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Abstract

We present a new method for computing spectra and pseudmspébounded operators on
separable Hilbert spaces. The core in this theory is a giregian of the pseudospectrum called
then-pseudospectrum.

1 Introduction

LetT be a bounded operator on a separable Hilbert spaaéth an orthonormal basige; } and sup-
pose that we wish to compute the spectrurii’oiVe are faced with the slightly unpleasant problem of
computing a quantity that may depend discontinuously omrtagix elementsg7’e;, e;). In particular,
the following example illustrates the problem: L&t : (?(Z) — I?(Z) be defined by

ef(n+1) n=0
f(n+1) n=#0.

Now fore # 0 we haver(A.) = {z : |z| = 1} butfore = 0theno(A4y) = {z : |z] < 1}. Anumerical
analyst may express concern about this problem. One caa #Hrguif one should do a computation of
the spectrum on a computer, the fact that the arithmeticabipas carried out are not exact may lead
to the result that one gets the true solution to a slightiyysbed problem. This type of analysis is
often referred to as Backward Error Analysis in the numétinaar algebra literature. As suggested
in the previous example, getting the answer to a slightlyupleed problem could be disastrous.

This poses a slightly philosophical question; is it impbksito compute spectra of arbitrary op-
erators? And if so, does that mean that there are operatbissenspectral theory might be crucial
for understanding physical phenomena, but their specttan@ier be determined. This would imply
that there is a rather unpleasant barrier between what wearapute and what we want to compute.
In [Han08, Han09a] several new methods for estimating spectd pseudospectra of operators were
presented. Our goal in this article is to show that theseltseesan be used for actual computations,
and that, indeed, it is possible to compute spectra of argitrounded operators on separable Hilbert
spaces. We will emphasize the computational task and iefetan09a] for justifications of the math-
ematical statements that will be presented. Our theoryng weich inspired by the pseudospectral
theory that has emerged through the last two decades ([Dave€99, TEO05]). The main reason is that
to overcome the discontinuity problem suggested aboveisdneced to consider the computation of a
different set than the spectrum, even though estimatingghetrum may be the main goal. As we will
see in Section 4, variants of the pseudospectra, namely-gseudospectra, are excellent candidates
for sets that approximate the spectrum well. Also, these deinot behave discontinuously with the
operator. Let us recall the definition of the pseudospectrum

(Aef)(n) = { (1.1)



Definition 1.1. Let7T be a closed operator on a Hilbert spagésuch thato (7') # C, and lete > 0.
Thee-pseudospectrum df is defined as the set

0(T) =o(T)U{z ¢ o(T): ||(z = T)7"| > '}

If we were to estimate the pseudospectrum instead of thergpgcthe problem suggested by the
example above would not occur. The reason is that the pspedibem varies continuously with the
operatorT if T is bounded (we will be more specific regarding the continbéjow.)

2 Notation

Before we continue let us recall some basic notation anditlefin. Throughout the papet{ will
always denote a separable Hilbert space B(H) the set of bounded linear operators An For

T € B(H) we denote the spectrum byT'), and if T' — z is invertible, forz € C, we use the notation
R(z,T) = (T—=z)~'. The closure of a s&? C C will be denoted b2, however, when convenient, the
notationcl(2) may be used. We will denote orthonormal basis elements by e;, and if {e; } jen

is a basis and € H then&; = (£,¢;). The word basis will always refer to an orthonormal basis.
Convergence of sets in the complex plane will be quite ctuiaur analysis and hence we need the
Hausdorff metric as defined by the following.

Definition 2.1. (i) ForasetX c C andé > 0 we will letws(X) denote thej-neighborhood of:
(i.e. the union of alb-balls centered at points af).

(i) Given two set32, A C C we say that is -contained inA if X C wgs(A).

(iif) Given two compact sets, A C C their Hausdorff distance is

dp (2, A) = max{supd(\,A),supd(X,X)}
AEX AEA

whered(\, A) = inf e [p — Al

If {A, }nen is asequence of compact subset€a@hndA C Cis compact such thal (A, A) — 0
asn — oo we may use the notatiofh, — A. The fact that arithmetic operations may not be carried
out exactly on a computer is crucial in our analysis, apgy will always denote the machine epsilon
in the computer software used. The software of choice is MABLand in that case,,,, = 10716,
Before we continue with pseudospectral theory we would likenake a short detour via the finite
section method and try to convince the reader that the fiaitean method is not a serious contender
to the “method of the month” award among algorithms for theegal computational spectral problem.
Although, it is of great importance for some self-adjoinbiglems and all compact problems.

3 The Finite Section Method

Suppose that we have an operatbe B(H) and that we know the matrix elements = (Ae;, e;)

with respect to some basig; }. The question is then how do we compute the spectrum and the
pseudospectra ol using {a;;}. A natural thought may be to reduce this to a finite-dimendiona
spectral problem by constructing (usifg; }) a sequence of finite rank projectiof#’,, } such that
P,.+1 > P, and P,, — [ strongly, wherel is the identity, and then compute the spectrum and
pseudospectra a?,, A p, ». Typically P,, would be the projection ontepan{ey, ..., e, }. Thisis



often referred to as the finite section method in the litemtiNow, this may work in some cases e.g.
if the operator is compact or in the case of computing psquetdsa, if one is considering a Toeplitz
operator, see [B6t94]. However, one must be very carefulgusie finite section method and it should
not be used unless accompanied by a rigorous analysis #tidigjsi the convergence

O’(PmA’»P'nLH) - U(A)7 O-G(PmA’»P'nLH) - UE(A)7 €> 07 m — 0.

It is quite easy to find elementary counter examples to shauvttie finite section method can fail
dramatically. Consider the shift operator defined$y, = e,,1 on/?(N). This operator has the
following matrix representation

n

Il
oo oo
oo o
- oo RO
N =N=

Thus, if P, is the projection ontepan{ey,...,e,}, we would get that(P,,S[p, ) = {0} for
all m, buto(S) is the closed unit disc. To find examples where the finite seatiethod fails when
wanting to compute the pseudospectrum, one does not have Yerg far away from the Toeplitz
operators. The finite section method may have serious &ofihding the right pseudospectra of
Laurent operators. Note that if we have a Laurent operdtorgiven in its matrix representation
with respect to the basige;}72 _ and choose?,, to be the projection ontepan{e;}7: _,, then
P, Al p,,# is a Toeplitz matrix. So, ifAr is the Toeplitz variant ofd;,, meaning that it has the same
matrix elements but is an operator BN) instead of>(Z), then, as shown by [B6t94]

oc(PnALlp,H) — 0c(Ar), m — 00,

but we may have that.(Ar) # o.(Ar), and in this case the finite section method will fail. This is
visualized in the following example. Define the Laurent gper by

0 1 00
0 0 10

Ap = 1—i 0 01 '
0 1—i 0 0

theno (P, AL[p, ) is far fromo. (AL ) as visualized in Figure 1 far= 0.1.

4 Then-pseudospectrum

Given a closed operatdl’ on H, the motivation for then-pseudospectrum is the desire to approx-
imate the functiore — dist(z,0(T")), in order to estimater(7"). A convenient formula for this is
dist(z,0(T)) = 1/p(R(z,T)), wherep denotes the spectral radius. Thus, in principle, we have
reduced the problem of estimating the distance feota o(7") to a problem of estimating the spec-
tral radius of a bounded operator. Now, numerically that i®atrivial task, but keeping in mind
the spectral radius formula, namep(,4) = lim,,_.o. ||A™||*/", for A € B(H) we can approximate
the spectral radius by estimating the norm of powers of theraipr. By choosing a subsequence of

3



Figure 1:The first figure shows. (A ) and the second figure shows(P,, AL [p, ) for e = 0.1 andm =
1000.

A"[|Y/7} namely, {]|A2"||*/2"} we get a decreasing sequeritd®” [|1/2" > || 42" ||Y/2""" and
A"}, y g g seq
p(A) = lim,,_ ||A%"||'/?". Hence, we have

2n+1

IR T 17 < 1[R[V < 1/p(R(2,T)) = dist(z,0(T))

andlim,, . 1/[/(R(z,T7))*"||/?" = dist(z,o(T)). This gives the motivation for the following defi-
nition of the (n, €)-pseudospectrum, or thepseudospectrum for short.

Definition 4.1. Let T be a closed operator on a Hilbert spa@é and letn € Z, ande > 0. The
(n, €)-pseudospectrum @f is defined as the set

One(T) =o(T)U{z ¢ o(T) : |R(z, T)*" |V*" > 1}

As we see, ther-pseudospectrum is just a generalization of the pseudtospecBy the analysis
above, one can deduce that thigpseudospectrum should be a better approximation to thetrape
than the pseudospectrum, and hopefully also share its oicgnaity properties. In particular one
should expectr,, (') D oy,+41,¢(T), and hope for

A (0ne(T),we(o(T))) — 0, 1 — oo,

wherew, (o (7)) denotes the-neighborhood around(7"). A famous example in pseudospectral the-
ory is the complex harmonic oscillator

Hf(z) = —f"(x) + cz’f(z), c€C,

acting onL?(R), see [DK04]. To visualize the difference between the pseueltisum and ther-
pseudospectrum we have computed the pseudospectrum ahgseedospectrum fall whenc =

1 in Figure 2. The figures have been produced by using a dizatieih technique established in
[Han09b] (where convergence is proved). It is the compastioéthe resolvent aff that allows such
discretizations. Such techniques will not work in general.

Remark 4.2. Note that thé)-pseudospectrum is just the classical pseudospectruineaedseudospectral
theory is just an extension of the classical pseudospdbieary. Thus, one should by no means give
up the classical pseudospectrum. In fact, if the operatooishal, there is obviously no point in using
the n-pseudospectrum fat > 0. For more details see Section 9. Note also that the algoritem w
will develop in Section 6 is valid for.-pseudospectra with € Z.. Thus, we automatically get an
algorithm for the classical pseudospectrum.



Figure 2:The figure shows . (H) (left) andoy (H) (right) fore = 0.1.

5 Properties of then-pseudospectra of Bounded Operators

The n-pseudospectrum was first introduced in [Han08] as a todlhfergeneral spectral problem. It
was further investigated in [Han09a], and in this sectionwilediscuss some of the nice properties
of these sets. The discussion will be accompanied by exam@efore we start let us define, for
n € Z4, the functionry,, : C — [0, oo]. In particular, letl’ € B(H) and define

2n+1

Yu(z) = min [inf Netieo((m-2m"@-27)},

(5.1)
inf {AW"“ e a((T — )" ((T - z)*)2”) } ] .

Theorem 5.1. ([Han09a]) LetT € B(H) and{7}} C B(H) such thatl}, — T in norm. Forn € Z
let~, be asin (5.1). Then the following is true:

() Un+1,e(T) C Un,E(T)ﬂ (if) Un,e(T) = {Z eC: ’Yn(z) < 6}7

(i) {z:m(z) <€} ={z:m(z) <€}, (V) du(one(T),we(a(T))) — O,
(V) dH(Un,e(Tk)a Un,e(T)) — 0,
wheren — oo in (iv), K — oo in (v) andw,(o(7T")) denotes the-neighborhood around (7).

Theorem 5.1 provides several important observationstl¥ifs) allows us to use the-pseudospectrum
as an approximation to the spectrum. Secondly, the probleimeract arithmetic is solved by (v).
Thus, in theory, we can get arbitrarily close to the spectiyrcomputing the:-pseudospectrum and
still allow the computation to be in inexact arithmetic. Naf/course the ..., will have to decrease
asn grows.

The function,, and the fact that,, ((T') = {z € C : y,(2) < €} provide us with a tool for
estimating then-pseudospectrum. In fact, by recalling (5.1), we have naduced the problem of
finding the spectrum of a non-normal operator to a problemrafifig the smallest element in the
spectrum of a self-adjoint operator. In the following exdespve will show some of the properties of
then-pseudospectra listed in Theorem 5.1



Figure 3:The first figure shows the first four eigenvaluegT) N [2.4, 3.4] x [0.4, 1.4]), and the following figures show
oe(T) N [2.4,3.4] x [0.4,1.4], 01,(T) N [2.4, 3.4] x [0.4,1.4], 02, (T) N [2.4, 3.4] x [0.4, 1.4] for € = 0.05.

Example 5.2. To demonstrate the propetay, 1 (1) C o,.(T") of the pseudospectra we have chosen
the following operator:
aq b1 0 0
CcC1 Qo b2 0
T = 0 Cy Qaq b3
0 0 C3 a2

wherea; = 2, a2 = 0.5,b; = EJ{/’g andc; = 1/j'/2. Now, T can be written as a sum of two operators
where one is compact and the other one has only essentiatigpeand thus4d should have plenty of
isolated eigenvalues. The four largest eigenvalues witfespondingn-pseudospectra are displayed
in Figure 3.

Example 5.3. To visualize the property that {{7},} € B(H) andT}, — T in norm, it follows that

dH(O'n,e(Tk),O'n,e(T)) - 07 k— 0,

a natural test object is the example considered in the inttimh. The discontinuity of the spectrum
shown in that example was a strong motivation for the intobidn of then-pseudospectrum. Recall
that we defined; : 12(Z) — [?(Z) as in (1.1), and that fof # 0 we haves(A4;s) = {z : |z| = 1}
but for6 = 0 theno(Ap) = {z : |z| < 1}. We have computed the-pseudospectrum ol for

e = 0.025 andn = 2 which coincides with the closedneighborhood of the unit disk. We have
also computed the-pseudospectrum of;,-16 to demonstrate that, at least up to the accuracy of the
grid size we have chosen, the computed results are idenhicay, if we actually wanted to compute
the spectrum of4,,-16 we would have to choose computer software with higher pieciand also
taken much larger. The .., in MATLAB limits us to taken < 2 since our computation requires
operations With eyacn)/2"" . Hence, sincdemacn)/2""" = 0.1, we may experience that for = 3,
our computation will be accurate only up to the first decinkdwever, we have visualized (in Figure
4) (iii) in Theorem 5.1 by computing the-pseudospectra ol o5 for n = 1,2, in which case the
n-pseudospectra approximates the spectrumgqfs quite well even for small values of.

6 Computing the n-pseudospectrum

6.1 Designing the Algorithm

Numerically, a self-adjoint spectral problem is much eaialeal with than a non-self-adjoint prob-
lem, but we cannot attack the task of computing (5.1) as iiigge this is an infinite-dimensional
problem. We therefore need to find an approximation,idas defined in (5.1)) that is suitable for



Figure 4:The figure showsr (Ao), 02,e(A19-16), 01,e(Ao.005), andaa,« (Ao.005), for e = 0.025.

computations. A natural choice seems to be to choose a segjoéfinite rank projection$ P, } such
thatP,,,+1 > P,,, andP,, — I strongly, e.g. we may choose a bagis} and letP,, be the projection
ontospan{ey, ..., e, }. Now we can try to approximatg, by the function

Yn,m (%) = min [min {AI/TM ‘A€o <Pm((T —2)" ) (T - 2)*" L H) } :
(6.1)

min {AW”“ ‘Aeo (Pm(T — )2 (T - )" Lm) } ] ,

and ifv,, ,, — 7, in some sense we can hope that
{2 :vm(2) < e} — 0 (T), m — oo.
In fact so is almost the case as the following theorem gueaeant

Theorem 6.1. Let T € B(H) and let{P,,} is an increasing sequence of finite rank projections
converging strongly to the identity such th@t,.; > P,,. Definey, ., as in (6.1), theny,, ., — v
locally uniformly asm — oo, and for compact’ C C such thaio,, (T') N K # () we have

{z:7m(z) <efNK — 0, (T)NK, m— oo,
where the convergence is understood to be in the Hausdotffane
The following proposition from [Han09a] is crucial in thegof of Theorem 6.1 and Theorem 6.3

Proposition 6.2. Lety : C — [0,00) be continuous and lefy; }ren be a sequence of functions
such thaty, : C — [0,00) and v, — ~ locally uniformly. Suppose also that fer > 0, then
cl({z : y(z) < €}) = {2z : v(z) < €}. Then for any compact sé&f such that{z : y(z) < e} N K # 0

it follows that

cd({z:w(z) <e) NK — cl({z : v(2) < €}) N K, k — oo.

Proof. (Proof of Theorem 6.7 This theorem follows by the techniques used in the prooftedrem
6.3 in [Han09a]. We will sketch the ideas. One first establsthe fact thaty, ,,, — -, locally
uniformly. Note that this fact alone is not enough to dedineediaim of the theorem. One also needs
the facts thaf{z : v,(2) <€} = {2z : W(2) < e} and{z: Y n(2) <€} = {2 : Tm(2) < €} in
order to invoke Proposition 6.2. The former has already leetablished in Theorem 5.1. To prove
the latter one uses some abstract operator theory from4Jte@ether with the following result by
[Sha08]: If(), is a connected open subset®indZ a Banach space, arfd: )y — Z is an analytic
vector valued function]F(z)|| < M for all z in an open subsét C Qy, and|| F'(zo)|| < M for some

2o € Q. Then||F(z)|| < M for all z € €. O




Now, computingy,, ., still involves the product$(T" — 2)*)?" (T — 2)*" and (T — 2)*" (T —
2)*)?", which may be challenging to compute Asacts on an infinite dimensional space. However,
there is a solution to this problem. Instead of computinggheucts((T' — 2)*)?" (T — 2)*" and
(T — 2)*" (T — 2)*)?" we will compute

(Pe(T = 2)Pp)* )" (Po(T — 2)Pe)*,  (Po(T — 2)Po)”" (Pe(T — 2)Pp)*)™",

where P, is a finite rank projection as in Theorem 6.1. &% has finite rank this is feasible, in
particular, we can define the function

’7n,m,k(z)

= min [min {)\1/2“1 A€o <Pm((Pk(T — 2)P)")? (P(T — 2) P {PmH> } " (6.2)

min {Al/z”“ ‘A€o (Pm(Pk(T — 2)Pu)?" (P(T — 2)Pp)*)*" L:m) }] ’

and argue that,, ,,, 1, — Yn,m ask — oo. In fact we have:

Theorem 6.3. LetT € B(H) and let{P,,} be an increasing sequence of finite rank projections
converging strongly to the identity such thaf, ., > P,,. Define~,, ,, , as in (6.2), theny, ,, . —
Yn,m l0cally uniformly ask — oo, and for compac#’ C C such that{z : v, ,»(z) < e} N K # D we
have

{2 Ymi(2) CeNK — {z: 9, m(2) <efNK, k— oo,

where the convergence is understood to be in the Hausdotffane

Proof. This theorem follows by the techniques used in the proof aorem 6.3 in [Han09a]. We wiill
sketch the ideas. One first establishes the factthat . — vy, locally uniformly. Note that we
have already established the fact that v, ,,,(2) < €} = {z : v,,m(2) < €} in the proof of Theorem
6.1. And, one observes that for> m then the latter fact actually implies thgt : 7, ,, 1 (2) < €} =

{z : Yo.mk(2) < €} (just replacel’ by P,TP;). We can now invoke Proposition 6.2 to establish the
theorem. O

For a full infinite matrix,~, ., » can be a tough challenge to compute, since there are two limit
processes going on at the same time, namely oo andm — oo. It is therefore important to take
advantage of structured problems.

Definition 6.4. Let{e;};cn be a basis fof{ and letT' € B(H). If
(Tejir,ej) = (Tej,ejp) =0, [ >d,
thenT is said to be banded with bandwidih

The following theorem is important for the computation9f,, . when the infinite matrix is
banded.

Theorem 6.5. ([Han09a]) LetT € B(H) and{e;} be a basis forH. Let P,, be the projection onto
span{e; }7. . Definey, ;, andvy, m k as in (6.1) and (6.2). Suppose that the matrix represermtaifo
T with respect tg{e; } is banded with bandwidtt. Then, form > d,

'Vn,m(z) = 7n,m,2”d+m(z), z e C.



6.2 The algorithm

As Theorem 6.1 suggest, the estimation of thpseudospectra can be done by computing values of
Yn,m,k ONagrid in the complex plane. Also, by Theorem 6.5, if theriraf is banded with bandwidth
d then

’Yn,m(z) = 7n,m,27ld+m(z)7 z € (C,

whered is the number of off diagonals. Thus, we are left with the taflstomputing

min {Al/z”“ ‘A€o <Pm((Pk(T — 2)P) )2 (Po(T — 2)Pp)*" Lam) } (6.3)

min {Al/z"“ A€o <Pm(Pk(T —2)P)? ((Po(T — 2)Py)*)*" L H> } . (6.4)
As m becomes large, both (6.3) and (6.4) are difficult to compimees

(Pul(P(T = 2)P)") (Pu(T = 2)P)”" |
7t (6.5)

Pu(B(T = 2)P)* (BT = )P |

may have many eigenvalues very close to zero, and standardrival routines as MATLAB'®i gs

will have trouble detecting the smallest eigenvalue to sigffit precision. In fact, it is not hard to

cook up examples such that MATLAB®I gs crashes completely. If one wants a contour plot of

the n-pseudospectrum, there is no way around the previous pmldat if one only wants the-

pseudospectrum for one specific- 0, it is unnecessary to compute the smallest eigenvalue 3) (6.

and (6.4). In fact, since we are only interested in knowing@thlry, ,,, () < e for some complex

z, we only need to check if the self-adjoint matrices

. 62n+1

(Pu((P(T = 2) )" (Pu(T = 2)P)™" | 1

PynH

n+1
62

Poo(Pe(T — 2)Pp)*" (Pu(T — 2)Py)*)*" {PmH B !

are both positive definite. If they both are, theg {z : v, ,, 1(2) < €}. This is where the Cholesky
decomposition comes in handy and saves the day.

6.3 The Cholesky Decomposition

Itis well known that a self-adjoint matrid € C™*" is positive definite if and only if it has a Cholesky
decompositionA = GG*, whereG is lower triangular with positive elements on the diagosale
[GVL96]. Thus, to determine whethet is positive definite or not, we need to find out if the decom-
position A = GG* exists. This can be done in the following way. Let

(o v¥ _ ﬁ 0 1 0 ﬁ U*/ﬁ
4= <v B> B <v/ﬂ In_1> <0 B—vv*/a> <o In_1>’ (6.6)

wherea > 0 if A is positive definite, s@ = \/a. If « < 0 we conclude thatl is not positive definite
and we are done. Now} — vv* /v is positive definite if and only ifd is positive definite since itis a
principal submatrix ot/* AU, where
(1 —v*/a
U= <0 o ) _



If there is a Cholesky factorizatiof¥; G; = B — vv*/« then it follows from (6.6) thatd = GG*,

where 5
B 0
G- ( ’; Gl).

We can continue this argument wifly and do this recursively to obtai{Gj};.‘;ll. Thus, if all Gs
turn out to be positive definite thehis positive definite, and if there is@, that is not positive definite
then A cannot be positive definite. The standard algorithm for tegiiresn?®/3 flops. A neat tool
for determining whether or not is positive definite is MATLAB’schol routine that has an build in
check for positive definiteness of matrices.

Suppose thdl is a banded infinite matrix with bandwidth the following MATLAB program will
plot the the following se{z : v, m 2n44m (2) < €} N K, whereK is a rectangle itC and~,, ,, 2nd4+m
is defined in (6.2).

Algorithm 6.1.

% Conputes {z : gamma_n, m 2°nd+nm(z) <= epsilon} \cap K

% or an infinite matrix A with bandwith d=diag, where Kis
% rectangle with coordinates left, right, up, down.

9%The size of the section of A nust be 2"nd+m

function s = n_pseu_chol (A epsilon,left,right, down, up, grid_eps, n, di ag)
r (right-left)/grid_eps; e = grid_eps; si = size(A 2);
| (up - down)/grid_eps;

for j=1:r
for k=1:1l
z = left + jxgrid_eps + (down + k*grid_eps)~*i;
B_1 = (((A-z*speye(si))”~(2"n))")*(A-zxspeye(si))"(2"n);
B 2 = (A-zxspeye(si))™(2*n)*((A-z+*speye(si))”™(2"n))’;
C1=B1(1l:si - (diag*=(2”"n)),1l:si - (diag*(2"n)));
C2 =B2(1l:si - (diag«(2”*n)),1l:si - (diag*(2”"n)));
w = size(C, 2); lanbda = epsilon®(2*(n+l));

[R p_1] = chol (C_1 - | anbda*speye(w));
[R p_2] = chol (C_2 - |anbda*speye(w));
if abs(max(p_1,p_2)) == 0
el se
plot(z, k.");
end
end
end

6.4 Tests on Laurent and Toeplitz matrices

The spectral theory of Laurent and Toeplitz operators ig vl understood, and they are therefore
a natural choice when it comes to test objects for numerigakithms. We briefly recall some of the
basics from Laurent and Toeplitz operator theory from [BS@ven a Laurent operatot;, oni?(Z)

ayp a—1 a—_9 a_s3
...ooag a a_1 a-—o2 ...
AL = ’

N ¢ %)) ai ap a—-1 ...
az a2 a1 Qo

10



.
§
) -6 -4 -2 0 2 4 6 8

Figure 5:The first figure is the curve of the symbgl with winding numbers, the second is the spectrum of the Lraure
operator corresponding th computed withe = 0.15, n = 2, m = 3000 and grid-size being.1. The third figure is the
spectrum of the Toeplitz operator correspondingtavith the same numerical parameters as for the Laurent case.

it is well known thatA, is a bounded operator if and only if there is a functior L>°(T), whereT
denotes the circle, such th@t,, }°° is the sequence of Fourier coefficientsfofthat is

n=—oo

1 4 :
a, = %/f(ew)e_me do, neZ.

Also, o(Ar) = R(f), whereR(f) denotes the essential range fofFor a Toeplitz operatoAr on
12(Z.), given by

ap a—-1 a—9 a_3

aj ag a_q1 a_9o

AT — as ay ap a_q

as a aq a

we have a similar result, namely; is bounded if and only if there is a functighe L°°(T) such that
its Fourier coefficients are the sequeres },.cz. The functionf is called the symbol of the Laurent
or Toeplitz operator.

As for the spectrum ofir, note that ift — f(e'), ¢t € [0,2n] is a continuous function, then
R(f) = f(T) is a curve inC, and hence we can assign a winding number to every pointC with
respect to the curve. We then have thétl) is equal to this curve together with all complex numbers
with non-zero winding number with respect to the curve. Inexamples (displayed in Figure 5 and
Figure 6) we have chosen Laurent and Toeplitz operatorssyitibols

fi(z) =227 — 272 4 2027 — 427 — 2i23

and
fo(z) =272+ 27+ 1 + 22,

where the corresponding winding numbers are displayed @fighres. Our numerical computation
is done as suggested in Algorithm 6.1, where we check whether

min {Al/z”“ Ao <Pm((T — 22T — )" L,m) } ,

min {)\1/2”+1 “ANeo (Pm(T — 2" (T = 2)")* LMH> }]

is less than or equal tg for somee > 0, on a grid in the complex plane, whefehere is eithetd, or
Ar. If v, m(2) < e the pointz is assign a black color.

Yn,m(2) = min

11



Figure 6: The first figure is the curve of the symbg} and the second figure is thepseudospectrum of the Laurent
operator corresponding 2 computed (inside the rectangle) with= 0.1, n = 2, m = 3000 and grid-size being.1.
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L L L L L , _05 L L L L L L L L L ,
0.4 -0.2 0 0.2 0.4 0.6 0.8 1 05 -04 -03 -02 -01 O 01 02 03 04 05

Figure 7: The figure shows(¥(Q)) (left) and{z € O : v, ;1 (2) < €}N[-0.1,0.14] x [-0.23,0.23]
(black dots) fore = 0.0073, n = 0, m = 10000 andk = 15000.

The choice of the projections is the natural one. Namelyhéndase of Laurent operators,, is
the projection onto the span §f;}7" _, where{e; } ez is the obvious basis fd?(Z) (that is,e; has
one on thej-th coordinate and zero elsewhere). For Toeplitz operalfisds done similarly, but with
P, being the projection ontspan{e; }7; and{e; } en being the obvious basis fot(N).

The computational costs of these figures are quite high disgge numbers of grid evaluations,
and the computational time for some of them can typicallg take night on a desktop computer. Itis
therefore difficult to get really accurate results. Howetlee computations done with the symbsl

in Figure 3 are done with a small grid-size to show accuracy.

6.5 Tests with the Operator¥(Q) for ¥ € L>*(R)

In this example we consider the operaiai)) on L?(R), where¥ € L°°(R) andQ is the self-adjoint
operator orl.?(R) (on its appropriate domain) defined @9 f)(x) = = f(z). When constructing such
examples, the functional calculus and the spectral magpegrem come in handy. In particular, we
have that

o(¥(Q)) =R(¥) (the essential range) ¥ € L>(R).

In this example we have chosen

12



We have visualized (¥ (Q)) in the left part of Figure 7. To obtain a matrix representaid ¥ (Q))
we have chosen a basis fbf(R) by first considering a basic Gabor basis, namely, a basisdbtim

e27rim:p

X[O,l](l‘ - ’I’L), m,n € Z>

(wherey is the characteristic function) and then chosen some eratimerofZ x Z into N to obtain

a basis{t; } that is just indexed oveN. To get our basis we lep; = F1);, whereF is the Fourier
Transform. The matrix representatigQ¥ (Q0)y;, ;) } of ¥(Q) yields a full infinite matrix. Hence,
we cannot use, ,,, as defined in (6.1), but the function ,,, ;. (recall (6.2)) comes to our rescue. In
Figure 7 (right) we have showmfr € © : 7, ., 1(2) < €} N[—0.1,0.14] x [-0.23,0.23] (black dots)
for e = 0.0073, n = 0, m = 10000 andk = 15000, where® is a quadratic grid with grid size.004.

7 Other Types of Pseudospectra

7.1 The Residual Pseudospectrum

Even though the previous examples show very good results,nuust be aware that our approach
using then-pseudospectrum can only give an estimate on the positidheopectrum. The reason
why the computations in the previous section are so closkaapectrum is simply because the
pseudospectrum is close to the spectrum even for smallhis may of course not be the case in
general, and we will now show how one can use the computatbns ,,, to determine subsets of
the spectrum. The disadvantage of th@seudospectrum is that even though one can estimate the
spectrum by taking: very large,n may have to be too large for practical purposes. Thus, sirce w
only have the estimate f&f € B(H),e > 0 thato(T") C o,(T), it is important to get a “lower”
bound oz (7T') i.e. we want to find a sé® C C such that? C o(T'). A candidate for this is described

in the following.

Definition 7.1. LetT € B(H) and define
Gi(z) = min (A2 X € o (T - 2)"(T - 2)) },
(2(2) = min {)\1/2 xeo((T—2)(T - z)*)} .
Lete > 0 and define the-residual pseudospectrum to be the set
Ores,e(T) = {2 : C1(2) > ¢, a(2) = 0},
and the adjoint-residual pseudospectrum to be the set
Ores,e(T) = {2z : (1(2) = 0, (2(2) > €}.

Theorem 7.2. ([Han09a]) LetT € B(H) and let{7T}} C B(H) such that7, — T in norm, as
k — oo. Then fore > 0 we have the following,

() o(T) D Uesg Tres,e(T) U Ores e (T)
(i) cd{z€C:G(z) <e}) ={2€C:G(z) <€}
(i) cl({ze€C:(z) <e})={z2€C:(z) <€}

13



(iv) For any compacfX C C such thatcl(oyes (1)) N K # 0 it follows that
A (cl(ores,e(T)) N K, cl(0res (T)) N K) — 0, k — oo.
(v) Forany compack C C such that,es (1) N K # (it follows that
dp (cl(Ores e(T)) N K, cl(0res+ (T) N K)) — 0, k — .

The previous theorem shows that the residual and the adgsittual pseudospectra have similar
continuity properties as the pseudospectra. Hence, thetsease suitable for computations. The
approximations are very similar to the techniques we haed irsthe previous sections.

Theorem 7.3.LetT € B(H) and suppose thdtP,, } is a sequence of finite rank projections converg-
ing strongly to the identity such th#t,,,; > P,,. Define

Cim(2) = min {/\1/2 ‘Aeo <Pm(T ~ )T - 2) Lam) } ,

Coum(2) = min {AW ‘A€o <Pm(T —2)(T PmH)}
|
|

Cim,k(2) = min {/\1/2 A€o <Pm(Pk(T — 2)Py)" (P(T — 2)Py) » H> }
)

C2,m,k(2) = min {)\1/2 A€o <Pm(Pk( = 2)Pp)(Pe(T — 2) Py)”

Letd € (0,¢). Then we have the following.

(i) If K is compact such that,.s(7') N K # 0 then

A{z: Cml(2) > € Com(z) < NN K — ormc D) NE,  m — oo.
(i) If K is compact such that,. (T) N K # () then

A({z: Gm(2) <8, Com(2) > €}) N K — oree (T) N K, m — oo.
(i) If K is compact such thal({z : (1., (2) > €, (om(2) < 6}) N K # () then

cl({z : CLmp(2) > €, Cmr(z) <) NK
— cl({z: Cm(2) > €,Cm(z) < 6}) NK, k — oc.

(iv) If K is compact such thad({z : (1,m(2) < €,lom(2) > €}) N K # () then

cl({z : Cmi(2) <6, lami(z) >€e}) NK
— cl({z: Cm(2) <6,Com(2) > e}) NK, k — oc.

Proof. The theorem follows by using the technigues in the proof aédrem 7.3 in [Han09a]. The

techniques are almost identical to the techniques useaiprtbofs of Theorem 6.1 and Theorem 6.3.
In particular, one uses Theorem 7.2 and Proposition 6.2. O
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Figure 8: The figure shows on the first ré¥y ._10-10 3000(71) (€ = 0.01), Q, (_19-10 3000(12) (¢ =
0.0005), €2, _10-10 3000(T4) (¢ = 0.00001) and on the second rof : vo,m(2) < €} (m = 3000) for
the same operators alg as on the first row.

7.2 Examples With the Residual Pseudospectrum

We now have a computational tool for estimating the spectrath from “above” and “below”, mean-
ing that forT € B(H) we have

Ures,E(T) U Ures*,E(T) C U(T) - O-ME(T)'
Thus, it would be natural to compute, for- 0 andéd € (0, €), both
{2 Cmn(2) > € Cmu(2) < 0t U{z: Gmi(2) <6, mi(2) > €}

and{z : vmk(z) < €}, wherev, ,,  is defined as in (6.1) to get an estimate for the spectrum. To
simplify the notation we define

Qs,é,m(T) = {Z : Cl,m(z) > €, (2,m(z) § 5} U {Z : Cl,m(z) S 57 C2,m(z) > E} (7-1)

Qesmp(T) = {2 Qmr(2) > € Qmr(2) <6} U{z: Gmr(2) <6, Cmi(2) >t (7.2)
Given an infinite matriXl’, we will in this example show how computations of
Ores,e (T) U Uros*,e(T)> Un,e(T)

can give quite good estimates on the position of the spectAgtest objects we have chosen Toeplitz
like operators, where we have kept much of the Toeplitz &ire¢ but let some of the subdiagonals
have two different numbers that alternate instead of catsta\s we are left with few (if any) math-

ematical tools to estimate the spectrum, we can only relyhercomputed estimate, which in some
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cases seems quite acceptable. Consider the three infinitieesd’,, 7, andT3 given by

0 a b c 00 0 a b ¢ 00
d 0 a b ¢ O d 0 a b ¢ 0
f e 0 a b c f e 0 a b ¢
=19 f d 0 a b 7T2_gfd0ab 7

0 g f e 0 a 1 g f e 0 a
0 0 g f dO 0 ¢v1 g f d 0

0 a b ¢ 00

d 0 a b ¢ O

0 e 0 a b ¢

T3290d0ab 7
01 g 0 e 0 a
0 1 g 0 d O

wherea = 1+2i,b=~1,c=5+id=-2e=1+2i,f = —4,g=-1-2,¢; = ~2+ 57>
andyy; = 1+ 2i + >575¢. Figure 8 shows computations Of 5, (7;) (WhereQe s, () is defined as

in (7.2)) and{z : yo,m(2) < €} for T (j = 1,2,3), m = 3000 ande = 1075, § = ¢ — 10710, Since

Qe,&,m(T) — Ures,e(T) U Ures*,e(T) - O'(T), m — o0
and
{z 1 70,m(2) <€} — o(T), m — o0,

it is reasonable to believe that the computation displagddhowing relation
Qesm(T) Cwy(a(T)) C{z:v0,m(2) <€}, v >0,

for somev. As we tried this with several larger values+afup tom = 10000 without noticing any
change, it suggests thais small in the experiment witfi;, where “small” here means relative to the
resolution of the figures displayed.

8 Discrete Schrodinger Operators

8.1 The Non-self-adjoint Almost Mathieu Operator

An important operator in non-self-adjoint spectral themryhe non-self-adjoint harmonic oscillator
H, defined by
Hf(x) = —f"(z) + ca®f(x), ceC,

acting onL?(R). One of the motivations for this operator was that one waraedke a well known
self-adjoint operator, alter it slightly so that it beconmes-self-adjoint, and then see how the spectral
properties change. Indeed, the spectral properties ofdhesalf-adjoint harmonic oscillator are very
different from the usual harmonic oscillator, as discussdiDK04], see also [TE05]. Our approach
is to do the same with discrete Schrddinger operators.
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Figure 9: The first row shows.(H; 5 r/4), 0e(H11i2,x/4) andoe(H, , =) for e = 0.005. The second
row showso ((Hy 4 ) for the same values as in the first row.

—
——

The almost Mathieu operator df(Z) is known from the Ten Martini Problem, a problem that
was initiated in 1981 by Kac and Simon and finally solved in2B9 [Pui04]. The operator is defined
as

(Hp, ¢ wT)n = Tnt1 + Tn—1 + beos(2mwn + @)z, n €z,

wherew > 0 is an irrational number € T = R/27Z andb € C. The usual almost Mathieu operator
hasb € R, so thatH,, 4 is self-adjoint and the Ten Martini problem was to show tleatréal non-zero
btheno(H, 4,.) is a cantor set.

We do not claim anything about the spectral properties ofnihre-self-adjoint almost Mathieu
operator (NSAM operator), but we rather use it as an examipé @perator where we before did
not have computational tools at hand to handle the problenuoferically estimating the spectrum.
Arveson gave a complete theory in [Arv94] on how to handlecttraputational aspects of the spectral
theory of the self-adjoint almost Mathieu operator. Howgeself-adjointness is crucial in Arvesons
theory and therefore not suitable for our problems. But whih techniques suggested in the earlier
sections of this chapter we can get numerical approximatiorthe spectra of these non-self-adjoint
Schrédinger operators. In Figure 9 we have computed pspadiva andl-pseudospectra of the
NSAM operator for different values é¢fandw.

9 Pros and Cons of then-pseudospectrum

9.1 The Curse of the Root

There are some limitations to the userppseudospectra as approximations to the spectrum. The
problem is related to the fact that we do not have infinite igies in the computations carried out,
and hence our computations will dependeqn.,. Thus, if 7" € B(H) ande is the smallest positive
number such that.(7") (or rather an approximation using (6.3) and (6.4)) can bkiated, we cannot
evaluater; (1) because of the root(s) in (6.3) and (6.4). However, we mayleeta evaluate

Ul,ﬁ(T),O'Zel/ﬁl(T)w--,Un’61/2"(T), n € N.
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Figure 10: The figure shows.(B) (left) ando,  z(B) (right).

So the best approximation we can get to the spectryifis, T}, c1/2k (T'). Now, this rises the question:

are there operators such that there ig an0 for which it follows thato, ;1 sn+1(T') C 0, c1/2n (T).
The answer is affirmative as the following example shows. Let

0 107
B= ( o > |
Thenoy /. (B) C o.(B) fore = v5-10~13. This is visualized in the Figure 10.

9.2 The Power of then-pseudospectrum

But it is in fact not in the last example above that thseudospectrum shows its true strength.
Note that in a numerical computation of thepseudospectrum the choice of the grid is crucial. In
particular, if one computes,, (T) for someT" € B(H) ande > 0, then the grid size must be chosen
according tce. This is not so important if one computes (6.3) and (6.4), éx@x, absolutely crucial
in the case one uses the Cholesky decomposition as in Sé&c8BoKiSince (6.3) and (6.4) sometimes
are incomputable in practice, this is very important). Mspecifically the grid size must be smaller
thane in order to ensure that one captures the whole,f(7"). To visualize this we have chosen the
following example. Lefl' = T & T» & T3, where

~ (0 10000 (2.7 + 1.5 0 [0 3 05
T1_<0 1 > T2_< 0 2.7—1.51)’ Ts=10 o 3

Computingo.(T') (using the Cholesky decomposition as in Section 6.3) where0.0005 andg =
0.03 (hereg denotes the grid size and the grid is quadratical) givesdfieplot in Figure 11. The
problem is that the contribution frof, is missing. This is due to the fact that> ¢ and thus
one may loose important spectral information. If one iss@t doing computations only with the
pseudospectrum there are two possibilities in order tocovee this obstacle. The first is to increase
e and the second is to decreagdf the former is chosen, the highly non-nornigl will dominate
and yield a rather poor approximation to the spectrum. Ghgahe latter is computationally very
demanding as the number of grid points will increase draraliyi A better choice is therefore to
compute then-pseudospectra for differemt. In particular, the middle and right plot in Figure 11
showso , (T') andoy ¢, (T') with € = 1/0.0005 ande; = 0.1 computed with grid sizg = 0.03.
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Figure 11: The figure shows (7") with e = 0.0005 (left), o1 , (') (middle) ando ., (T') (right) with
€1 = v/0.0005 andey = 0.1 computed with grid sizg = 0.03.
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