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Abstract

We present a new method for computing spectra and pseudospectra of bounded operators on
separable Hilbert spaces. The core in this theory is a generalization of the pseudospectrum called
then-pseudospectrum.

1 Introduction

Let T be a bounded operator on a separable Hilbert spaceH with an orthonormal basis{ej} and sup-
pose that we wish to compute the spectrum ofT . We are faced with the slightly unpleasant problem of
computing a quantity that may depend discontinuously on thematrix elements〈Tej , ei〉. In particular,
the following example illustrates the problem: LetAǫ : l2(Z) → l2(Z) be defined by

(Aǫf)(n) =

{

ǫf(n+ 1) n = 0

f(n+ 1) n 6= 0.
(1.1)

Now for ǫ 6= 0 we haveσ(Aǫ) = {z : |z| = 1} but forǫ = 0 thenσ(A0) = {z : |z| ≤ 1}. A numerical
analyst may express concern about this problem. One can argue that if one should do a computation of
the spectrum on a computer, the fact that the arithmetic operations carried out are not exact may lead
to the result that one gets the true solution to a slightly perturbed problem. This type of analysis is
often referred to as Backward Error Analysis in the numerical linear algebra literature. As suggested
in the previous example, getting the answer to a slightly perturbed problem could be disastrous.

This poses a slightly philosophical question; is it impossible to compute spectra of arbitrary op-
erators? And if so, does that mean that there are operators, whose spectral theory might be crucial
for understanding physical phenomena, but their spectra will never be determined. This would imply
that there is a rather unpleasant barrier between what we cancompute and what we want to compute.
In [Han08, Han09a] several new methods for estimating spectra and pseudospectra of operators were
presented. Our goal in this article is to show that these results can be used for actual computations,
and that, indeed, it is possible to compute spectra of arbitrary bounded operators on separable Hilbert
spaces. We will emphasize the computational task and refer to [Han09a] for justifications of the math-
ematical statements that will be presented. Our theory is very much inspired by the pseudospectral
theory that has emerged through the last two decades ([Dav07, Tre99, TE05]). The main reason is that
to overcome the discontinuity problem suggested above, oneis forced to consider the computation of a
different set than the spectrum, even though estimating thespectrum may be the main goal. As we will
see in Section 4, variants of the pseudospectra, namely then-pseudospectra, are excellent candidates
for sets that approximate the spectrum well. Also, these sets do not behave discontinuously with the
operator. Let us recall the definition of the pseudospectrum.
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Definition 1.1. LetT be a closed operator on a Hilbert spaceH such thatσ(T ) 6= C, and letǫ > 0.
Theǫ-pseudospectrum ofT is defined as the set

σǫ(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖(z − T )−1‖ > ǫ−1}.

If we were to estimate the pseudospectrum instead of the spectrum, the problem suggested by the
example above would not occur. The reason is that the pseudospectrum varies continuously with the
operatorT if T is bounded (we will be more specific regarding the continuitybelow.)

2 Notation

Before we continue let us recall some basic notation and definitions. Throughout the paper,H will
always denote a separable Hilbert space andB(H) the set of bounded linear operators onH. For
T ∈ B(H) we denote the spectrum byσ(T ), and ifT − z is invertible, forz ∈ C, we use the notation
R(z, T ) = (T−z)−1. The closure of a setΩ ⊂ C will be denoted byΩ, however, when convenient, the
notationcl(Ω) may be used. We will denote orthonormal basis elements ofH by ej , and if {ej}j∈N

is a basis andξ ∈ H thenξj = 〈ξ, ej〉. The word basis will always refer to an orthonormal basis.
Convergence of sets in the complex plane will be quite crucial in our analysis and hence we need the
Hausdorff metric as defined by the following.

Definition 2.1. (i) For a setΣ ⊂ C andδ > 0 we will letωδ(Σ) denote theδ-neighborhood ofΣ
(i.e. the union of allδ-balls centered at points ofΣ).

(ii) Given two setsΣ,Λ ⊂ C we say thatΣ is δ-contained inΛ if Σ ⊂ ωδ(Λ).

(iii) Given two compact setsΣ,Λ ⊂ C their Hausdorff distance is

dH(Σ,Λ) = max{sup
λ∈Σ

d(λ,Λ), sup
λ∈Λ

d(λ,Σ)}

whered(λ,Λ) = infρ∈Λ |ρ− λ|.

If {Λn}n∈N is a sequence of compact subsets ofC andΛ ⊂ C is compact such thatdH(Λn,Λ) → 0
asn→ ∞ we may use the notationΛn −→ Λ. The fact that arithmetic operations may not be carried
out exactly on a computer is crucial in our analysis, andǫmach will always denote the machine epsilon
in the computer software used. The software of choice is MATLAB, and in that caseǫmach = 10−16.
Before we continue with pseudospectral theory we would liketo make a short detour via the finite
section method and try to convince the reader that the finite section method is not a serious contender
to the “method of the month” award among algorithms for the general computational spectral problem.
Although, it is of great importance for some self-adjoint problems and all compact problems.

3 The Finite Section Method

Suppose that we have an operatorA ∈ B(H) and that we know the matrix elementsaij = 〈Aej , ei〉
with respect to some basis{ej}. The question is then how do we compute the spectrum and the
pseudospectra ofA using {aij}. A natural thought may be to reduce this to a finite-dimensional
spectral problem by constructing (using{ej}) a sequence of finite rank projections{Pm} such that
Pm+1 ≥ Pm andPm → I strongly, whereI is the identity, and then compute the spectrum and
pseudospectra ofPmA⌈PmH. Typically Pm would be the projection ontospan{e1, . . . , em}. This is
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often referred to as the finite section method in the literature. Now, this may work in some cases e.g.
if the operator is compact or in the case of computing pseudospectra, if one is considering a Toeplitz
operator, see [Böt94]. However, one must be very careful using the finite section method and it should
not be used unless accompanied by a rigorous analysis that justifies the convergence

σ(PmA⌈PmH) −→ σ(A), σǫ(PmA⌈PmH) −→ σǫ(A), ǫ > 0, m→ ∞.

It is quite easy to find elementary counter examples to show that the finite section method can fail
dramatically. Consider the shift operator defined bySen = en+1 on l2(N). This operator has the
following matrix representation

S =















0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .















.

Thus, if Pm is the projection ontospan{e1, . . . , em}, we would get thatσ(PmS⌈PmH) = {0} for
all m, but σ(S) is the closed unit disc. To find examples where the finite section method fails when
wanting to compute the pseudospectrum, one does not have to go very far away from the Toeplitz
operators. The finite section method may have serious trouble finding the right pseudospectra of
Laurent operators. Note that if we have a Laurent operatorAL given in its matrix representation
with respect to the basis{ej}∞j=−∞ and choosePm to be the projection ontospan{ej}m

j=−m then
PmA⌈PmH is a Toeplitz matrix. So, ifAT is the Toeplitz variant ofAL, meaning that it has the same
matrix elements but is an operator onl2(N) instead ofl2(Z), then, as shown by [Böt94]

σǫ(PmAL⌈PmH) −→ σǫ(AT ), m→ ∞,

but we may have thatσǫ(AL) 6= σǫ(AT ), and in this case the finite section method will fail. This is
visualized in the following example. Define the Laurent operator by

AL =





















. ..
...

...
...

...
. . . 0 1 0 0 . . .
. . . 0 0 1 0 . . .
. . . 1 − i 0 0 1 . . .
. . . 0 1 − i 0 0 . . .

...
...

...
...

.. .





















,

thenσǫ(PmAL⌈PmH) is far fromσǫ(AL) as visualized in Figure 1 forǫ = 0.1.

4 Then-pseudospectrum

Given a closed operatorT on H, the motivation for then-pseudospectrum is the desire to approx-
imate the functionz 7→ dist(z, σ(T )), in order to estimateσ(T ). A convenient formula for this is
dist(z, σ(T )) = 1/ρ(R(z, T )), whereρ denotes the spectral radius. Thus, in principle, we have
reduced the problem of estimating the distance fromz to σ(T ) to a problem of estimating the spec-
tral radius of a bounded operator. Now, numerically that is anontrivial task, but keeping in mind
the spectral radius formula, namely,ρ(A) = limn→∞ ‖An‖1/n, for A ∈ B(H) we can approximate
the spectral radius by estimating the norm of powers of the operator. By choosing a subsequence of
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Figure 1:The first figure showsσǫ(AL) and the second figure showsσǫ(PmAL⌈PmH) for ǫ = 0.1 andm =
1000.

{‖An‖1/n}, namely,{‖A2n‖1/2n} we get a decreasing sequence‖A2n‖1/2n ≥ ‖A2n+1‖1/2n+1

and
ρ(A) = limn→∞ ‖A2n‖1/2n

. Hence, we have

1/‖R(z, T )2
n‖1/2n ≤ 1/‖R(z, T )2

n+1‖1/2n+1 ≤ 1/ρ(R(z, T )) = dist(z, σ(T ))

andlimn→∞ 1/‖(R(z, T ))2
n‖1/2n

= dist(z, σ(T )). This gives the motivation for the following defi-
nition of the(n, ǫ)-pseudospectrum, or then-pseudospectrum for short.

Definition 4.1. Let T be a closed operator on a Hilbert spaceH, and letn ∈ Z+ and ǫ > 0. The
(n, ǫ)-pseudospectrum ofT is defined as the set

σn,ǫ(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖R(z, T )2
n‖1/2n

> ǫ−1}.

As we see, then-pseudospectrum is just a generalization of the pseudospectrum. By the analysis
above, one can deduce that then-pseudospectrum should be a better approximation to the spectrum
than the pseudospectrum, and hopefully also share its nice continuity properties. In particular one
should expectσn,ǫ(T ) ⊃ σn+1,ǫ(T ), and hope for

dH(σn,ǫ(T ), ωǫ(σ(T ))) −→ 0, n→ ∞,

whereωǫ(σ(T )) denotes theǫ-neighborhood aroundσ(T ). A famous example in pseudospectral the-
ory is the complex harmonic oscillator

Hf(x) = −f ′′(x) + cx2f(x), c ∈ C,

acting onL2(R), see [DK04]. To visualize the difference between the pseudospectrum and then-
pseudospectrum we have computed the pseudospectrum and the1-pseudospectrum forH whenc =
i in Figure 2. The figures have been produced by using a discretization technique established in
[Han09b] (where convergence is proved). It is the compactness of the resolvent ofH that allows such
discretizations. Such techniques will not work in general.

Remark 4.2. Note that the0-pseudospectrum is just the classical pseudospectrum, so then-pseudospectral
theory is just an extension of the classical pseudospectraltheory. Thus, one should by no means give
up the classical pseudospectrum. In fact, if the operator isnormal, there is obviously no point in using
then-pseudospectrum forn > 0. For more details see Section 9. Note also that the algorithm we
will develop in Section 6 is valid forn-pseudospectra withn ∈ Z+. Thus, we automatically get an
algorithm for the classical pseudospectrum.
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Figure 2:The figure showsσǫ(H) (left) andσ1,ǫ(H) (right) for ǫ = 0.1.

5 Properties of then-pseudospectra of Bounded Operators

Then-pseudospectrum was first introduced in [Han08] as a tool forthe general spectral problem. It
was further investigated in [Han09a], and in this section wewill discuss some of the nice properties
of these sets. The discussion will be accompanied by examples. Before we start let us define, for
n ∈ Z+, the functionγn : C → [0,∞]. In particular, letT ∈ B(H) and define

γn(z) = min

[

inf
{

λ1/2n+1

: λ ∈ σ
(

((T − z)∗)2
n
(T − z)2

n
)}

,

inf
{

λ1/2n+1

: λ ∈ σ
(

(T − z)2
n
((T − z)∗)2

n
)}

]

.

(5.1)

Theorem 5.1. ([Han09a]) LetT ∈ B(H) and{Tk} ⊂ B(H) such thatTk → T in norm. Forn ∈ Z+

let γn be as in (5.1). Then the following is true:

(i) σn+1,ǫ(T ) ⊂ σn,ǫ(T ), (ii) σn,ǫ(T ) = {z ∈ C : γn(z) < ǫ},

(iii) {z : γn(z) < ǫ} = {z : γn(z) ≤ ǫ}, (iv) dH(σn,ǫ(T ), ωǫ(σ(T ))) → 0,

(v) dH(σn,ǫ(Tk), σn,ǫ(T )) → 0,

wheren→ ∞ in (iv), k → ∞ in (v) andωǫ(σ(T )) denotes theǫ-neighborhood aroundσ(T ).

Theorem 5.1 provides several important observations. Firstly, (iv) allows us to use then-pseudospectrum
as an approximation to the spectrum. Secondly, the problem of inexact arithmetic is solved by (v).
Thus, in theory, we can get arbitrarily close to the spectrumby computing then-pseudospectrum and
still allow the computation to be in inexact arithmetic. Now, of course theǫmach will have to decrease
asn grows.

The functionγn and the fact thatσn,ǫ(T ) = {z ∈ C : γn(z) ≤ ǫ} provide us with a tool for
estimating then-pseudospectrum. In fact, by recalling (5.1), we have now reduced the problem of
finding the spectrum of a non-normal operator to a problem of finding the smallest element in the
spectrum of a self-adjoint operator. In the following examples we will show some of the properties of
then-pseudospectra listed in Theorem 5.1
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Figure 3:The first figure shows the first four eigenvalues (σ(T ) ∩ [2.4, 3.4] × [0.4, 1.4]), and the following figures show
σǫ(T ) ∩ [2.4, 3.4] × [0.4, 1.4], σ1,ǫ(T ) ∩ [2.4, 3.4] × [0.4, 1.4], σ2,ǫ(T ) ∩ [2.4, 3.4] × [0.4, 1.4] for ǫ = 0.05.

Example 5.2.To demonstrate the propertyσn+1,ǫ(T ) ⊂ σn,ǫ(T ) of the pseudospectra we have chosen
the following operator:

T =















a1 b1 0 0 . . .
c1 a2 b2 0 . . .
0 c2 a1 b3 . . .
0 0 c3 a2 . . .
...

...
...

...
. . .















,

wherea1 = 2, a2 = 0.5, bj = 1+i2
j1/6 andcj = 1/j1/2. Now,T can be written as a sum of two operators

where one is compact and the other one has only essential spectrum and thusA should have plenty of
isolated eigenvalues. The four largest eigenvalues with correspondingn-pseudospectra are displayed
in Figure 3.

Example 5.3. To visualize the property that if{Tk} ⊂ B(H) andTk → T in norm, it follows that

dH(σn,ǫ(Tk), σn,ǫ(T )) → 0, k → ∞,

a natural test object is the example considered in the introduction. The discontinuity of the spectrum
shown in that example was a strong motivation for the introduction of then-pseudospectrum. Recall
that we defineAδ : l2(Z) → l2(Z) as in (1.1), and that forδ 6= 0 we haveσ(Aδ) = {z : |z| = 1}
but for δ = 0 thenσ(A0) = {z : |z| ≤ 1}. We have computed then-pseudospectrum ofA0 for
ǫ = 0.025 andn = 2 which coincides with the closedǫ-neighborhood of the unit disk. We have
also computed then-pseudospectrum ofA10−16 to demonstrate that, at least up to the accuracy of the
grid size we have chosen, the computed results are identical. Now, if we actually wanted to compute
the spectrum ofA10−16 we would have to choose computer software with higher precision and also
taken much larger. Theǫmach in MATLAB limits us to taken ≤ 2 since our computation requires
operations with(ǫmach)1/2n+1

. Hence, since(ǫmach)1/23+1

= 0.1, we may experience that forn = 3,
our computation will be accurate only up to the first decimal.However, we have visualized (in Figure
4) (iii) in Theorem 5.1 by computing then-pseudospectra ofA0.005 for n = 1, 2, in which case the
n-pseudospectra approximates the spectrum ofA0.005 quite well even for small values ofn.

6 Computing then-pseudospectrum

6.1 Designing the Algorithm

Numerically, a self-adjoint spectral problem is much easier to deal with than a non-self-adjoint prob-
lem, but we cannot attack the task of computing (5.1) as it is,since this is an infinite-dimensional
problem. We therefore need to find an approximation toγn (as defined in (5.1)) that is suitable for
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Figure 4:The figure showsσ2,ǫ(A0), σ2,ǫ(A10−16), σ1,ǫ(A0.005), andσ2,ǫ(A0.005), for ǫ = 0.025.

computations. A natural choice seems to be to choose a sequence of finite rank projections{Pm} such
thatPm+1 ≥ Pm andPm → I strongly, e.g. we may choose a basis{ej} and letPm be the projection
ontospan{e1, . . . , em}. Now we can try to approximateγn by the function

γn,m(z) = min

[

min

{

λ1/2n+1

: λ ∈ σ
(

Pm((T − z)∗)2
n
(T − z)2

n
⌈

PmH

)}

,

min

{

λ1/2n+1

: λ ∈ σ
(

Pm(T − z)2
n
((T − z)∗)2

n
⌈

PmH

)}

]

,

(6.1)

and ifγn,m → γn in some sense we can hope that

{z : γn,m(z) ≤ ǫ} −→ σn,ǫ(T ), m→ ∞.

In fact so is almost the case as the following theorem guarantees.

Theorem 6.1. Let T ∈ B(H) and let {Pm} is an increasing sequence of finite rank projections
converging strongly to the identity such thatPm+1 ≥ Pm. Defineγn,m as in (6.1), thenγn,m → γn

locally uniformly asm→ ∞, and for compactK ⊂ C such thatσn,ǫ(T ) ∩K 6= ∅ we have

{z : γn,m(z) ≤ ǫ} ∩K −→ σn,ǫ(T ) ∩K, m→ ∞,

where the convergence is understood to be in the Hausdorff metric.

The following proposition from [Han09a] is crucial in the proof of Theorem 6.1 and Theorem 6.3

Proposition 6.2. Let γ : C → [0,∞) be continuous and let{γk}k∈N be a sequence of functions
such thatγk : C → [0,∞) and γk → γ locally uniformly. Suppose also that forǫ > 0, then
cl({z : γ(z) < ǫ}) = {z : γ(z) ≤ ǫ}. Then for any compact setK such that{z : γ(z) < ǫ} ∩K 6= ∅
it follows that

cl({z : γk(z) < ǫ}) ∩K −→ cl({z : γ(z) < ǫ}) ∩K, k → ∞.

Proof. (Proof of Theorem 6.1) This theorem follows by the techniques used in the proof of Theorem
6.3 in [Han09a]. We will sketch the ideas. One first establishes the fact thatγn,m → γn locally
uniformly. Note that this fact alone is not enough to deduce the claim of the theorem. One also needs
the facts that{z : γn(z) < ǫ} = {z : γn(z) ≤ ǫ} and{z : γn,n(z) < ǫ} = {z : γn,m(z) ≤ ǫ} in
order to invoke Proposition 6.2. The former has already beenestablished in Theorem 5.1. To prove
the latter one uses some abstract operator theory from [Tre04] together with the following result by
[Sha08]: IfΩ0 is a connected open subset ofC andZ a Banach space, andF : Ω0 → Z is an analytic
vector valued function,‖F (z)‖ ≤M for all z in an open subsetΩ ⊂ Ω0, and‖F (z0)‖ < M for some
z0 ∈ Ω0. Then‖F (z)‖ < M for all z ∈ Ω.
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Now, computingγn,m still involves the products((T − z)∗)2
n
(T − z)2

n
and (T − z)2

n
((T −

z)∗)2
n
, which may be challenging to compute asT acts on an infinite dimensional space. However,

there is a solution to this problem. Instead of computing theproducts((T − z)∗)2
n
(T − z)2

n
and

(T − z)2
n
((T − z)∗)2

n
we will compute

(Pk(T − z)Pk)
∗)2

n
(Pk(T − z)Pk)2

n
, (Pk(T − z)Pk)

2n
((Pk(T − z)Pk)

∗)2
n
,

wherePk is a finite rank projection as in Theorem 6.1. AsPk has finite rank this is feasible, in
particular, we can define the function

γn,m,k(z)

= min

[

min

{

λ1/2n+1

: λ ∈ σ

(

Pm((Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)

2n
⌈

PmH

)}

,

min

{

λ1/2n+1

: λ ∈ σ

(

Pm(Pk(T − z)Pk)
2n

((Pk(T − z)Pk)
∗)2

n
⌈

PmH

)}

]

,

(6.2)

and argue thatγn,m,k → γn,m ask → ∞. In fact we have:

Theorem 6.3. Let T ∈ B(H) and let {Pm} be an increasing sequence of finite rank projections
converging strongly to the identity such thatPm+1 ≥ Pm. Defineγn,m,k as in (6.2), thenγn,m,k →
γn,m locally uniformly ask → ∞, and for compactK ⊂ C such that{z : γn,m(z) ≤ ǫ} ∩K 6= ∅ we
have

{z : γn,m,k(z) ≤ ǫ} ∩K −→ {z : γn,m(z) ≤ ǫ} ∩K, k → ∞,

where the convergence is understood to be in the Hausdorff metric.

Proof. This theorem follows by the techniques used in the proof of Theorem 6.3 in [Han09a]. We will
sketch the ideas. One first establishes the fact thatγn,m,k → γn,m locally uniformly. Note that we
have already established the fact that{z : γn,m(z) < ǫ} = {z : γn,m(z) ≤ ǫ} in the proof of Theorem
6.1. And, one observes that fork ≥ m then the latter fact actually implies that{z : γn,m,k(z) < ǫ} =
{z : γn,m,k(z) ≤ ǫ} (just replaceT by PkTPk). We can now invoke Proposition 6.2 to establish the
theorem.

For a full infinite matrix,γn,m,k can be a tough challenge to compute, since there are two limit
processes going on at the same time, namelyk → ∞ andm → ∞. It is therefore important to take
advantage of structured problems.

Definition 6.4. Let{ej}j∈N be a basis forH and letT ∈ B(H). If

〈Tej+l, ej〉 = 〈Tej , ej+l〉 = 0, l > d,

thenT is said to be banded with bandwidthd.

The following theorem is important for the computation ofγn,m,k when the infinite matrix is
banded.

Theorem 6.5. ([Han09a]) LetT ∈ B(H) and{ej} be a basis forH. LetPm be the projection onto
span{ej}m

j=1. Defineγn,m andγn,m,k as in (6.1) and (6.2). Suppose that the matrix representation of
T with respect to{ej} is banded with bandwidthd. Then, form > d,

γn,m(z) = γn,m,2nd+m(z), z ∈ C.
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6.2 The algorithm

As Theorem 6.1 suggest, the estimation of then-pseudospectra can be done by computing values of
γn,m,k on a grid in the complex plane. Also, by Theorem 6.5, if the matrix T is banded with bandwidth
d then

γn,m(z) = γn,m,2nd+m(z), z ∈ C,

whered is the number of off diagonals. Thus, we are left with the taskof computing

min

{

λ1/2n+1

: λ ∈ σ

(

Pm((Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)2

n
⌈

PmH

)}

(6.3)

min

{

λ1/2n+1

: λ ∈ σ

(

Pm(Pk(T − z)Pk)2
n
((Pk(T − z)Pk)∗)2

n
⌈

PmH

)}

. (6.4)

Asm becomes large, both (6.3) and (6.4) are difficult to compute since

(Pm((Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)2

n
⌈

PmH

Pm(Pk(T − z)Pk)2
n
((Pk(T − z)Pk)∗)2

n
⌈

PmH

(6.5)

may have many eigenvalues very close to zero, and standard numerical routines as MATLAB’seigs
will have trouble detecting the smallest eigenvalue to sufficient precision. In fact, it is not hard to
cook up examples such that MATLAB’seigs crashes completely. If one wants a contour plot of
the n-pseudospectrum, there is no way around the previous problem, but if one only wants then-
pseudospectrum for one specificǫ > 0, it is unnecessary to compute the smallest eigenvalue in (6.3)
and (6.4). In fact, since we are only interested in knowing whetherγn,m,k(z) ≤ ǫ for some complex
z, we only need to check if the self-adjoint matrices

(Pm((Pk(T − z)Pk)∗)2
n
(Pk(T − z)Pk)2

n
⌈

PmH
− ǫ2

n+1

I

Pm(Pk(T − z)Pk)2
n
((Pk(T − z)Pk)

∗)2
n
⌈

PmH
− ǫ2

n+1

I

are both positive definite. If they both are, thenz /∈ {z : γn,m,k(z) ≤ ǫ}. This is where the Cholesky
decomposition comes in handy and saves the day.

6.3 The Cholesky Decomposition

It is well known that a self-adjoint matrixA ∈ C
n×n is positive definite if and only if it has a Cholesky

decompositionA = GG∗, whereG is lower triangular with positive elements on the diagonal,see
[GVL96]. Thus, to determine whetherA is positive definite or not, we need to find out if the decom-
positionA = GG∗ exists. This can be done in the following way. Let

A =

(

α v∗

v B

)

=

(

β 0
v/β In−1

)(

1 0
0 B − vv∗/α

)(

β v∗/β
0 In−1

)

, (6.6)

whereα > 0 if A is positive definite, soβ =
√
α. If α ≤ 0 we conclude thatA is not positive definite

and we are done. Now,B − vv∗/α is positive definite if and only ifA is positive definite since it is a
principal submatrix ofU∗AU, where

U =

(

1 −v∗/α
0 In−1

)

.

9



If there is a Cholesky factorizationG1G
∗
1 = B − vv∗/α then it follows from (6.6) thatA = GG∗,

where

G =

(

β 0
v/β G1

)

.

We can continue this argument withG1 and do this recursively to obtain{Gj}n−1
j=1 . Thus, if allGjs

turn out to be positive definite thenA is positive definite, and if there is aGj that is not positive definite
thenA cannot be positive definite. The standard algorithm for thisrequiresn3/3 flops. A neat tool
for determining whether or notA is positive definite is MATLAB’schol routine that has an build in
check for positive definiteness of matrices.

Suppose thatT is a banded infinite matrix with bandwidthd, the following MATLAB program will
plot the the following set{z : γn,m,2nd+m(z) ≤ ǫ} ∩K, whereK is a rectangle inC andγn,m,2nd+m

is defined in (6.2).

Algorithm 6.1.
%Computes {z : gamma_n,m,2^nd+m(z) <= epsilon} \cap K,
%for an infinite matrix A with bandwith d=diag, where K is
%a rectangle with coordinates left, right, up, down.
%The size of the section of A must be 2^nd+m.

function s = n_pseu_chol(A,epsilon,left,right,down,up,grid_eps,n,diag)
r = (right-left)/grid_eps; e = grid_eps; si = size(A,2);
l = (up - down)/grid_eps;

for j=1:r
for k=1:l
z = left + j*grid_eps + (down + k*grid_eps)*i;
B_1 = (((A-z*speye(si))^(2^n))’)*(A-z*speye(si))^(2^n);
B_2 = (A-z*speye(si))^(2^n)*((A-z*speye(si))^(2^n))’;
C_1 = B_1(1:si - (diag*(2^n)),1:si - (diag*(2^n)));
C_2 = B_2(1:si - (diag*(2^n)),1:si - (diag*(2^n)));
w = size(C,2); lambda = epsilon^(2^(n+1));
[R,p_1] = chol(C_1 - lambda*speye(w));
[R,p_2] = chol(C_2 - lambda*speye(w));
if abs(max(p_1,p_2)) == 0

else
plot(z,’k.’);

end
end

end

6.4 Tests on Laurent and Toeplitz matrices

The spectral theory of Laurent and Toeplitz operators is very well understood, and they are therefore
a natural choice when it comes to test objects for numerical algorithms. We briefly recall some of the
basics from Laurent and Toeplitz operator theory from [BS99]. Given a Laurent operatorAL on l2(Z)

AL =





















. ..
...

...
...

...
. . . a0 a−1 a−2 a−3 . . .
. . . a1 a0 a−1 a−2 . . .
. . . a2 a1 a0 a−1 . . .
. . . a3 a2 a1 a0 . . .

...
...

...
...

.. .





















,
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Figure 5:The first figure is the curve of the symbolf1 with winding numbers, the second is the spectrum of the Laurent
operator corresponding tof1 computed withǫ = 0.15, n = 2, m = 3000 and grid-size being0.1. The third figure is the
spectrum of the Toeplitz operator corresponding tof1 with the same numerical parameters as for the Laurent case.

it is well known thatAL is a bounded operator if and only if there is a functionf ∈ L∞(T), whereT

denotes the circle, such that{an}∞n=−∞ is the sequence of Fourier coefficients off , that is

an =
1

2π

∫

f(eiθ)e−inθ dθ, n ∈ Z.

Also, σ(AL) = R(f), whereR(f) denotes the essential range off. For a Toeplitz operatorAT on
l2(Z+), given by

AT =















a0 a−1 a−2 a−3 . . .
a1 a0 a−1 a−2 . . .
a2 a1 a0 a−1 . . .
a3 a2 a1 a0 . . .
...

...
...

...
. . .















,

we have a similar result, namely,AT is bounded if and only if there is a functionf ∈ L∞(T) such that
its Fourier coefficients are the sequence{an}n∈Z. The functionf is called the symbol of the Laurent
or Toeplitz operator.

As for the spectrum ofAT , note that ift 7→ f(eit), t ∈ [0, 2π] is a continuous function, then
R(f) = f(T) is a curve inC, and hence we can assign a winding number to every pointz ∈ C with
respect to the curve. We then have thatσ(AT ) is equal to this curve together with all complex numbers
with non-zero winding number with respect to the curve. In our examples (displayed in Figure 5 and
Figure 6) we have chosen Laurent and Toeplitz operators withsymbols

f1(z) = 2z−3 − z−2 + 2iz−1 − 4z2 − 2iz3

and
f2(z) = z−2 + z−1 + 1 + 2z,

where the corresponding winding numbers are displayed on the figures. Our numerical computation
is done as suggested in Algorithm 6.1, where we check whether

γn,m(z) = min

[

min

{

λ1/2n+1

: λ ∈ σ
(

Pm((T − z)∗)2
n
(T − z)2

n
⌈

PmH

)}

,

min

{

λ1/2n+1

: λ ∈ σ
(

Pm(T − z)2
n
((T − z)∗)2

n
⌈

PmH

)}

]

is less than or equal toǫ, for someǫ > 0, on a grid in the complex plane, whereT here is eitherAL or
AT . If γn,m(z) ≤ ǫ the pointz is assign a black color.
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Figure 6: The first figure is the curve of the symbolf2 and the second figure is then-pseudospectrum of the Laurent
operator corresponding tof2 computed (inside the rectangle) withǫ = 0.1, n = 2, m = 3000 and grid-size being0.1.
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Figure 7: The figure showsσ(Ψ(Q)) (left) and{z ∈ Θ : γn,m,k(z) ≤ ǫ}∩[−0.1, 0.14]×[−0.23, 0.23]
(black dots) forǫ = 0.0073, n = 0, m = 10000 andk = 15000.

The choice of the projections is the natural one. Namely, in the case of Laurent operators,Pm is
the projection onto the span of{ej}m

j=−m where{ej}j∈Z is the obvious basis forl2(Z) (that is,ej has
one on thej-th coordinate and zero elsewhere). For Toeplitz operatorsthis is done similarly, but with
Pm being the projection ontospan{ej}m

j=1 and{ej}j∈N being the obvious basis forl2(N).
The computational costs of these figures are quite high due tolarge numbers of grid evaluations,

and the computational time for some of them can typically take one night on a desktop computer. It is
therefore difficult to get really accurate results. However, the computations done with the symbolf2

in Figure 3 are done with a small grid-size to show accuracy.

6.5 Tests with the OperatorΨ(Q) for Ψ ∈ L∞(R)

In this example we consider the operatorΨ(Q) onL2(R), whereΨ ∈ L∞(R) andQ is the self-adjoint
operator onL2(R) (on its appropriate domain) defined by(Qf)(x) = xf(x). When constructing such
examples, the functional calculus and the spectral mappingtheorem come in handy. In particular, we
have that

σ(Ψ(Q)) = R(Ψ) (the essential range), Ψ ∈ L∞(R).

In this example we have chosen

Ψ(x) =
i(exp(−2πix) − 1)

2πx
, x ∈ R.
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We have visualizedσ(Ψ(Q)) in the left part of Figure 7. To obtain a matrix representation of Ψ(Q)
we have chosen a basis forL2(R) by first considering a basic Gabor basis, namely, a basis of the form

e2πimxχ[0,1](x− n), m, n ∈ Z,

(whereχ is the characteristic function) and then chosen some enumeration ofZ × Z into N to obtain
a basis{ψj} that is just indexed overN. To get our basis we letϕj = Fψj , whereF is the Fourier
Transform. The matrix representation{〈Ψ(Q)ϕj , ϕi〉} of Ψ(Q) yields a full infinite matrix. Hence,
we cannot useγn,m, as defined in (6.1), but the functionγn,m,k (recall (6.2)) comes to our rescue. In
Figure 7 (right) we have shown{z ∈ Θ : γn,m,k(z) ≤ ǫ} ∩ [−0.1, 0.14] × [−0.23, 0.23] (black dots)
for ǫ = 0.0073, n = 0, m = 10000 andk = 15000, whereΘ is a quadratic grid with grid size0.004.

7 Other Types of Pseudospectra

7.1 The Residual Pseudospectrum

Even though the previous examples show very good results, one must be aware that our approach
using then-pseudospectrum can only give an estimate on the position ofthe spectrum. The reason
why the computations in the previous section are so close to the spectrum is simply because then-
pseudospectrum is close to the spectrum even for smalln. This may of course not be the case in
general, and we will now show how one can use the computationsof γn,m to determine subsets of
the spectrum. The disadvantage of then-pseudospectrum is that even though one can estimate the
spectrum by takingn very large,n may have to be too large for practical purposes. Thus, since we
only have the estimate forT ∈ B(H), ǫ > 0 thatσ(T ) ⊂ σn,ǫ(T ), it is important to get a “lower”
bound onσ(T ) i.e. we want to find a setΩ ⊂ C such thatΩ ⊂ σ(T ). A candidate for this is described
in the following.

Definition 7.1. LetT ∈ B(H) and define

ζ1(z) = min
{

λ1/2 : λ ∈ σ ((T − z)∗(T − z))
}

,

ζ2(z) = min
{

λ1/2 : λ ∈ σ ((T − z)(T − z)∗)
}

.

Let ǫ > 0 and define theǫ-residual pseudospectrum to be the set

σres,ǫ(T ) = {z : ζ1(z) > ǫ, ζ2(z) = 0},

and the adjointǫ-residual pseudospectrum to be the set

σres∗,ǫ(T ) = {z : ζ1(z) = 0, ζ2(z) > ǫ}.

Theorem 7.2. ([Han09a]) Let T ∈ B(H) and let{Tk} ⊂ B(H) such thatTk → T in norm, as
k → ∞. Then forǫ > 0 we have the following,

(i) σ(T ) ⊃ ⋃

ǫ>0 σres,ǫ(T ) ∪ σres∗,ǫ(T )

(ii) cl({z ∈ C : ζ1(z) < ǫ}) = {z ∈ C : ζ1(z) ≤ ǫ}

(iii) cl({z ∈ C : ζ2(z) < ǫ}) = {z ∈ C : ζ2(z) ≤ ǫ}
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(iv) For any compactK ⊂ C such thatcl(σres,ǫ(T )) ∩K 6= ∅ it follows that

dH(cl(σres,ǫ(Tk)) ∩K, cl(σres,ǫ(T )) ∩K) −→ 0, k → ∞.

(v) For any compactK ⊂ C such thatσres∗,ǫ(T ) ∩K 6= ∅ it follows that

dH(cl(σres∗,ǫ(Tk)) ∩K, cl(σres∗,ǫ(T ) ∩K)) −→ 0, k → ∞.

The previous theorem shows that the residual and the adjointresidual pseudospectra have similar
continuity properties as the pseudospectra. Hence, these sets are suitable for computations. The
approximations are very similar to the techniques we have used in the previous sections.

Theorem 7.3. LetT ∈ B(H) and suppose that{Pm} is a sequence of finite rank projections converg-
ing strongly to the identity such thatPm+1 ≥ Pm. Define

ζ1,m(z) = min

{

λ1/2 : λ ∈ σ

(

Pm(T − z)∗(T − z)
⌈

PmH

)}

,

ζ2,m(z) = min

{

λ1/2 : λ ∈ σ

(

Pm(T − z)(T − z)∗
⌈

PmH

)}

ζ1,m,k(z) = min

{

λ1/2 : λ ∈ σ

(

Pm(Pk(T − z)Pk)
∗(Pk(T − z)Pk)

⌈

PmH

)}

,

ζ2,m,k(z) = min

{

λ1/2 : λ ∈ σ

(

Pm(Pk(T − z)Pk)(Pk(T − z)Pk)∗
⌈

PmH

)}

.

Let δ ∈ (0, ǫ). Then we have the following.

(i) If K is compact such thatσres,ǫ(T ) ∩K 6= ∅ then

cl({z : ζ1,m(z) > ǫ, ζ2,m(z) < δ}) ∩K −→ σres,ǫ(T ) ∩K, m→ ∞.

(ii) If K is compact such thatσres∗,ǫ(T ) ∩K 6= ∅ then

cl({z : ζ1,m(z) < δ, ζ2,m(z) > ǫ}) ∩K −→ σres∗,ǫ(T ) ∩K, m→ ∞.

(iii) If K is compact such thatcl({z : ζ1,m(z) > ǫ, ζ2,m(z) < δ}) ∩K 6= ∅ then

cl({z : ζ1,m,k(z) > ǫ, ζ2,m,k(z) < δ}) ∩K
−→ cl({z : ζ1,m(z) > ǫ, ζ2,m(z) < δ}) ∩K, k → ∞.

(iv) If K is compact such thatcl({z : ζ1,m(z) < ǫ, ζ2,m(z) > ǫ}) ∩K 6= ∅ then

cl({z : ζ1,m,k(z) < δ, ζ2,m,k(z) > ǫ}) ∩K
−→ cl({z : ζ1,m(z) < δ, ζ2,m(z) > ǫ}) ∩K, k → ∞.

Proof. The theorem follows by using the techniques in the proof of Theorem 7.3 in [Han09a]. The
techniques are almost identical to the techniques used in the proofs of Theorem 6.1 and Theorem 6.3.
In particular, one uses Theorem 7.2 and Proposition 6.2.
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Figure 8: The figure shows on the first rowΩǫ,ǫ−10−10,3000(T1) (ǫ = 0.01), Ωǫ,ǫ−10−10,3000(T2) (ǫ =
0.0005), Ωǫ,ǫ−10−10,3000(T4) (ǫ = 0.00001) and on the second row{z : γ0,m(z) ≤ ǫ} (m = 3000) for
the same operators andǫs as on the first row.

7.2 Examples With the Residual Pseudospectrum

We now have a computational tool for estimating the spectrumboth from “above” and “below”, mean-
ing that forT ∈ B(H) we have

σres,ǫ(T ) ∪ σres∗,ǫ(T ) ⊂ σ(T ) ⊂ σn,ǫ(T ).

Thus, it would be natural to compute, forǫ > 0 andδ ∈ (0, ǫ), both

{z : ζ1,m,k(z) > ǫ, ζ2,m,k(z) ≤ δ} ∪ {z : ζ1,m,k(z) ≤ δ, ζ2,m,k(z) > ǫ}

and{z : γn,m,k(z) ≤ ǫ}, whereγn,m,k is defined as in (6.1) to get an estimate for the spectrum. To
simplify the notation we define

Ωǫ,δ,m(T ) = {z : ζ1,m(z) > ǫ, ζ2,m(z) ≤ δ} ∪ {z : ζ1,m(z) ≤ δ, ζ2,m(z) > ǫ} (7.1)

Ωǫ,δ,m,k(T ) = {z : ζ1,m,k(z) > ǫ, ζ2,m,k(z) ≤ δ} ∪ {z : ζ1,m,k(z) ≤ δ, ζ2,m,k(z) > ǫ}. (7.2)

Given an infinite matrixT , we will in this example show how computations of

σres,ǫ(T ) ∪ σres∗,ǫ(T ), σn,ǫ(T )

can give quite good estimates on the position of the spectrum. As test objects we have chosen Toeplitz
like operators, where we have kept much of the Toeplitz structure, but let some of the subdiagonals
have two different numbers that alternate instead of constants. As we are left with few (if any) math-
ematical tools to estimate the spectrum, we can only rely on the computed estimate, which in some

15



cases seems quite acceptable. Consider the three infinite matricesT1, T2 andT3 given by

T1 =























0 a b c 0 0 . . .
d 0 a b c 0 . . .
f e 0 a b c . . .
g f d 0 a b . . .
0 g f e 0 a . . .
0 0 g f d 0 . . .
...

...
...

...
...

...
. . .























, T2 =























0 a b c 0 0 . . .
d 0 a b c 0 . . .
f e 0 a b c . . .
g f d 0 a b . . .
φ1 g f e 0 a . . .
0 ψ1 g f d 0 . . .
...

...
...

...
...

...
. ..























,

T3 =























0 a b c 0 0 . . .
d 0 a b c 0 . . .
0 e 0 a b c . . .
g 0 d 0 a b . . .
φ1 g 0 e 0 a . . .
0 ψ1 g 0 d 0 . . .
...

...
...

...
...

...
. . .























,

wherea = 1+ 2i, b = −1, c = 5+ i, d = −2, e = 1+ 2i, f = −4, g = −1− 2i, φj = −2+ −5+15i
j1/6

andψj = 1 + 2i + 5+15i
j1/3 . Figure 8 shows computations ofΩǫ,δ,m(Tj) (whereΩǫ,δ,m(·) is defined as

in (7.2)) and{z : γ0,m(z) ≤ ǫ} for Tj (j = 1, 2, 3), m = 3000 andǫ = 10−5, δ = ǫ− 10−10. Since

Ωǫ,δ,m(T ) −→ σres,ǫ(T ) ∪ σres∗,ǫ(T ) ⊂ σ(T ), m→ ∞

and
{z : γ0,m(z) ≤ ǫ} −→ σǫ(T ), m→ ∞,

it is reasonable to believe that the computation displays the following relation

Ωǫ,δ,m(T ) ⊂ ων(σ(T )) ⊂ {z : γ0,m(z) ≤ ǫ}, ν > 0,

for someν. As we tried this with several larger values ofm up tom = 10000 without noticing any
change, it suggests thatν is small in the experiment withT1, where “small” here means relative to the
resolution of the figures displayed.

8 Discrete Schrödinger Operators

8.1 The Non-self-adjoint Almost Mathieu Operator

An important operator in non-self-adjoint spectral theoryis the non-self-adjoint harmonic oscillator
H, defined by

Hf(x) = −f ′′(x) + cx2f(x), c ∈ C,

acting onL2(R). One of the motivations for this operator was that one wanted to take a well known
self-adjoint operator, alter it slightly so that it becomesnon-self-adjoint, and then see how the spectral
properties change. Indeed, the spectral properties of the non-self-adjoint harmonic oscillator are very
different from the usual harmonic oscillator, as discussedin [DK04], see also [TE05]. Our approach
is to do the same with discrete Schrödinger operators.
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Figure 9: The first row showsσǫ(Hi,2,π/4), σǫ(H1+i,2,π/4) andσǫ(Hi,2,
√

5) for ǫ = 0.005. The second
row showsσ1,ǫ(Hb,φ,ω) for the same values as in the first row.

The almost Mathieu operator onl2(Z) is known from the Ten Martini Problem, a problem that
was initiated in 1981 by Kac and Simon and finally solved in 2003 by [Pui04]. The operator is defined
as

(Hb,φ,ωx)n = xn+1 + xn−1 + b cos(2πωn+ φ)xn, n ∈ Z,

whereω > 0 is an irrational number,φ ∈ T = R/2πZ andb ∈ C. The usual almost Mathieu operator
hasb ∈ R, so thatHb,φ is self-adjoint and the Ten Martini problem was to show that for real non-zero
b thenσ(Hb,φ,ω) is a cantor set.

We do not claim anything about the spectral properties of thenon-self-adjoint almost Mathieu
operator (NSAM operator), but we rather use it as an example of an operator where we before did
not have computational tools at hand to handle the problem ofnumerically estimating the spectrum.
Arveson gave a complete theory in [Arv94] on how to handle thecomputational aspects of the spectral
theory of the self-adjoint almost Mathieu operator. However, self-adjointness is crucial in Arvesons
theory and therefore not suitable for our problems. But withthe techniques suggested in the earlier
sections of this chapter we can get numerical approximations to the spectra of these non-self-adjoint
Schrödinger operators. In Figure 9 we have computed pseudospectra and1-pseudospectra of the
NSAM operator for different values ofb andω.

9 Pros and Cons of then-pseudospectrum

9.1 The Curse of the Root

There are some limitations to the use ofn-pseudospectra as approximations to the spectrum. The
problem is related to the fact that we do not have infinite precision in the computations carried out,
and hence our computations will depend onǫmach. Thus, ifT ∈ B(H) andǫ is the smallest positive
number such thatσǫ(T ) (or rather an approximation using (6.3) and (6.4)) can be evaluated, we cannot
evaluateσ1,ǫ(T ) because of the root(s) in (6.3) and (6.4). However, we may be able to evaluate

σ1,
√

ǫ(T ), σ2,ǫ1/4(T ), . . . , σn,ǫ1/2n (T ), n ∈ N.
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Figure 10: The figure showsσǫ(B) (left) andσ1,
√

ǫ(B) (right).

So the best approximation we can get to the spectrum is
⋂n

k=0 σk,ǫ1/2k (T ).Now, this rises the question:
are there operators such that there is anǫ > 0 for which it follows thatσ

n+1,ǫ1/2n+1 (T ) ⊂ σn,ǫ1/2n (T ).
The answer is affirmative as the following example shows. Let

B =

(

0 107

0 1

)

.

Thenσ1,
√

ǫ(B) ⊂ σǫ(B) for ǫ =
√

5 · 10−13. This is visualized in the Figure 10.

9.2 The Power of then-pseudospectrum

But it is in fact not in the last example above that then-pseudospectrum shows its true strength.
Note that in a numerical computation of then-pseudospectrum the choice of the grid is crucial. In
particular, if one computesσn,ǫ(T ) for someT ∈ B(H) andǫ > 0, then the grid size must be chosen
according toǫ. This is not so important if one computes (6.3) and (6.4), however, absolutely crucial
in the case one uses the Cholesky decomposition as in Section6.3. (Since (6.3) and (6.4) sometimes
are incomputable in practice, this is very important). Morespecifically the grid size must be smaller
thanǫ in order to ensure that one captures the whole ofσn,ǫ(T ). To visualize this we have chosen the
following example. LetT = T1 ⊕ T2 ⊕ T3, where

T1 =

(

0 10000
0 1

)

, T2 =

(

2.7 + 1.5i 0
0 2.7 − 1.5i

)

, T3 =











3 0.5 0 . . .
0 3 0.5 . . .
0 0 3 . . .
...

...
...

. . .











.

Computingσǫ(T ) (using the Cholesky decomposition as in Section 6.3) whereǫ = 0.0005 andg =
0.03 (hereg denotes the grid size and the grid is quadratical) gives the left plot in Figure 11. The
problem is that the contribution fromT2 is missing. This is due to the fact thatg > ǫ and thus
one may loose important spectral information. If one insists on doing computations only with the
pseudospectrum there are two possibilities in order to overcome this obstacle. The first is to increase
ǫ and the second is to decreaseg. If the former is chosen, the highly non-normalT1 will dominate
and yield a rather poor approximation to the spectrum. Choosing the latter is computationally very
demanding as the number of grid points will increase dramatically. A better choice is therefore to
compute then-pseudospectra for differentn. In particular, the middle and right plot in Figure 11
showsσ1,ǫ1(T ) andσ2,ǫ2(T ) with ǫ1 =

√
0.0005 andǫ2 = 0.1 computed with grid sizeg = 0.03.
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Figure 11: The figure showsσǫ(T ) with ǫ = 0.0005 (left), σ1,ǫ1(T ) (middle) andσ2,ǫ2(T ) (right) with
ǫ1 =

√
0.0005 andǫ2 = 0.1 computed with grid sizeg = 0.03.
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