ≥ ω1. This will follow by the definition (5.2) of ω̃M,U

(recall that the mapping s 7→ ω̃M,U (|∆|, s,N) is a decreasing function), and by observing that

q1(8
√
|∆|)−1 > s = θ

(
128
√
|∆| log(e4γ−1)

)−1

.

To show that (9.46) follows from (9.48) it suffices to show that ω ≥ ω2. To do this (as argued above) it is
sufficient to prove that

q
log2(4θ−1

√
|∆|)

8
√
|∆|

≥ s. (9.49)

To see why the latter inequality is true, note that

q1 + q2 + . . .+ qµ ≥ θ.

So, by recalling the value of µ (from (9.22)) from Step IV and observing that q = q3 = . . . = qµ, we get

16q
⌈
log(γ−1) + 3

⌈
log2

(
8θ−1

√
|∆|
)⌉⌉
≥ θ.

In particular, it follows that

q log2(4θ−1
√
|∆|) ≥

θ log2(4θ−1
√
|∆|)

16(log(γ−1) + 3 log2(8θ−1
√
|∆|) + 1)

>
θ

8 log(e4γ−1)
. (9.50)

Thus, we have shown (9.49).
We are now left with the task of showing that (9.15), (9.43), (9.44), (9.23) and (9.45) follow from (5.4)

and (5.6), and this follows by arguing exactly as in Step V in the proof of Theorem 6.1
Step VI and Step VII: Exactly as in the proof of Theorem 6.1.

10 Conclusions and challenges
This paper provides a new framework for infinite-dimensional CS in Hilbert spaces based on the ideas of
generalized sampling. Although we have presented a mathematical analysis, there are several issues not
addressed in this paper as well as a number of avenues for further investigations. First, as mentioned, we
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have also not treated the issue of noise in this paper. Fortunately, this can be done, and follows by extending
the techniques introduced in this paper. We refer to [7] for details.

Second we note that the results in this paper are non-uniform, i.e. they hold for a fixed signal of a given
sparsity rather than for all signals of that sparsity. As mentioned in §4 and discussed in [15], uniform recovery
of sparse signals with nonzero coefficients taking arbitrary locations is not possible in infinite dimensions.
Moreover, as explained in [7], this can become an issue even when using finite-dimensional CS techniques. In
problems which are inherently infinite-dimensional, arising in applications such as MRI, X-ray CT, electron
microscopy and radio interferometry, uniform recovery of all sparse vectors is unrealistic.

Nevertheless, it is of interest to see if the results in this paper can be strengthened to uniform recovery
results over a smaller class of signals, such as sparse signals with some fixed sparsity bandwidth M , or the
sparsity-in-levels class introduced in [7]. Such results could obviously not be based on the standard definition
of the Restricted Isometry Property (RIP). However alternatives such as the RIP in levels [13] may be more
suitable for extension to the infinite-dimensional setting.

This aside, another strong motivation for infinite-dimensional CS is the desire to reconstruct functions
from a small number of pointwise samples. Although a number of works have studied this from a finite-
dimensional perspective [51, 52], the underlying infinite-dimensionality of this problem can lead to a number
of issues in practice [1]. Fortunately, these can be overcome by tackling the infinite-dimensional problem
directly using similar ideas to those introduced in this paper. See [1] for details.
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11 Appendix
This appendix contains all the proofs not given so far. Before we do this, there are two results that will be
crucial. The first is a due to Rudelson [54].

Lemma 11.1. (Rudelson) Let η1, . . . , ηM ∈ Cn and let ε1, . . . εM be independent Bernoulli variables taking
values 1,−1 with probability 1/2. Then

E

(∥∥∥∥∥
M∑
i=1

εiη̄i ⊗ ηi

∥∥∥∥∥
)
≤ 3

2

√
pmax
i≤M
‖ηi‖

√√√√∥∥∥∥∥
M∑
i=1

η̄i ⊗ ηi

∥∥∥∥∥
where p = max{2, 2 log(n)}.

Note that the original lemma in [54] does not apply in this case. Actually, we need the complex version
proved in [61]. We will, however, still refer to it as Rudelson’s Lemma. The following theorem is also
indispensable:

Theorem 11.2. (Talagrand [59, 45]) There exists a numberK with the following property. Consider n inde-
pendent random variables Xi valued in a measurable space Ω. Let F be a (countable) class of measurable
functions on Ω and consider the random variable Z = supf∈F

∑
i≤n f(Xi). Let

S = sup
f∈F
‖f‖∞, V = sup

f∈F
E

∑
i≤n

f(Xi)
2

 .

If E(f(Xi)) = 0 for all f ∈ F and i ≤ n, then, for each t > 0, we have

P(|Z − E(Z)| ≥ t) ≤ 3 exp

(
− 1

K

t

S
log

(
1 +

tS

V + SE(Z)

))
,

where Z = supf∈F |
∑
i≤n f(Xi)|.
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Note that we deliberately forgo the use of any vector/matrix Bernstein inequalities in the proofs that
follow, and instead use Talagrand’s result. This allows for more flexibility in the infinite-dimensional setting.

We next present the proofs of Propositions 8.5 and 8.6. For this, it is useful to have a result about the
existence of unique minimizers. The finite-dimensional version of the following proposition has become
standard for showing existence of unique minimizers for finite-dimensional problems found in CS (see, for
example, [20, Lem. 2.1] or [34, Thm. 4.26]). Fortunately, the extension to infinite dimensions is rather
straightforward:

Proposition 11.3. Let U ∈ B(l2(N)) be unitary and let Ω,∆ ⊂ N be such that |Ω|, |∆| <∞. Suppose that
x0 ∈ H with supp(x0) = ∆ and consider the optimization problem

inf
η∈H
‖η‖l1 subject to PΩUη = PΩUx0. (11.1)

Suppose that there exists a vector ρ ∈ H such that

(i) ρ = U∗PΩη for some η ∈ H

(ii) 〈ρ, ej〉 = 〈sgn(x0), ej〉, j ∈ ∆

(iii) |〈ρ, ej〉| < 1, j /∈ ∆,

and in addition that PΩUP∆ : P∆H → PΩH has full rank, then x0 is the unique minimizer of (11.1). If U
and x0 are real the converse is also true.

Proof. By assumption, there is a ρ ∈ l∞(N) such that ρ = U∗PΩy for some y ∈ PΩH and ‖ρ‖l∞ ≤ 1.
Also, by (ii)

Re(〈PΩUP∆x0, y〉) = Re(〈x0, P∆ρ〉) =
∑
j∈∆

sign(〈x0, ej〉)〈x0, ej〉 = ‖x0‖l1 .

Thus, by using duality (recall Proposition 8.3), in particular the fact that PΩU : H → PΩH is onto (this
follows since U is unitary) and that

inf{‖x‖l1 : PΩUx = PΩUx0} = sup{Re(〈PΩUx0, y〉) : ‖U∗PΩy‖l∞ ≤ 1},

it follows that x0 is a minimizer. But 〈ρ, ej〉 < 1 for j /∈ ∆ so if ξ is another minimizer then supp(ξ) = ∆.
However, PΩUP∆ has full rank, so ξ = x0.

As for the converse in the real case, suppose that x0 is the unique minimizer. Then, for all suffi-
ciently large n, x0 is the unique minimizer to the finite-dimensional optimization problem inf{‖x‖l1 : x ∈
PnH, PΩUPnx = PΩUx0}. Proposition 11.3 is well known to be true in finite dimensions [34]. It follows
that there is a yn such that, for ρn = PnU

∗PΩyn, we have 〈ρn, ej〉 < 1 when j /∈ ∆ and j ≤ n, and
〈ρn, ej〉 = sgn(〈x0, ej〉) for j ∈ ∆. It is easy to see that there is a constant M <∞ such that ‖yn‖l∞ ≤M
for all large n. Now we can define ρ = U∗PΩyn. Then ρ = ρn + P⊥n U

∗PΩyn, and thus ρ satisfies the
requirements (i), (ii) and (iii) for large n.

Proof of Proposition 8.5. Let α = |∆| and also ω = {ωj}αj=1, where ωj ∈ C. Now define

Vω = I∆c ⊕ Sω : P⊥∆H⊕ P∆H → P⊥∆H⊕ P∆H, (11.2)

where Sω = diag({ωj}αj=1) on P∆H and I∆c is the identity on P⊥∆H. Define U(ω) = UVω. Note that
to prove the proposition it suffices to show that Vωx is the unique minimizer of inf{‖η‖l1 : PΩUη =
PΩU(ω)x} for all ω, where

ω ∈ Λ = {(eiθ1 , . . . , eiθα) ∈ Cα : θj ∈ [0, 2π), 1 ≤ j ≤ α}. (11.3)

Indeed, if the assertion is true, Proposition 11.3 yields that every real x̃ ∈ l2(N) with supp(x̃) = ∆ is the
unique minimizer of inf{‖η‖l1 : PΩUη = PΩUx̃}. Thus, for any y ∈ l2(N) such that supp(y) = ∆ choose
ω ∈ Λ and a real x̃ ∈ l2(N) such that y = Vωx̃. Then, by using the assertion above for x̃ we have proved the
proposition.

To prove the assertion, note that if ω ∈ Λ, then Vω is clearly unitary and also an isometry on l1(N). Thus,
it is easy to see that Vωζ is a minimizer of inf{‖η‖l1 : PΩUη = PΩU(ω)x} if and only if ζ is a minimizer of
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inf{‖η‖l1 : PΩU(ω)η = PΩU(ω)x}. We will therefore consider the latter minimization problem and show
that x is the unique minimizer of that problem for all ω ∈ Λ. To do that, it suffices, by Proposition 11.3 and
the fact that U(ω) is unitary to show that there exists a vector ρ ∈ l2(N) such that

PΩcU(ω)ρ = 0, P∆ρ = sgn(x), ‖P∆cρ‖l∞ < 1. (11.4)

Now, for ε > 0 (we will specify the value of ε later), define the function ϕ : ∪a∈ΛB(a, ε) → R+, where
B(a, ε) denotes the ε-ball around a, in the following way. Let

W = I∆ ⊕ PΩcUP∆c : P∆H⊕ P∆cH → P∆H⊕ PΩcH,

and define
ϕ(ω) = inf{‖P∆cρ‖l∞ : Wρ = ι∗∆sgn(x)⊕−PΩcU(ω)P∆ι

∗
∆sgn(x)},

where ι∆ : P∆l
2(N) → l2(N) is the inclusion operator. Then (11.4) is satisfied if and only if ϕ(ω) < 1.

Thus, to show 11.4 we must show that ϕ(ω) < 1 for all ω ∈ Λ.
Suppose for the moment that ε is chosen such that ϕ is defined on its domain. We will show that ϕ is

continuous. For this, it suffices to show that ϕ is continuous on B(a, ε) for a ∈ Λ. Note that, by the fact
that B(a, ε) is open it is enough to show that ϕ is convex. To see that ϕ is convex, let ω1, ω2 ∈ B(a, ε) and
t ∈ (0, 1). Also let ξ, η ∈ l2(N) be such that

Wξ = ι∗∆sgn(x)⊕−PΩcU(ω1)P∆ι
∗
∆sgn(x),

Wη = ι∗∆sgn(x)⊕−PΩcU(ω2)P∆ι
∗
∆sgn(x).

Note that the existence of such vectors is guaranteed by the assumption that ϕ is defined on its domain. Now

ϕ(tω1 + (1− t)ω2) ≤ ‖P∆c(tξ + (1− t)η)‖l∞ ≤ t‖P∆cξ‖l∞ + (1− t)‖P∆cη‖l∞ .

Thus, taking infimum on the right hand side yields ϕ(tω1 + (1 − t)ω2) ≤ tϕ(ω1) + (1 − t)ϕ(ω2), as
required. Returning to the question of the domain of ϕ, note that if (PΩUP∆)∗PΩUP∆|P∆l2(N) is invertible,
then (PΩU(ω)P∆)∗PΩU(ω)P∆|P∆l2(N) is invertible if ‖U(ω̃)− U(ω)‖ is small and ω̃ ∈ Λ. Letting

ρ = U(ω)∗PΩU(ω)P∆((PΩU(ω)P∆)∗PΩU(ω)P∆|P∆l2(N))
−1sgn(x)

we get
PΩcUP∆cρ = −PΩcU(ω)P∆sgn(x).

Thus, ϕ is defined on its domain for small ε.
Let Γ denote the subset of all ω ∈ Λ such that x is the unique minimizer of inf{‖η‖l1 : PΩU(ω)η =

PΩU(ω)x}. Note that Γ is closed. Indeed, if ω ∈ Γ and {ωn} ⊂ Γ is a sequence such that ωn → ω then
ω ∈ Γ. To see that, observe that since {U,Ω,∆} is weakly f stable, it follows that for ξ ∈ l2(N) satisfying

‖ξ‖l1 = inf{‖η‖l1 : PΩU(ω)η = PΩU(ω)x}

we have
‖ξ − x‖l1 ≤ f(‖ω − ωn‖l∞), ∀n ∈ N.

Thus, ξ = x and hence ω ∈ Γ.
Note also that Γ is open. Indeed, for if ω̃ ∈ Γ then there exist ρ ∈ H such that ρ satisfies (11.4)

(with ω replaced by ω̃) e.g. ϕ(ω̃) < 1. But, by continuity of ϕ it follows that ϕ is strictly less than
one on a neighborhood of ω̃. Since (PΩUP∆)∗PΩUP∆|P∆l2(N) is invertible, then it is easy to see that
PΩU(ω)P∆)∗PΩU(ω)P∆|P∆l2(N) is invertible, for all ω ∈ Λ. Thus it follows by Proposition 11.3 that
(11.4) is satisfied for all ω ∈ Λ in a neighborhood of ω̃ and hence Γ is open.

The fact that Γ is open and closed yields that either Γ = ∅ or Γ = Λ. The fact that {1, . . . , 1} ∈ Γ by
assumption yields the theorem.

Proof of Proposition 8.6. Let Vω and Λ be defined as in (11.2) and (11.3) respectively. Suppose that y ∈
l2(N) is real with supp(y) = ∆. Then, by assumption, Vωy is the unique minimizer of inf{‖η‖l1 : PΩUη =
PΩUVωy}, when Vω is real. Thus, by Proposition 11.3 it follows that there exists a ρω ∈ l2(N) such that

PΩcUρω = 0, P∆ρω = sgn(Vωy), ‖P∆cρω‖l∞ < 1. (11.5)
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Let β = maxω∈Λ{‖P∆cρω‖l∞ , ω is real}. It is clear that β < 1. Thus, for every y ∈ H with supp(y) = ∆
there exists ρω ∈ l2(N) satisfying (11.5) where ‖P∆cρω‖l∞ ≤ β. It is now easy to show that (see the
proof of Lemma 2.1 in [21]) there exists a constant C > 0 (depending on β) such that, if ξ ∈ l2(N),
supp(ξ) = ∆, is the unique minimizer of inf{‖η‖l1 : PΩUη = PΩUξ}, ζ ∈ l2(N) and x is a minimizer of
inf{‖η‖l1 : PΩUη = PΩUζ} then ‖P∆cx‖l1 ≤ C‖ξ − ζ‖l1 . Thus, since

PΩUP∆(x− ξ) = PΩU(ζ − ξ)− PΩUP∆cx,

and (PΩUP∆)∗PΩUP∆|P∆H is invertible, the proposition follows.

Proof of Proposition 9.1. Without loss of generality we may assume that ‖η‖ = 1. Let {δj}Nj=1 be random
Bernoulli variables with P(δj = 1) = q. We will split the proof into two steps, where we will prove the
finite-dimensional part of the proposition in Step I, and then tweak these ideas to fit the infinite-dimensional
part of the proposition in Step II.

Step I: We start by noting that, since U is an isometry, we have

q−1PMP
⊥
∆EΩP∆η = q−1

N∑
j=1

PMP
⊥
∆U

∗δj(ej ⊗ ej)UP∆η

= q−1
N∑
j=1

PMP
⊥
∆U

∗(δj − q)(ej ⊗ ej)UP∆η + PMP
⊥
∆U

∗P⊥NUP∆η.

(11.6)

Our goal is to eventually use Bernstein’s inequality and the following is therefore a setup to do so. For
1 ≤ j ≤ N define the random variables

Yj = q−1PMP
⊥
∆U

∗(δj − q)(ej ⊗ ej)UP∆η,

Xi
j = 〈q−1U∗(δj − q)(ej ⊗ ej)UP∆η, ei〉, i ∈ ∆c ∩ {1, . . . ,M}.

Thus, for s > 0 it follows from (11.6) that

P
(∥∥q−1PMP

⊥
∆EΩP∆η

∥∥
l∞

> s
)

= P

∥∥∥∥∥∥
N∑
j=1

Yj + PMP
⊥
∆U

∗P⊥NUP∆η

∥∥∥∥∥∥
l∞

> s


≤

∑
i∈∆c∩{1,...,M}

P

∣∣∣∣∣∣
N∑
j=1

Xi
j + 〈PMP⊥∆U∗P⊥NUP∆η, ei〉

∣∣∣∣∣∣ > s


≤

∑
i∈∆c∩{1,...,M}

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > s− ‖PMP⊥∆U∗PNUP∆‖mr

 ,

where we have used the fact that U is an isometry and hence

PMP
⊥
∆U

∗PNUP∆ = −PMP⊥∆U∗P⊥NUP∆.

Thus, by choosing s = t+ ‖PMP⊥∆U∗PNUP∆‖mr we deduce that

P
(∥∥q−1PMP

⊥
∆EΩP∆η

∥∥
l∞

> t+ ‖PMP⊥∆U∗PNUP∆‖mr

)
≤

∑
i∈∆c∩{1,...,M}

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > t

 . (11.7)

To estimate the right hand side of (11.7) we shall use Bernstein’s inequality, and in order to do that we need
a couple of observations. First note that

E
(
|Xi

j |2
)

= q−2E
(
|〈UP∆η, (δj − q)(ej ⊗ ej)Uei〉|2

)
= q−2E

(
(δj − q)2

)
|〈UP∆η, ej〉〈Uei, ej〉|2

= q−1(1− q)|〈UP∆η, ej〉〈Uei, ej〉|2, i ∈ ∆c ∩ {1, . . . ,M}.
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Thus

N∑
j=1

E
(
|Xi

j |2
)
≤ q−1(1− q)‖η‖2υ2(U) = q−1(1− q)υ2(U), i ∈ ∆c ∩ {1, . . . ,M}. (11.8)

Also, observe that

|Xi
j | = q−1|(δj − q)||〈η, P∆U

∗(ej ⊗ ej)Uei〉| ≤ max{(1− q)/q, 1}υ2(U)
√
|∆|, (11.9)

for 1 ≤ j ≤ N and i ∈ ∆c ∩ {1, . . . ,M}. Now applying Bernstein’s inequality to Re(Xi
1), . . . ,Re(Xi

N )
and Im(Xi

1), . . . , Im(Xi
N ) we get that

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > t

 ≤ 4 exp

(
− t2/4

q−1(1− q)υ2(U) + max{q−1(1− q), 1}υ2(U)
√
|∆|t/3

√
2

)
, (11.10)

for all i ∈ ∆c ∩ {1, . . . ,M}. Thus, by invoking (11.10) and (11.7) it follows that

P
(∥∥q−1PMP

⊥
∆EΩP∆η

∥∥
l∞

> t+ ‖PMP⊥∆U∗PNUP∆‖mr

)
≤ γ

when

q ≥

(
4

t2
+

2
√

2

3t

√
|∆|

)
log

(
4

γ
|∆c ∩ {1, . . . ,M}|

)
υ2(U).

The first part of the proposition now follows. The fact that the left hand side of (9.3) is zero when q = 1 is
clear from (11.8) and (11.9).

Step II: To prove the second part of the proposition we will use the same ideas, however, we are now
faced with the problem that P⊥∆EΩP∆η (contrary to PMP⊥∆EΩP∆η) has infinitely many components. This
is an obstacle since the proof of the bound on PMP⊥∆EΩP∆η was based on bounding the probability of the
deviation of every component of PMP⊥∆EΩP∆η and thus, if there are infinitely many components to take
care of, the task would be impossible. To overcome this obstacle we proceed as follows. Note that, just as
argued in the previous case in Step I, we have that

q−1P⊥∆EΩP∆η =

N∑
j=1

Ỹj + P⊥∆U
∗P⊥NUP∆η, Ỹj = q−1P⊥∆U

∗(δj − q)(ej ⊗ ej)UP∆η. (11.11)

Define (as we did above) the random variables

Xi
j = 〈q−1U∗(δj − q)(ej ⊗ ej)UP∆η, ei〉, i ∈ ∆c.

Note that we now have infinitely many Xi
j’s. However, suppose for a moment that for every t > 0 there

exists a non-empty set Λt ⊂ N such that

P

sup
i∈Λt

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > t

 = 0 |∆c \ Λt| <∞. (11.12)

Then, if that was the case, we would immediately get (by arguing as in Step I and using (11.11) and the
assumption that ‖η‖ = 1) that

P
(∥∥q−1P⊥∆EΩP∆η

∥∥
l∞

> t+ ‖P⊥∆U∗PNUP∆‖mr

)
= P

∥∥∥∥∥∥
N∑
j=1

Ỹj + P⊥∆U
∗P⊥NUP∆η

∥∥∥∥∥∥
l∞

> t+ ‖P⊥∆U∗PNUP∆‖mr


≤

∑
i∈|∆c\Λt|

P

∣∣∣∣∣∣
N∑
j=1

Xi
j

∣∣∣∣∣∣ > t

 ,
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Thus, we could use the analysis provided above, via (11.10), and deduce that

P
(∥∥q−1P⊥∆EΩP∆η

∥∥
l∞

> t+ ‖P⊥∆U∗PNUP∆‖mr

)
≤ γ

when

q ≥

(
4

t2
+

2
√

2

3t

√
|∆|

)
log

(
4

γ
|∆c \ Λt|

)
υ2(U). (11.13)

Hence, if we could show the existence of Λt and provide a bound on |∆c \ Λt| we could appeal to (11.11)
and (11.13) and complete the proof. To do that, define

Λt =

i /∈ ∆ : P

∥∥∥∥∥∥
N∑
j=1

P∆U
∗δj(ej ⊗ ej)Uei

∥∥∥∥∥∥ ≤ tq
 = 1

 .

Note that (ej ⊗ ej)Uei → 0 as i→∞ for all j ≤ N . Thus, Λt 6= ∅. Moreover, we also immediately deduce
that |∆c \ Λt| < ∞. Note also that (11.12) follows by the fact that Xi

j = 〈η, q−1P∆U
∗δj(ej ⊗ ej)Uei〉

and the Cauchy-Schwarz inequality. With the existence of Λt established, we now continue with the task of
estimating |∆c \ Λt| . Note that to estimate |∆c \ Λt| we need information about the location of ∆ which is
not assumed. We only assume the knowledge of some M ∈ N such that PM ≥ P∆. Thus, (although an
estimate of |∆c \ Λt| would be sharper than what we will eventually obtain) we define

Λ̃q(|∆|,M, t) =

i ∈ N : max
Γ1⊂{1,...,M},|Γ1|=|∆|

Γ2⊂{1,...,N}

‖PΓ1U
∗PΓ2Uei‖ ≤ tq

 .

Note that it is straightforward to show that Λ̃q(|∆|,M, t) ⊂ Λt. Also, Λ̃q(|∆|,M, t) depends only on known
quantities. Observe that, clearly, for any Γ1 ⊂ {1, . . . ,M} and Γ2 ⊂ {1, . . . , N} then ‖PΓ1

U∗PΓ2
Uei‖ →

∞ as i→∞. Thus, |∆c \ Λq(|∆|,M, t)| <∞ and since Λq(|∆|,M, t) ⊂ Λt it follows that

|∆c \ Λq(∆, t)| ≤

∣∣∣∣∣∣∣
i ∈ N : max

Γ1⊂{1,...,M},|Γ1|=|∆|
Γ2⊂{1,...,N}

‖PΓ1
U∗PΓ2

Uei‖ > tq


∣∣∣∣∣∣∣ .

This gives the second part of the proposition. The fact that the left hand side of (9.4) is zero when q = 1 is
clear from (11.8) and (11.9).

Proof of Proposition 9.2. Without loss of generality we may assume that ‖η‖ = 1. Let {δj}Nj=1 be random
Bernoulli variables with P(δj = 1) = q. Also, for k ∈ N, let ξk = (UP∆)∗ek. Observe that, since U is an
isometry,

q−1(PΩUP∆)∗PΩUP∆ =

N∑
k=1

q−1δkξk ⊗ ξ̄k, P∆ =

∞∑
k=1

ξk ⊗ ξ̄k, (11.14)

and∥∥∥∥(1

q
(PΩUP∆)∗PΩUP∆ − P∆

)
η

∥∥∥∥ ≤
∥∥∥∥∥
(

N∑
k=1

(q−1δk − 1)ξk ⊗ ξ̄k

)
η

∥∥∥∥∥+ ‖(P∆U
∗PNUP∆ − P∆)η‖,

(11.15)

where the infinite series in (11.14) converges in operator norm. To get the desired result we first focus on
obtaining bounds on ‖(

∑N
k=1(q−1δk−1)ξk⊗ξ̄k)η‖ The goal is to use Talagrand’s formula, and what follows

is a setup for that. In particular, let ζ ∈ H be a unit vector, and denote the mapping H 3 ξ 7→ Re(〈ξ, ζ〉) by
ζ̂. Let F be a countable collection of unit vectors such that for any ξ ∈ H we have ‖ξ‖ = supζ∈F ζ̂(ξ), and
now define

Z = ‖X‖, X =

N∑
k=1

Zk, Zk = ((q−1δk − 1)ξk ⊗ ξ̄k)η.
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Note that the following is clear (and note how this immediately gives us the setup for Talagrand’s Theorem)

Z =

∥∥∥∥∥
(

N∑
k=1

(q−1δk − 1)ξk ⊗ ξ̄k

)
η

∥∥∥∥∥ = sup
ζ∈F

ζ̂

(
N∑
k=1

Zk

)
= sup
ζ∈F

N∑
k=1

ζ̂(Zk).

To use Talagrand’s Theorem we must estimate the following quantities:

V = sup
ζ∈F

E

(
N∑
k=1

ζ̂(Zk)2

)
, S = sup

ζ∈F
‖ζ̂‖∞, R = E

(∥∥∥∥∥
N∑
k=1

Zk

∥∥∥∥∥
)
.

For V we have the following estimate:

sup
ζ∈F

E

(
N∑
k=1

ζ̂(Zk)2

)
≤ sup
ζ∈F

E

∑
k≤N

(
q−1δk − 1

)2 |〈ξk, ζ〉|2|〈ξk, η〉|2


≤ q−1(1− q)
∑
k≤N

‖ξk‖2|〈ek, UP∆η〉|2

≤ q−1(1− q)υ2(U)|∆|,

where we have used the fact that U is an isometry in the step going from the second to the third inequality.
The S term can be estimated as follows. Note that

ζ̂(Zk) = |
(
q−1δk − 1

)
|〈ξk, ζ〉||〈ξk, η〉| ≤ max{q−1 − 1, 1}υ2(U)|∆|, k ≤ N, (11.16)

thus
S ≤ max{q−1 − 1, 1}υ2(U)|∆|. (11.17)

Finally, we can estimate R as follows:

E

∥∥∥∥∥
N∑
k=1

Zk

∥∥∥∥∥
2
 =

N∑
k=1

E(‖Zk‖2) +
∑
k 6=j

E(〈Zk, Zj〉) ≤ q−1(1− q)
∑
k≤N

‖ξk‖2|〈ek, UP∆η〉|2

≤ q−1(1− q)υ2(U)|∆|,

again using the fact that U is an isometry. Therefore,

E

∥∥∥∥∥∥
∑
k≤N

Zk

∥∥∥∥∥∥
 ≤

√√√√√√E


∥∥∥∥∥∥
∑
k≤N

Zk

∥∥∥∥∥∥
2
 ≤√q−1(1− q)υ2(U)|∆|. (11.18)

With the estimates on V, S and R now established we may appeal to Theorem 11.2 and deduce that there is
a constant K > 0 such that, for θ > 0,

P

(∥∥∥∥∥
(

N∑
k=1

(q−1δk − 1)ξk ⊗ ξ̄k

)
η

∥∥∥∥∥ ≥ θ +
√
q−1(1− q)υ2(U)|∆|

)

≤ 3 exp

(
− θ

K
(max{q−1 − 1, 1}υ2(U)|∆|)−1 log

(
1 +

θ

2

))
.

(11.19)

provided q is chosen such that the right hand side of (11.18) is bounded by 1 (this is guaranteed by the
assumptions of the proposition). But by (11.15) it follows that for any r > 0, we have

P
(∥∥∥∥(1

q
(PΩUP∆)∗PΩUP∆ − P∆

)
η

∥∥∥∥ ≥ r)
≤ P

(∥∥∥∥∥
(

N∑
k=1

(q−1δk − 1)ξk ⊗ ξ̄k

)
η

∥∥∥∥∥ ≥ r − ‖(P∆U
∗PNUP∆ − P∆)‖

)
.

(11.20)
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Therefore, by appealing to (11.20) and (11.19) we obtain that

P
(∥∥∥∥(1

q
(PΩUP∆)∗PΩUP∆ − P∆

)
η

∥∥∥∥ ≥ θ +
√
q−1(1− q)υ2(U)|∆|+ Ξ

)
≤ 3 exp

(
− θ

K
(max{q−1 − 1, 1}υ2(U)|∆|)−1 log

(
1 +

θ

2

))
,

where Ξ = ‖(P∆U
∗PNUP∆ − P∆)‖. Choosing θ = t/2 yields the proposition.

Proof of Theorem 9.3. The proof is quite similar to the proof of Proposition 9.2. Let {δj}Nj=1 be random
Bernoulli variables with P(δj = 1) = θ. Note that we may argue as in (11.14) and observe that

∥∥θ−1(PΩUP∆)∗PΩUP∆ − P∆

∥∥ ≤ ∥∥∥∥∥
N∑
k=1

(θ−1δk − 1)ξk ⊗ ξ̄k

∥∥∥∥∥+ ‖(P∆U
∗PNUP∆ − P∆)‖ , (11.21)

where ξk = (UP∆)∗ek. To get the desired result we first focus on getting bounds on ‖
∑N
k=1(θ−1δk −

1)ξk ⊗ ξ̄k‖. As in the proof of Proposition 9.2 the goal is to use Talagrand’s thereom and the first step to do
so is to estimate E (‖Z‖) , where Z =

∑N
k=1(θ−1δk − 1)ξk ⊗ ξ̄k.

Claim: We claim that

E (‖Z‖)2 ≤ 48 max{log(|∆|), 1}θ−1υ2(U)|∆|, (11.22)

when
θ ≥ 18 max{log(|∆|), 1}υ2(U)|∆|.

To prove the claim we simply rework the techniques used in [54]. This is now standard and has also been
used in [19, 61]. We we start by letting δ̃ = {δ̃k}Nk=1 be independent copies of δ = {δk}Nk=1. Then

Eδ (‖Z‖) = Eδ

(∥∥∥∥∥Z − Eδ̃

(
N∑
k=1

(
θ−1δ̃k − 1

)
ξk ⊗ ξ̄k

)∥∥∥∥∥
)

≤ Eδ

(
Eδ̃

(∥∥∥∥∥Z −
N∑
k=1

(
θ−1δ̃k − 1

)
ξk ⊗ ξ̄k

∥∥∥∥∥
))

,

(11.23)

by Jensen’s inequality. Let ε = {εj}Nj=1 be a sequence of Bernoulli variables taking values ±1 with proba-
bility 1/2. Then, by (11.23), symmetry, Fubini’s Theorem and the triangle inequality, it follows that

Eδ (‖Z‖) ≤ Eε

(
Eδ

(
Eδ̃

(∥∥∥∥∥
N∑
k=1

εk

(
θ−1δk − θ−1δ̃k

)
ξk ⊗ ξ̄k

∥∥∥∥∥
)))

≤ 2Eδ

(
Eε

(∥∥∥∥∥
N∑
k=1

εkθ
−1δkξk ⊗ ξ̄k

∥∥∥∥∥
))

.

(11.24)

Now, by Lemma 11.1 we get that

Eε

(∥∥∥∥∥
N∑
k=1

εkθ
−1δkξk ⊗ ξ̄k

∥∥∥∥∥
)
≤ 3
√

max{2 log(|∆|), 2}θ−1 max
1≤k≤N

‖ξk‖

√√√√∥∥∥∥∥
N∑
k=1

θ−1δkξk ⊗ ξ̄k

∥∥∥∥∥. (11.25)

And hence, by using (11.24) and (11.25), it follows that

Eδ (‖Z‖) ≤ 3
√

max{2 log(|∆|), 2}θ−1υ2(U)|∆|

√√√√Eδ

(∥∥∥∥∥Z +

N∑
k=1

ξk ⊗ ξ̄k

∥∥∥∥∥
)
.

Thus, by using the easy calculus fact that if r > 0, c ≤ 1 and r ≤ c
√
r + 1 then r ≤ c(1 +

√
5)/2, and the

fact that U is an isometry (so that ‖
∑N
k=1 ξk ⊗ ξ̄k‖ ≤ 1), it is easy to see that the claim follows.
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To be able to use Talagrand’s formula there are now some preparations that have to be done. First write

Z =

N∑
k=1

Zk, Zk =
(
θ−1δk − 1

)
ξk ⊗ ξ̄k.

Clearly, since Z is self-adjoint, we have that ‖Z‖ = supη∈F |〈Zη, η〉|,where G is a countable set of unit vec-
tors. For η ∈ G, let the mappings B(H) 3 T 7→ 〈Tη, η〉 and B(H) 3 T 7→ −〈Tη, η〉 be denoted by η̂1 and η̂2

respectively. LettingF denote the family of all these mappings we have that ‖Z‖ = supη̂i∈F
∑
k≤N η̂i(Zk),

and the setup for Talagrand’s theorem is complete.
For k = 1, . . . , N note that

|η̂i(Zk)| =
∣∣(θ−1δk − 1

)∣∣ |〈(ξk ⊗ ξ̄k) η, η〉| ≤ θ−1‖ξ‖2.

Thus, after restricting η̂i to the ball of radius θ−1 maxk≤N ‖ξk‖2 it follows that

S = sup
ηi∈F

‖η̂i‖∞ ≤ θ−1 max
k≤N
‖ξk‖2 ≤ θ−1υ2(U)|∆|. (11.26)

Also, note that

V = sup
η̂i∈F

E

∑
k≤N

η̂(Zk)2

 ≤ sup
η̂∈F

E

∑
k≤N

(
θ−1δk − 1

)2 |〈ξk, η〉|4


≤ max
k≤N
‖ξk‖2

(
θ−1 − 1

)
sup
η̂∈F

∑
k≤N

|〈ek, UP∆η〉|2

≤
(
θ−1 − 1

)
max
k≤N
‖ξk‖2 ≤

(
θ−1 − 1

)
υ2(U)|∆|,

(11.27)

where the third inequality follows from the fact that U is an isometry. It follows by Talagrand’s inequality
(Theorem 11.2), the earlier claim (and requiring that the right hand side of (11.22) is bounded by one, which
is guarantied by the assumption of the theorem), the first part of the assumed (9.6), (11.26) and (11.27), that
there is a constant K > 0 such that for t > 0

P

(∥∥∥∥∥
N∑
k=1

(θ−1δk − 1)ξk ⊗ ξ̄k

∥∥∥∥∥ ≥ t+ 48 log(|∆|)θ−1υ2(U)|∆|

)

≤ 3 exp

(
− t

K
(θ−1υ2(U)|∆|)−1 log

(
1 +

t

2

))
.

(11.28)

But by (11.21) we have

P
(∥∥∥∥1

θ
(PΩUP∆)∗PΩUP∆ − P∆

∥∥∥∥ ≥ r)
≤ P

(∥∥∥∥∥
N∑
k=1

(θ−1δk − 1)ξk ⊗ ξ̄k

∥∥∥∥∥ ≥ r − ‖(P∆U
∗PNUP∆ − P∆)‖

)
.

(11.29)

for any r > 0. Therefore, by appealing to (11.29) and (11.28) we obtain

P
(∥∥∥∥1

θ
(PΩUP∆)∗PΩUP∆ − P∆

∥∥∥∥ ≥ t+ 48 log(|∆|)θ−1υ2(U)|∆|+ Ξ

)
≤ 3 exp

(
− t

K
(θ−1υ2(U)|∆|)−1 log

(
1 +

t

2

))
, Ξ = ‖(P∆U

∗PNUP∆.− P∆)‖.

for t > 0. Choosing t = 1
2γ yields the first part of the theorem. The last statement of the theorem is clear.
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