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Abstract

We present several new techniques for approximating spectra of linear operators (not
necessarily bounded) on an infinite dimensional, separable Hilbert space. Our approach
is to take well known techniques from finite dimensional matrix analysis and show how
they can be generalized to an infinite dimensional setting to provide approximations of
spectra of elements in a large class of operators. We conclude by proposing a solution to
the general problem of approximating the spectrum of an arbitrary bounded operator by
introducing the n-pseudospectrum and argue how that can be used as an approximation to
the spectrum.

1 Introduction

This paper follows up on the ideas initiated by Arveson in [Arv94a] and [Arv91], [Arv93b],
[Arv93a], [Arv94b] on how to approximate spectra of linear operators on separable Hilbert
spaces. This fundamental question in operator theory goes back to Szegd [Sze20] and has
received some attention throughout the history [Kat49], [Aro51], [Rid67], [Kau93], [DVV94],
[Pok95], [Béd97], [Sha00], [BCNO1]. The question is fundamental in the sense that our un-
derstanding of most physical phenomena in quantum mechanics, both relativistic and non-
relativistic, depends on the understanding of the spectra of linear operators. However, to get a
complete understanding of such physical phenomena we not only need mathematical descrip-
tions of the behavior of spectra of linear operators, we also need a mathematical theory on
how to find explicit approximations to such spectra. It is a completely open question how to
compute the spectrum of an arbitrary linear operator as pointed out in [Arv94b]: “Unfortu-
nately, there is a dearth of literature on this basic problem, and so far as we have been able to
tell, there are no proven techniques.” Since this observation was made, there have been new
developments in the self-adjoint case [Dav00], but for the general non-self-adjoint case tech-
niques for approximating spectra are not known. It has been questioned in [Dav05] whether
or not it is possible at all to determine spectra of arbitrary non-normal operators (a suggestion
to the solution to that problem is discussed in section 8). The lack of mathematical techniques
for approximating spectra presents therefore a serious limitation of our possible understand-
ing of quantum systems since non-self-adjoint operators are ubiquitous in quantum mechanics
[HNO6], [HNO7].

We will in this article present explicit techniques on how to approximate the spectrum of
different classes of linear operators on a separable Hilbert space. Throughout the article H will



always denote a separable Hilbert space, and B(H) will be the set of bounded linear operators
on H. Also, C(H) denotes the set of densely defined, closed linear operators on H. If T €
C(H) the domain of T will be denoted by D(T'), and if z ¢ o(T) then R(z,T) = (T — z)~".
Also, o(T) and 0.(T") denotes the spectrum and the essential spectrum of T respectively.

2  Quasidiagonality and the Finite-Section Method

The finite-section method for approximating the spectrum of bounded self-adjoint operators
on Hilbert spaces is a well-known technique and has been studied in several articles and mono-
graphs [Arv94a], [Bro07], [BS99], [HRSO1]. The approach is to first find a sequence of finite
rank projections { P, } such that P, ; > P, and P, — [ strongly, and then use known tech-
niques to find the spectrum of the compression A,, = P, AP,.

The most obvious approach is to use some orthonormal basis {e,, } for the Hilbert space H
and then let P, be the projection onto sp{e, . .. e, }. Given a self-adjoint A € B(H) and {e,, }
we may consider the associate infinite matrix (a;;)

a; = (Aej e), 4,5=1,2,....

In this case the compression becomes A,, € B(H,,), where H,, = P,H, A, = P, A[x,, where
the matrix with respect to {eq, ..., e,} is

ai; A2 ... QAip

Q21 Q22 ... Q2
A, =

Ap1 Ap2 ... Qpp

The operator-theoretical question is to analyze how the spectrum o (P, A[ p,3) evolves as n —
00.

Definition 2.1. Given a sequence {A,,} C B(H), define
A={NeR:3I\, €a(A,), \n — A}

Also, for every set S of real numbers let N,,(S) (and Nn(S )) denote the number of eigenvalues
counting multiplicity (and not counting multiplicity respectively) of A,, which belong to S.

Definition 2.2. (i) A point A\ € Ris called essential if, for every open set U C R containing
A\, we have
lim N, (U) = oo.

n—o0

The set of essential points is denoted A,

(ii) A € R is called transient if there is an open set U C R containing \ such that

sup N,,(U) < 0.
n>1
Theorem 2.3. (Arveson)[Arv94a] Let A € B(H) and let {P,} be a sequence of projections

converging strongly to the identity such that P, 1 > P,. Define A, = P, Al p,» and let \ and
A, be as in definitions 2.1 and 2.2. Then o(A) C A and o.(A) C A..



Definition 2.4. (i) A filtration of H is a sequence F = {H1, Ha, ...} of finite dimensional
subspaces of 'H such that H,, C H,+1 and

Gm =M
n=1

(ii) Let F = {H,} be a filtration of H and let P, be the projection onto H,,. The degree of
an operator A € B(H) is defined by

deg(A) = suprank(P,A — AP,).

n>1

Arveson gave in [Arv94a], [Arv94b] a complete theory of the finite-section method applied
to operators of finite degree, which is an abstraction of band-limited infinite matrices. We will
not discuss that theory here, but refer the reader to the original articles. We will however
present the following theorem, which is a special case of Theorem 3.8 in [Arv94a], to give the
reader an impression of what one can expect to get when using the finite-section method.

Theorem 2.5. (Arveson)[Arv94a] Let A € B(H) be self-adjoint and
F ={Hi, Ha,...}

be a filtration with corresponding projections { P,,}. Define A, = P, A[p,3 and let A and A,
be as in definitions 2.1 and 2.2. Suppose that A has finite degree with respect to F. Then

(i) 0c(A) = A
(ii) Every point of A is either transient or essential.

In this section we will investigate how the finite section method can be applied to quasi-
diagonal operators. First we recall some basic definitions as well as some well know results.

Definition 2.6. An operator A on a separable Hilbert space is diagonal if there exists a com-
plete orthonormal set of eigenvectors of A.

Definition 2.7. An operator A on a separable Hilbert space is quasi-diagonal if there exists an
increasing sequence { P, } of finite rank projections such that P, H C D(A), P, — 1, strongly,
and ||P,A — AP,|| — 0. The sequence { P,} is said to quasi-diagonalize A.

Before the next definition we need to recall that an unbounded operator A is said to com-
mute with the bounded operator 7' if

TA C AT.

This means that whenever £ € D(A), then T¢ also belongs to D(A) and ATE = T AE.

Definition 2.8. An operator A on a separable Hilbert space is said to be block diagonal with
respect to an increasing sequence { P,} of finite-dimensional projections converging strongly
to I if A commutes with P, ., — P, for all n.

Note that if A is self-adjoint and P, H C D(A) then Definition 2.8 is equivalent to each of
the assertions



(i) P, commutes with A for every n.
(i) AP,’H C P/H.
The following theorem assures us the existence of a vast set of quasi-diagonal operators.

Theorem 2.9. (Weyl,von Neumann, Berg)[Ber71] Let A be a (not necessarily bounded) nor-
mal operator on the separable Hilbert space H. Then for ¢ > ( there exist a diagonal operator
D and a compact operator C such that |C|| < eand A =D + C.

Corollary 2.10. Every normal operator is quasi-diagonal.

Definition 2.11. (i) ForasetY C Candd > 0 we will let I's(X) denote the §-neighborhood
of X (i.e. the union of all §-balls centered at points of X2).

(ii) Given two sets 3, A C C we say that ¥ is d-contained in A if ¥ C T's(A).

(iii) Given two compact sets X, N C C their Hausdorff distance is

dy (3, A) = max{sup d(\, A),supd(\, X)}
AEA AEX

where d(A\, A) = inf,cp |p — A|.
We will need a couple of basic lemmas.

Lemma 2.12. (Davies, Plum)[DP04] Let A € B(H), P be a projection and ¢ > 0 such that
|PAP — AP|| < e. If\ € 0(PAP) then (A — e, A\ +¢) No(A) # 0.

Lemma 2.13. Let A € B(H) be self-adjoint and compact. Let {P,} be a sequence of finite-
dimensional projections such that P,, — I strongly. Then P, AP, — A in norm.

Proof. Since P = I — P, is a sequence of projections tending strongly to zero, ||AP|| — 0.
Since P} A is the adjoint of AP, its norm tends to zero as well, so that

|A = PoAP,|| = ||y A+ PAP|| < || PrA| + AP — 0, n— oo,
O

Lemma 2.14. Let A be a self-adjoint (not necessarily bounded) operator on a separable Hill-
bert space H with domain D(A) and a quasidiagonalizing sequence {P,}. Then A = D + C
where D is self-adjoint with domain D(D) = D(A) and block diagonal with respect to some
subsequence { P, }. Also, C'is compact and self-adjoint.

Proof. To see this we can extend Halmos’ proof in [Hal70] to unbounded operators. Now,
by possibly passing to a subsequence, we may assume that ) | P,A — AP,|| < oco. The
fact that P, > P, _, assures us that P, — P,_; is a projection. Thus, we may decompose
H =@, ,(Py+1 — P,)H and define D on

D(D) =sp{§ € H:§ € (Poy1 — Pu)H}

in the following way. If £ € (P,41 — P,)H then D = (P,y1 — P,)A(Poy1 — P,)&. Now
D is densely defined, with D(D) C D(A), and obviously (by definition) block diagonal with



respect to { P, }. Define the operator C on D(C) = D(D) by C = A — D. We will show that
C'is compact on H. Indeed, by letting

C,=P,1(AP, — P,A)P, — P,(AP, — P,A)P, 11

we can form the operator C' = 3" C,, since ||C,,|| < 2||AP, — P, Al and 3" || P, A—AP,|| <
00, hence the previous sum is norm convergent. Also, since C,, is finite dimensional and
therefore compact it follows that C' is compact. A straightforward calculation shows that
C' = C on D(C) which is dense, thus we can extend C' to C' on H. It is easy to see that
C,, is self-adjoint since A is self-adjoint and hence C is self-adjoint. Let D = A — C. Then
D(D) = D(A) and D is a self-adjoint extension of D. Also, since D is an extension of D
(which is block diagonal with respect to { P, }) it follows that D is block diagonal with respect
to {P,}. O

Theorem 2.15. Let A be a self-adjoint operator (not necessary bounded) on the separable
Hilbert space H and let { P, } be a sequence of projections that quasi-diagonalizes A. If K C
R is a compact set such that o(A) N K # 0, then

U(PnA(an)ﬂK%U(A)mK, n — oo
in the Hausdorff distance.

Proof. To prove the assertion we need to establish the following; given § > 0 then
o(P,Alp,n) N K CTs(c(A)NK)

and
Pg(O’(PnA(an) N K) D) O'(A) NK

for all sufficiently large n. The second inclusion follows by Theorem VIII.24 ([RS72], p. 290)
if we can show that P, AP, — A in the strong resolvent sense. By Theorem VIII.25 ([RS72],
p. 292) it suffices to show that P, AP, — A¢ for & € D(A), which is a common core for
{P,AP,} and A, and this is easily seen.

To see the first inclusion note that it will follow if we can show that

0 (Puy Al py 30) N K C Tyja(0(A) N K) 2.1)

when £ is large, for some subsequence { P, }. Indeed, if that is the case we only need to show
that
o(PnAlp,n) CUspa(o(P, Al P, 1))

for large m and nj; where m < nj. Now this is indeed the case because we may assume,
by appealing to Lemma 2.14 and possibly passing to another subsequence, that A is block
diagonal with respect to { P,, }. Thus,

| P P, AP, Py — Po, AP, Py || = || PnAP, — AP, || — 0, m — oo,

by assumption, and hence the desired inclusion follows by appealing to Lemma 2.12.

Now we return to the task of showing (2.1). Note that by the spectral mapping theorem,
the spectra o(P, A[p,%) and o(A) are the images of o((P,(A+1)[p,3) ') and o((A+1)71),
respectively, under the mapping f(z) = 1/z — ¢. Note that

T o(PuAlp) N K), [ (Ts((0(A) N K)))
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are both compact and neither contain zero. Thus, by the continuity of f on C \ {0} and again
the spectral mapping theorem, the assertion follows if we can prove that

o((Pa(A+i)[pa) ") CTs(o((A+14)7)) (2.2)

for arbitrary 0 > 0 and large n. By Lemma 2.14 we have that A = D + C where D is self-
adjoint and block diagonal with respect to some subsequence {P,, } and C' is compact and
self-adjoint. To simplify the notation we use the initial indexes for the subsequence. We first
observe that

(D+P,CP,+i) ' = (D+C+i)* (2.3)

in norm. Indeed, an easy manipulation gives us
|(D+C +i)' — (D + P,CP, +i)
< [(D+C+i)IC = P.CPII(D + PuCPy +4) 7,
where ||(D + P,CP, +i)~!|| is bounded by the spectral mapping theorem since C' — P,C'P,

is self-adjoint. Since, by Theorem 2.13, ||C' — P,C'P,|| — 0 (2.3) follows. The normality of
(D+C+i)"tand (D + P,CP, + i)~ " assures us that for any § > 0 we have

o(D+ P,CP, +i) ") CcTs(c((D+C+14)™h))
for sufficiently large n. Hence, to finish the proof we have to show that

o(P(A+i)[pn)") Co((D+ P,CP,+14)").
In fact we have

o((D+ PuCPy+0)7) = o((Pa(A+0) ) ") Ua(((D+)[p2) )
Indeed,
(D+ P,CP,+1i) = ((D+ P,.CP, +1i)[p,n) © (D +1)[ pry.
So
(D+P,CP,+i) " = (D+ P.CP+i)[pn) ' @ ((D+i)[pry) "
= (Pa(A+0)[pa) " @ (D + 1) [ppae)

implying the assertion. [

As for the convergence of eigenvectors of the finite-section method, very little has been
investigated, however we have the following:

Proposition 2.16. Let {A,,} be a sequence of self-adjoint bounded operators on H such that
A, — A strongly. Then if {\,,} is a sequence of eigenvalues of A,, such that \,, — X € o(A),
and if {£,} is a sequence of unit eigenvectors corresponding to {\,}, such that {,} does not
converge weakly to zero, then there is a subsequence {&,, } such that &, = & where AE = X

Proof. Since {&,} does not converge weakly to zero and by weak compactness of the unit ball
in H we can find a weakly convergent subsequence such that &,, —— & # 0. To see that A¢ =
A\¢ we observe that this will follow if we can show that \,, & — AE. But the latter follows
easily if we can show that \,,, &, — A\, & — 0, A, & — A —> 0and A, & — A, &, — 0.
The first two are obvious and the last follows from the fact that for n € H we have

<Ank (5 - gnk)7 77) = <€ - gnkv Ankn>
= <§ - gnm A”) + <£ - §Hk7 (Ank - A)T]> - 07

as k — oo. ]



3 Divide and conquer

The divide-and-conquer technique has its origin in finite-dimensional matrix analysis. The
idea was originally to divide the problem into smaller problems for simplicity reasons, a con-
cept we will not discuss here. Since the crucial assumption for the procedure is that the oper-
ator acts on a finite dimensional space, we can not use it directly and we will not discuss its
details here, but refer the reader to [Cup81]. However, one can use the concept of the method
to improve the results of Theorem 2.5 for tridiagonal infinite matrices. How to reduce the
original spectral problem to a spectral problem for tridiagonal operators is discussed in section
5.

Definition 3.1. Ler A € B(H) and {e;} be an orthonormal basis for H. A is said to be
tridiagonal with respect to {e;} if (Ae;, e;) = 0 for |i — j| > 2.

Let A € B(H) be self-adjoint and {e;} be an orthonormal basis for . Suppose that A is
tridiagonal with respect to {e;} and suppose that a;; = (Ae;,e;) fori,j = 1,2,... is real. It
is easy to see that this is no restriction. Let P, be the projection onto sp{ey,...,e,}. In the
finite-section method one decomposes A into

A= P,AP,® P AP, +T, T € B(H),

and then computes the spectrum of P, AP, . The idea of the divide-and-conquer approach is to
decompose A into
A:Al,n@AQ,n+ﬁn®na TZEHv

where A, ,, € B(P,’H), As,, € B(P}+H),n = e, + e,+1 and then compute o (A ,). It is easy
to see that the divide and conquer technique is very close to the finite-section method i.e. we
have (P, AP,ej,e;) = (A ne;,¢e;) for all i, j except for i = j = n. The goal is to improve the
results in Theorem 2.5.

In finite dimensions one has the following theorem [Cup81] which gave us the idea to a
more general theorem in infinite dimensions.

Theorem 3.2. (Cuppen) Let D be a diagonal (real) matrix,
D = diag(dy, . ..,d,)

wheren > 2and d; < dy < ... <d,. Letn € R" withn; #0fori=1,... ,nand > 0 be
a scalar. Then the eigenvalues {\1, ..., A\, } of the matrix D + n ® n satisfy

di <M <dy <Xy <...<d, <)\ <d,+ 08|l

Some of the techniques in the proof of the next theorem are inspired by the proof of Theo-
rem 3.2 which can be found in [Cup81]. Before we can state and prove the main theorem we
need to introduce the concept of Householder reflections in an infinite-dimensional setting.

Definition 3.3. A Householder reflection is an operator S € B(H) of the form
2

EE

In the case where H = Hy & Hs and I; is the identity on 'H; then

S=1 E®E, £ eH.

U=f1@(]2—ﬁf®f) § € Ho.

will be called a Householder transformation.



A straightforward calculation shows that S* = S~! = S and thus also U* = U~! = U. An
important property of the operator S is that if {e;} is an orthonormal basis for H and n € H
then one can choose ¢ € ‘H such that

2 = .
<S7]76j> = <(I - Wf ®§)777 €j> = 07 J 7é 1.
Indeed, if 71 = (n,e1) # 0 one may choose & = n + ||n||¢, where { = n;/|m|e; and if if
71 = 0 choose & = 1= ||n||e1, The verification of the assertion is a straightforward calculation.

Theorem 3.4. Let Ay, be defined as above and let {d;}"_, = 0(Ay,,) be arranged such that
dj < dj+1.

(i) If dj,diy1 & o(A), for some | < k, then there is a A\ € o(A) such that d; < \ < dj1.

(ii) If d; € o(Ay,,) has multiplicity m > 2 then d; € o(A) and d; is an eigenvalue. Also,
ma,, (d;) < ma(d;) + 1, where my, ,(d;) and m4(d;) denote the multiplicity of d; as
an element of o (A, ) and o(A) respectively.

Proof. We will start with (i). Suppose that dj,d;.; ¢ o(A). We will show that o(A) N
(dy, dj11) # 0. We argue as follows. Let € > 0, I, = (—a, a] be an interval containing (A, ,,)
and let g be a step function on I, of the form g = > "% | X(a, b, Such thatsup,¢;, |z—g(z)| <e.
Let flm = g(As2,). Then O'(AQ}n) contains only isolated eigenvalues and HAM — Aol < e
Also, let 3 3

A= AL” SP, A27n + 577 XMn.

Then A is self-adjoint and ||A — A|| < € so

dy(o(A),0(A)) < e

where dy denotes the Hausdorff metric. Also, by choosing e small enough we have d;, d;1 ¢
o(A). Note that, since e is arbitrary and o( A) is closed, the assertion that o(A) N (d;, dj1) # 0
will follow if we can show that o(A) N (d;, dyy1) # 0.

Let P, be the projection onto sp{ej};?zl. Now, choose a unitary operator (); on P,’H
such that Q1 A4,,Q* = D; where D, is diagonal with respect to {e;}7_,. Since o(flgm)
contains only finitely many eigenvalues we may choose a unitary () on ranP. such that
Q2A5,Q5 = D, is diagonal with respect to {ej}32,41- Thus,

(Q1® Q2)(A1n ® Az + B @n)(Q; B Q3) = D1 @ Dy + BERE,

where a straightforward calculation shows that ¢ = Q1e,, & Q2e,41. Let D = Dy & Ds.
Claim1: There exists a unitary operator U and an integer N such that

<U57 ei) =0

fori > N+ 1and (U, e;) # 0 for i < N, and also that UDU* is diagonal with respect to
{e;}. Note that the claim will follow if we can show that there is a unitary operator V' such
that (V¢ e;) # 0 only for finitely many js and that V DV* = D. Indeed, if we have such a
V' then we can find a unitary operator V that permutes {e; } such that U = V'V is the desired
unitary operator mentioned above.



To construct V' we first note that, since D is diagonal with respect to {e;}, the spectral
projections x»(D), A € o(D) are also diagonal with respect to {e;}. Note that

D= @ )\X)\

Xeo(D)

We will use this decomposition to construct V. Let

iy = inf{j : xa(D)e; # 0}.

If xA(D)¢ = 01let V), = I on x\(D)H. If not, choose a Householder reflection on x(D)H,

S=1-

such that
(Sxa(D)é,ei,) #0 and  (Sxa(D)&,e;) =0, i>iy+ 1. 3.1

Let V, = S. The fact that x,(D) for A\ € (D) is diagonal with respect to {e;} gives
Vaxa(D)ViE = xa(D). Letting

v= P W (32)
Aeo(D)
we get VDV* = D and thus we have constructed the desired unitary operator V' whose

existence we asserted. As argued above, this yields existence of the unitary operator U asserted
in Claiml. Let N = max{j : (U, e;) # 0}, let Py be the projection onto sp{e;}}_; and
D =UDU*.

Claim2: If )\ € 0<PND [ Py1) then X has multiplicity one. We argue by contradiction. Sup-
pose that A\ € o(Py D[ py7) has multiplicity greater than one. Then (De,, e,) = (De,, e,) =
A for some p,q < N. Also, (U¢,e,) # 0 and (U, e,) # 0. Thus, it follows from the
construction of U that (Dej,e5) = (Deg,eg) = A for some integers p and ¢, and hence
ej, €5 € ranx (D). Also (V&,e5) # 0 and (VE, ez) # 0 and thus it follows that

Vaxa(D)e,e) = (D Wa&e) #0,  j=54

A€o (D)

and this contradicts (3.1). Armed with the results from Claim1 and Claim2 we can now con-
tinue with the proof.
Let ¢ = U&. We then have

U(D + 3¢ @ §)U* = (PyDPy + BPn¢ @ PxO)[ pyn® Py Dl piys

since Py (¢ ® ¢) = (¢ ® ()P = 0. So, with a slight abuse of notation we will denote Py(
just by (. Note that

o(A) = o((PxDPy + 3¢ © O)[ pyn) U o (Py Dl piy) (3.3)

and hence our primary goal to prove that o(A) N (d;, dy1) # 0 has been reduced to showing
that

o((PxDPy + B¢ ® Q) piy) N (diy dijr) # 0. (3.4)



Before continuing with that task note that
dy, diyy € 0(PyD[pyn). (3.5)

Indeed, it is true, by the construction of D, that d;, diy1 € J(D). But by (3.3) it follows that
o(PyxDPs) C o(A) and since d;, djy; ¢ o(A) the assertion follows. This observation will be
useful later in the proof.

Now returning to the task of showing (3.4), let D = PND[pNH and then let \ be an
eigenvalue of D+ (¢ ® ¢ with corresponding nonzero eigenvector 7). Here ¢ ® ¢ denotes, with
a slight abuse of notation, the operator ({ ® ¢)[py#. Then we have

(D+B¢@Cn=M so (D—M)y=—8(n,C)C (3.6)

Note that D — M is npnsingular. Ipdeed, had it been singular, we would have had \ = (L for
some i < N, where {d;})_, = o(D). Hence, by (3.6), we have

(D= ADn,e) = —B{n. (¢, es) = 0.

But, since ( = U¢ and by Claiml, it is true that ((,e;) # 0, so (n,{) = 0. Thus, by (3.6),
it follows that (D — M) = 0, so (D — \)n,e;) = 0 for j < N. Note that, by Claim2,
a(@) contains only eigenvalues with multiplicity one, thus we have A = d; only for one such
i. Thus, (n,e;) = 0 for j # i, so

<777 C> = <C7 61;><7], 6i> =0.

But we have assumed that 7 # 0 so (1, e;) # 0 and therefore ((, e;) = 0, a contradiction. We
therefore deduce that D — A is nonsingular and (1, ¢) # 0. Thus, by (3.6), it follows that

n=—B(nC)(D - )¢

and
(0, Q)1+ B((D = AI)7'¢, ) = (n,¢) fF(N) = 0,
where
_ G e
f(A>—1+6;CZj_A, G = (G ep).

Since (1, ¢) # 0 it follows that f(\) = 0. Note that, by (3.5), it is true that d;, d;4; € {d; J
and so by the properties of f it follows that there is at least one

)\Ga(b—l—ﬁC@é)

such that d; < A < dj41, proving (3.4).

To show (ii) we need to prove that if o(A; ,,) has an eigenvalue d with multiplicity m > 1
then d € o(A) and my, , (d) < ma(d) + 1. To prove that we proceed as in the proof of (i).
Let P, be the projection onto sp{e; };‘:1. Now, choose a unitary operator (; on P, ’H such that
1A1,Q7 = D; where D; is diagonal with respect to {e; };7‘:1 so that

(Q1 @ L) (A1, @ As o +6n @ 1) (QF & L)
=D& A+ BB ent1) ®(CD i),

10



where I, is the identity on P:H and ¢ = Qe,. For any set S let #S denote the number of

elements in S. Note that the assertion will follow if we can show that there is a unitary operator
V on P,’H, such that V. D,V* = D1, and that

#{e; : (xa(D1)V(,ej) #0,1 <j<n} <L (3.7)
Indeed, if so is true, we have that
Dy ® Az + B D eny1) ® (C: ® ent1)
is unitarily equivalent to
B=Di® Az + B(VCBeni1) @ (VEDenia),

and A = {e; : (V(,e;) = 0} are all eigenvectors of B. Also, the eigenvalue corresponding to
the set

A={e; € A:xa(D1)e; # 0}
is d. Thus, by (3.7), we get the following estimate

> dim(ranya(D1)) — #{e; : (aa(D)VC,e5) #0, 1< j < n}
> mAl,n(d> -1,

and this proves the assertion. The existence of V' follows by exactly the same construction as
done in the proof of Claiml in the proof (1) by using Householder reflections. [

Note that the following theorem is similar to Theorem 2.3 and Theorem 3.8 in [Arv94a]
and the proof requires similar techniques. Since the divide-and-conquer method is different
form the finite-section method, we cannot use the theorems in [Arv94a] directly. However,
one should note that the following theorem gives much stronger estimates on the behavior of
the false eigenvalues that may occur.

Theorem 3.5. Let {A;,} be the sequence obtained from A as in Theorem 3.4 (recall also
definitions 2.1 and 2.2).

(i) o(A) C A.
(ii) Let a € 0.(A). Then a is transient.

(iii) If U C R is an open interval such that U N 0(A) = () then N,,(U) < 1. If U N o(A)
contains only one point then N,,(U) < 3.

(iv) Let \ be an isolated eigenvalue of A with multiplicity m. If U C R is an open interval
containing \ such that U \ {\} No(A) = 0 then N,,(U) < m + 3.

(V) Ue(A) = Aea

(vi) Every point of R is either transient or essential.

11



Proof. Now, (i) follows from the fact that A, ,, — A strongly (see Theorem VIII.24 in [RS72],
p- 290), which is easy to see. Also, (iii) follows immediately by Theorem 3.4 and (ii) follows
by (iii) and (iv). Indeed, assuming (iv) we only have to show that if a € o(A)° then a is
transient and this follows from (iii). Hence, we only have to prove (iv). Let A\ be an isolated
eigenvalue of A with multiplicity m. If U C_R is an open interval containing A such that
U\ {\} No(A) = 0 then, by (iii), we have N, (U) < 3. But, by Theorem 3.4, we can have
N,(U) < 3and N, (U) > 3onlyif A € o(A1,). Also, by Theorem 3.4, my, , (A) < m + 1,
and this yields the assertion.

To get (v) and (vi) we only have to show that o.(A) C A.. Indeed, by (ii), we have
o.(A)¢ C AS, soif 0.(A) C A, then (v) follows. But then R\ A, = R\ 0(A). and the left
hand side of the equality is, by (ii), contained in the set of transient points, thus we obtain (vi).

To show that o.(A) C A, we will show that AS C 0.(A)°. Let A € AS. We will show that
A € 0.(A)°. Note that, by the definition of the essential spectrum, this follows if we can show
that there is an operator 7" € B(H) such that T(A — X\) = (A — A\I)T = I 4+ C, where C is
compact.

Since A € A¢ there is a subsequence {n;} C N, an ¢ > 0, and an integer K such that
for @ = (A — €A + ¢) then N, (©2) < K. Let P, be the projection onto sp{e;};*, and
Er = xa(Ain,)- Then A, ,, ., P, and Ej all commute, so we can let By, = (A, — A)|x,
where Hj, = ran(P;,E). Note that By must be invertible with || B, '|| < ¢~!. Since P Ej- =
P, — E}., we deduce that

(A1 n, — MN)B (P — Ey) = B, '(Py — Ey) (A1, — M) = Py — Ey. (3.8)

Since { B, '} is bounded and norm closed, while bounded sets of B(H) are weakly sequentially
compact, we may assume, by possibly passing to a new subsequence that

WOT lim B Y (P, — E,) =T € B(H), WOT Jim B = C e B(H).

The fact that A;,, — A strongly together with the uniform boundedness of B, ' (P}, — E})
allow us to take weak limits in (3.8) and we get T'(A — \) = (A - X\)T =1+ C.

Note that C' is compact, in fact it is trace class. For dimEj), < K so trace(E)) < K and
{H € B(H) : trace(H) < K} is weakly closed. O

Corollary 3.6. Let A € 0(A). be an isolated eigenvalue. Then \ € o(A,,,) for all sufficiently
large n. Moreover, m,,(\) — oo, where m,(\) is the multiplicity of X\ as an element of

U(Al,n)-

Proof. Since, by Theorem 3.5, 0.(A) = A., for any open neighborhood U around A we have
N,(U) — oo. Let U be an open interval containing A such that (U \ {A\}) N o(A) = 0.
Then, by Theorem 3.4, U N U(Alm) cannot contain more that three distinct points, and since
N,(U) — oo it follows that A; , must have eigenvalues in U with multiplicity larger than
two. Using Theorem 3.4 again it follows that A € (A, ,,) for all sufficiently large n. The last
assertion of the corollary follows by similar reasoning. ]

4 Detecting false eigenvalues

Let A € B(H) be self-adjoint. The fact that both the finite-section method and the divide and
conquer method may produce points that are not in the spectrum of A poses the question; can

12



one detect false eigenvalues? The phenomenon of false eigenvalues is well known and is often
referred to as spectral pollution.
Let A € R. The easiest way to determine whether A € o(A) is to estimate

dist(A\,0(A)) = inf A — N2 6).
(no(4) = _inf (A= NP6.6)
Let { P,} be an increasing sequence of finite-dimensional projections converging strongly to
the identity. Let () = dist(\, 0(A)) and
n(A) = inf A—N)%E€).

MmN = b (A=)
It is easy to show that ~y and ~,, are Lipchitz continuous with Lipchitz constant bounded by one.
This implies that y,, — 7 locally uniformly and hence one can use 7,,(\) as an approximation
to dist(\, o(A)). Obtaining 7, () is done by finding the smallest eigenvalue of a self-adjoint
(finite rank) matrix. In fact ,, can be used alone to estimate o (A) and that has been investigated
in [DP0O4]. However, it seems that a combination of the finite-section method or the divide-
and-conquer method, accompanied by estimates as in the previous sections and in [Arv94a],
with some computed values of ,, will give more efficient computational algorithms, especially
for detecting isolated eigenvalues.

5 Tridiagonalization

In the previous section the crucial assumption was that the operator was tridiagonal with re-
spect to some basis. We will in this section show how we can reduce the general problem to
a tridiagonal one. In the finite-dimensional case every self-adjoint matrix is tridiagonalizable.
This is not the case in infinite dimensions, however, it is well known that if a self-adjoint op-
erator A € B(’H) has a cyclic vector £ then A is tridiagonal with respect to the basis {e;}
constructed by using the Gram-Schmidt procedure to { A"£}5° ;. The problem is that our op-
erator may not have a cyclic vector, however the following lemma is well known.

Lemma 5.1. Let A € B(H) and let A be the complex algebra generated by A, A* and the iden-
tity. Then there is a (finite or infinite) sequence of nonzero A-invariant subspaces Hy, Hs . . .
such that:

(i) H=H1 @ Hy D -~
(ii) Each H,, contains a cyclic vector &, for A: H, = A&,,n=1,2,....

Thus, if we knew the decomposition above we could decompose our operator A into A =
H, & Hy, & --- where H,, would have a cyclic vector and hence be tridiagonalizable. Also,
we would have 0(A) = J; o(H;). The problem is: how do we compute H,,? This is what we
will discuss in this section.

Definition 5.2. Let A € B(H) and let {e;} be an orthonormal basis for H. A is said to be
Hessenberg with respect to {e;} if (Ae;,e;) =0 fori > j+ 2.

Theorem 5.3. Let A be a bounded operator on a separable Hilbert space H and let {e;} be
an orthonormal basis for H. Then there exists an isometry V such that V*AV = H where H
is Hessenberg with respect to {e;}. Moreover V- = SOT-lim V,, where V,, = Uy - - - U,, and U;

n—oo

is a Householder transformation. Also, the projection P = V'V* satisfies PAP = AP.
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Proof. We will obtain H as the strong limit of a sequence {V,*AV,,} where V,, = U, - - - U,, is
a unitary operator and U; is a Householder transformation. The procedure is as follows: Let
P, be the projection onto sp{e, ..., e, }. Suppose that we have the n elements in the sequence
and that the n-th element is an operator H,, = V,* AV,, that with respect to H = P, H & PH
has the form

Hn - (gn ]?fn) ! [:In = PanPn7 Bn = PanPnL7 Cn = PnLRnPn’

where N,, = PnLRnPnL, H, is Hessenberg and Cye; = 0 for j < n. Let ( = Cye,. Choose
¢ € PLH such that the Householder reflection S € B(P:H) defined by

2

S=1- H€H2€®g’ and U,=P,® S, (5.1)
gives S¢ = {(1,0,0,...}, and let R,,,; = U, R,. Hence,
_ (R, B.,S\ _ (Ru1 Bun
Hn+1 — UanUn — (SCn SNnS> — (Cn+1 Nn+1> 5 (52)

where the last matrix is understood to be with respect to the decomposition H = P, 1H &
Po- ’H. Note that, by the choice of S, it is true that H, ., is Hessenberg and Cri1€ej = 0 for
j < n+ 1. Defining H; = A and letting V,, = U, - - - U,, we have completed the construction
of the sequence {V*AV,,}.

Note that H,, = V,y AV, is bounded, since V/, is unitary (since U; is unitary). And since a
closed ball in B(’H) is weakly sequentially compact, there is an H € B(’H) and a subsequence
{H,, } such that H,, %, H. Butby (5.2) it is clear that for any j we have H,e; = H,e; for
sufficiently large m and n. It follows that SOT-lim,, 7,, = H. Also, by(5.2) H is Hessenberg.
By similar reasoning, using the previous compactness argument (since V/, is bounded) and the
fact that, by (5.1), V,,e; = V,,.¢; for any j and m and n sufficiently large, we deduce that there
exists a V' € B(H) such that

SOT-lim V,, =V, WOT-lim V" = V".
Since V' is the strong limit of a sequence of unitary operators, it follows that ' is an isometry.
We claim that V*AV = H. Indeed, since multiplication is jointly continuous in the strong

operator topology on bounded sets we have AV = VV H and since V' is an isometry the assertion
follows. Note that PAP = AP also follows since PAP = VV*AVV* =VHV* = PA. [

Corollary 5.4. Suppose that the assumptions in Theorem 5.3 are true, and suppose also that
A is self-adjoint. Then there exists an isometry V such that V*AV = H where H is tridi-
agonal with respect to {e;}. Moreover V.= SOT-lim V,, where V,, = U, ---U, and U; is a

n—oo

Householder transformation. Also, the projection P = V'V * satisfies PA = AP.
Proof. Follows immediately from the previous theorem. ]

In the case where A is self-adjoint, by the previous corollary we have that PA = AP, where
P = VV*. Now, the “part” of A, namely P A, that we do not capture with the construction in
the proof of Theorem 5.3 can be computed by the already constructed operators i.e. we have

PrA=A—-VHV"

14



Thus, we may apply Theorem 5.3 again to P A. And, of course this can be applied recursively.
In other words; consider V;*AV; = H,, where H, is tridiagonal w.r.t {e;}. Let P, = VjV}*.
Then PLA = AP, and PA = A — V*H,Vy. Let Hy = V7 P AV5. In general we have

_ *
Hn+1 - Vn+l

(A-VIH\Vf — - =V, H, V)V, 1.

Using the previous construction we can actually recover the whole spectrum of A. More pre-
cisely we have the following:

Theorem 5.5. Let A be self-adjoint and let
Hn+1 - V:+1(A - Vlel‘/l* — VanV:)Vn+l

be defined as above. Then

o(A) = | o(H.).

neN

Proposition 5.6. Let { P;} be a sequence of projections described above i.e. P; = V;*V;. Then
sp{ei,...,e,} C ran(Py,) form > n.

Proof. The proof is an easy induction using the fact that e; € ran(P;), which follows by the
construction of V. O]

Proof. Proof of Theorem 5.5 Let P; = V;*V; and recall that by the construction of H,, we have
H,=V:P:, .. -PlAV,, (5.3)
where we have defined recursively
P PrA=A—-ViH\Vy — - =V, 1 H, V|,
and by Corollary 5.4 it follows that
P,P- .- PfA= Pt ... PrAP,. (5.4)

Note that o(H,,) = o(P: ,--- Pt A[p,%). Indeed, by Corollary 5.4, V,, is an isometry onto
P, H, thus {V,e;} is a basis for P,’H, so for

A= (P PrA)pn
it follows, by (5.3), that
(AV,e;, Voer) = (P )+ P AV,ej, Viey) = (Hyej, ;).
yielding that o(H,,) = o(PLX | --- P A[p,%). Let us define the projection
E,=P,ANP- N---ANP" E =P,

and note that E; 1 E; for 7 # j. Now the theorem will follow if we can show that AE,, = E, A,

A:@EnA

neN
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and
PP, - PlA=E,A.

We will start with the former assertion (this is immediate for n = 1 by Corollary 5.4). Indeed,
if £ € ran(E,,) for n > 2 then, by Corollary 5.4,

A¢ = AP P- P& =P,P- - -PrAE =P - PFAPS

55
=P, PfAP: P& =---etc. )

Thus, it follows that Aran(E,) C ran(E,). Since A is self-adjoint we have that AFE,, = E, A.
We can now show that A = F4 A ® F;A @ - - - . First, an easy induction demonstrates that for

any n € N we have
A=EA®---®E,A® P PrA.

Note that, by Proposition 5.6 and (5.4), it follows that Py --- PitAe; = 0 for j < n thus
Ae, = (E1A@ --- & E,A)e,. Also, E,1Ae; = 0 for j < n. This gives us that if T =
EiA® Ey @ --- . Then

Te,=FEA®---& E,Ae, = Ae,
yielding the assertion.

Finally, we will show that P, P | --- P A = E, A. Note that in (5.5) we have also shown
that P, P, --- P{A¢ = A¢ when € € ran(E,). So, to show that P, P, - - Pt A = E, A,
we only have to show that P, P | --- PltAn = 0 when 7 € ran(E+). But, by the definition
of £, we have ) € U;:ll P;H U P;"H and an easy application of Corollary 5.4 gives

PPt ,---PfA=P,P-, - -PtAP- = P,P P:,---PlAPL, = etc,

which combined with (5.5) results in B, P+ | -+ P-An = 0. [

6 The QR algorithm

The crucial assumption in the previous sections has been self-adjointness of the operator. Even
when detecting false eigenvalues the tools we use rely heavily on self-adjointness. When we
do not have self-adjointness the finite-section method may fail dramatically, the shift operator
being a well known example. In fact the finite section method can behave extremely badly as
the following theorem shows. First we need to recall a definition.

Definition 6.1. Let A be a bounded operator on a Hilbert space H. Then the numerical range
of A is defined as

W(A) = {{4¢.€) : [I€]| = 1},
and the essential numerical range is defined as

We(A)= () W(A+K)

K compact

Theorem 6.2. (Pokrzywa)[Pok79] Let A € B('H) and { P, } be a sequence of finite-dimensional
projections converging strongly to the identity. Suppose that S C W,(A) then there exists a
sequence {Q,} of finite-dimensional projections such that P, < Q,, (so Q, — I) strongly)
and

dy(o(A,)US, U(An)) — 0, n— oo,
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where
An - PnA [PnHa An = QnA (QnH

and dy denotes the Hausdorff metric.

What Theorem 6.2 says is that if the essential range of a bounded operator A contains more
than just elements from the spectrum, the finite section method may produce spectral pollution.
As there is no restriction on the set S in Theorem 6.2 (e.g. S could be isolated points or open
sets), there is no hope that the finite section method can give any information about either the
essential spectrum or isolated eigenvalues.

The next question is therefore; is there an alternative to the finite-section method in the
case where the operator is not self-adjoint? Another important question is; can one find eigen-
vectors? These are the issues we will address when introducing the QR algorithm in infinite
dimensions.

6.1 The QR decomposition

The QR algorithm is the standard tool for finding eigenvalues and eigenvectors in finite dimen-
sions. We will discuss the method in detail, but first we need to extend the well known QR
decomposition in finite dimensions to infinite dimensions.

Theorem 6.3. Let A be a bounded operator on a separable Hilbert space 'H and let {e;} be
an orthonormal basis for H. Then there exist an isometry Q) such that A = QR where R is
upper triangular with respect to {e;}. Moreover

Q = SOT-lim V,

n—oo
where V,, = Uy - - - U, and U; is a Householder transformation.

Proof. We will obtain R as the weak limit of a sequence {V,*A} where V,, is unitary and
the unitary operator is () = SOT-lim,, .. V,,. The procedure is as follows: Let P, be the
projection onto {ej,...,e,} and suppose that we have the n elements in the sequence and
that the n-th element is an operator i, = V,*A such that, with respect to the decomposition
H = P,H & P."H, we have

where N,, = P-R, P and R is upper triangular and Ce; = 0 for j < n — 1. Let { = Ce,.
Choose £ € P-H and define the Householder reflection S € B(P+H),

2

S:I—wé‘@é, and U,=P,® S, (6.1)
such that S¢ = {(;,0,0,...}. Finally let R,,,; = U, R,,. Hence,
_ _ Rn Bn _ Rn—i—l Bn+1
Rn+1 - Uan - (SCTL SNn> — (Cn+1 Nn+1) ) (62)

where the last matrix is understood to be with respect to the decomposition H = P, .1 H &
P, H. Note that, by the choice of S it is true that R, is upper triangular and C,41¢; = 0
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for j < n. Defining R; = A and letting V,, = U; ... U,, we have completed the construction
of the sequence {V,*A}.

Note that ,, = V,* A is bounded, since V,, is unitary (since U; is unitary). And since a
closed ball in B(H) is weakly sequentially compact, there is an R € B(H) and a subsequence
{R,,.} such that R,, ~ R. But by (6.2) it is clear that for any integer j we have P;R, P; =
P;R,, P; for sufficiently large n and m. Hence WOT-lim,, ?,, = R. Now, by (6.2) R is upper
triangular with respect to {e;} and also Re; = R,e; for large n, thus SOT-lim, R,, = R. By
similar reasoning, using the previous compactness argument (since V;, is bounded) and the fact
that, by (6.1), for any integer j we have V,e; = V,,e; for sufficiently large m and n, it follows
that there is a V' € B(H) such that V,, %, V and, being a strong limit of unitary operators; V'
is an isometry. Let Q) = V. Therefore, A = QR since A = V,, R,, and multiplication is jointly
strongly continuous on bounded sets. ]

6.2 The QR algorithm

Let A € B(H) be invertible and let {e;} be an orthonormal basis for /. By Theorem 6.3 we
have A = QR, where () is unitary and R is upper triangular with respect to {e; }. Consider the
following construction of unitary operators {Q,} and upper triangular (w.r.t. {e;}) operators
{Rk} Let A = Q1 Ry be a QR decomposition of A and define A, = R;Q;. Then QR factorize
Ag = Q2 Ry and define A3 = Ry()5. The recursive procedure becomes

Now define R R
Qm - QlQQ e Qm; Rm — RmRm—l e Rl. (64)
Definition 6.4. Let A € B(H) be invertible and let {e;} be an orthonormal basis for H.

Sequences {Q;} and {R;} constructed as in (6.3) and (6.4) will be called a Q-sequence and
an R-sequence of A with respect to {e;}.

The following observation will be useful in the later developments. From the construction
in (6.3) and (6.4) we get o
A= QlRl = QlRla
A? = Q1R1Q1R1 = Q1Q2 R Ry = Q2R27
A3 = QlRlQlRlQlRl = Q1Q2R2Q2R2R1 = Q1Q2Q3R3R2R1 = Q3R3'
An easy induction gives us that o
Note that ,, must be upper triangular with respect to {e; } since R;, j < m is upper triangular

with respect to {e; }. Also, by invertibility of A, (Re;, e;) # 0. From this it follows immediately
that

sp{A™ ej} L, = sp{QmeJ}J ., N eN. (6.5)
In finite dimensions we have the following theorem:

Theorem 6.5. Let A € CN*N be a normal matrix with eigenvalues satisfying A1 > ... >
IAn|. Let {Qn} be a Q-sequence of unitary operators. Then Q,,AQ*, — D, as m — oo,
where D is diagonal.

We will prove an analogue of this theorem in infinite dimensions, but first we need to state
some presumably well-known results.
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6.3 The distance and angle between subspaces

We follow the notation in [Kat95]. Let M C B and N C B be closed subspaces of a Banach
space B. Define
d(M,N) = sup inﬂng — 9|
€

xeEM
[[=f|=1

and

~

(M, N) = max[5(M, N), 5(M, N)].

Given subspaces M and {M;} such that 6(M;, M) — 0 as k — oo, we will sometimes use
the notation

M, 2 M, k— .

If we replace B with a Hilbert space H we can express 0 and ) conveniently in terms of
projections and operator norms. In particular, if £/ and F' are the projections onto subspaces
M C 'Hand N C H respectively then

§(M,N) = sup inf ||z —y|| = sup inf |Ftz| = ||[FE]|.
(4.0 = sup o ==yl = sup (o 1] = 51

Since the operator ¥ — F' = F*E — F E™* is essentially the direct sum of operators FE @
(—FE%1),its normis 6(M, N), i.e.

O(M,N) = max(|F* B, | B* F|)) = max(|[F*E| |[FE*||) = |E — F]. (6.6)
These observations come in handy in the proof of the next proposition.

Proposition 6.6. Let {A,,} be a sequence of N-dimensional subspaces of a Hilbert space H
and let B C 'H be an N-dimensional subspace. If 6(A,,B) — 0 or 0(B,A,) — 0 then

~

d(A,, B) — 0.

Proof. Suppose that 6(A,, B) — 0. Let £, and F be the projections onto onto A,, and B
respectively. We need to show that ||E, — F| — 0 as n — oo. Now E, and F' are N-
dimensional projections such that | E-F|| — 0 as n — oo. Thus, in view of (6.6), it suffices
to show that | /L E, || — 0. For the proof, note that

|F — FE,F| = ||FE*F| < |E*F| — 0, n — oo.

Since F'E:-F can be viewed as a sequence of positive contractions acting on the finite dimen-
sional space F'H, it follows that trace(F' — F'E,,F') — 0. Hence

|F-E,||> = | E, — E.FE,| < trace(E, — E,FE,)
= N — trace(E,F'E,) = N — trace(FE, F)
= trace(F' — FE,F) — 0, n — oo.

The proof that if §(B, A,,) — 0then §(A,, B) — 0is similar to the previous argument. []

Proposition 6.7. Let £ = FE, @ ... © Ey where the ;s are finite-dimensional subspaces of
a Hilbert space H. Let F}, = Ey, + ...+ Eyy where 0(Ejy, Ej) — 0as k — oo. Then

F, - E.
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Proof. Note that for projections P and () on a Hilbert space where ||P — Q|| < 1 implies
that dimP = dim(@). So writing E; for the projection onto the space E; etc., the hypothesis
|E;x — E;|| = 6(E, 1, E;) — 0 implies that dimE, , = dimE, for large k. The assertion now
follows by Proposition 6.6 and the fact that

M
0(E,F) <) |IE; — Ejsl — 0, &k — oo,

]

Theorem 6.8. Let A € B(H) be an invertible normal operator. Suppose that 0(A) = w U
Q is a disjoint union such that w = {\;}Y., and the \;s are isolated eigenvalues of finite
multiplicity satisfying |\1| > ... > |\y|. Suppose further that sup{|y| : v € Q} < |An].
Let {&YM, be a collection of linearly independent vectors in H such that {x,(A)& M, are
linearly independent. The following observations are true.

(i) There exists an M-dimensional subspace B C rany,(A) such that
sp{AFE M 2, B, k— oo.
(ii) If
sp{A*G T S DCH, k- o

where D is an (M — 1)-dimensional subspace, then

sp{A*G}Y, > Dasple}, k- oo
where £ € rany,, (A) is an eigenvector of A.

Proof. We will first prove (i). Consider the following construction of B: Let \; € {N}Y | be
the largest (in absolute value) element such that

{xs, (A&, # {0}

If {x5, (A)&}, are linearly independent let B = {x5, (A)&}Y,. If not, then {x5 (A)&}Y,
are linearly dependent spanning a space of dimension k; < M. By taking linear combi-
nations of elements in {&}M, we can find a new basis {&;;}, for sp{&}M, such that
SP{XAI( )flz izl = SP{X,\l( )&itiL, and X>\1( )61 = 0, for by +1 < i < M Let Ay €

{Ai}izl\{)\l} be the largest element such that { x5 (A}, 1 # {0} If {x5, (A&t
are linearly independent let

B = Sp{Xj\l( )51 ifizg @ SP{X)\Q( )5171'}?1]61—1—1'

If {X;\Q(A)flﬂ-}i]‘ikl 1 are linearly dependent, spanning a space of dimension £y, we proceed
exactly as in the previous step. Repeating this process until {5 +1( it k41 18 linearly

independent (note that this is possible by the assumption that {y,,(A4)& 1}, are linearly inde-
pendent) we get

B = @SP{X,\ 5]1 i=kj_1+1 @SP{X)\HH( )gn,i}ij\ikn+1v n<N-—1,
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where ko = 0. We claim that sp{A*¢;}M, —%5 B as k — oo. Since
dim(sp{A*& M) = M = dim(B),

(recall that A is invertible) and

k.
sp{A"¢ Y, = ZSP{A%J}Z‘ iikj,l—&-l + Sp{Akgn,i}z‘Aian

7j=1

by Proposition 6.7, we only have to demonstrate that

D{A*E 12y, o~ (X, (A&, o, k=00, j<m, (6.7)
and A
sp{ A"}, 11 = 5D, (Db, 11 (6.8)
To prove (6.7), by Proposition 6.6, we only need to show that
sup mf IC—nll=0(E,Ex) — 0, k— o0,
CEE

lI<ll= 1 (6.9
E, = Sp{Akgj z} ki 1+17 = Sp{XS\ ( )5] ”L} kj_141s

since dim ' = dim E}. It is easy to see that (6.9) will follow if for any sequence {(;} C F
of unit vectors there exists a sequence {7}, where 7, € E}, such that ||z — nx|| — 0. To
show this, note that by compactness of the unit ball in  we can assume, possibly passing to a
subsequence, that (;, — (. Thus, the task is reduced to showing that we can find {7} such that
1€ = ml] — 0. Now, ¢ = 3=, x5, (A)&;,, for some complex numbers {a;}, and we claim

that the right choice of {7} is
= Z Oé,LAkf]’l/S\f

Indeed, by the previous construction, §;; L ranys;, (A) for [ > j. Thus,
&i = (s, (A) +x0(A)&, 0 ={rea(A): Al < N[}
This gives AF¢;; = Xfx;j (A)&;; + Afxo(A)E; ;. Now, by the assumption on o(A), we have
p=sup{|z| : z € 0} < ]5\]\
Thus, since . .
A% X (A)&5ll /IS < Lo/ A" xe(A)&ll,
we have
AR NS = (Nixs, (A)&5s + AMxo(A)0) /N — x5, (A0 k — oo,

which yields our claim. Now (6.8) follows by a similar argument.
To show (i1), note that, by the argument in the proof of (i) and our assumption, we have

sp{A"& 1L D= EBSP{X)\ )&, Z}z kj_1+1 (6.10)

@SP{XS\”H( )fnz i— kn+17 k — oo,
for n < N —2, where ky = 0, {\;} and {¢;,} are constructed as in the proof of (i). Now,

there are two possibilities:

21



(1) There exists A € A = w \ {5\]}?;“11 such that x(A)&y # 0.
(2) We have that xA(A)&y = 0.

Starting with Case 1 we may argue as in the proof of (i) to deduce that

sp{A*¢ e @SP{X,\ 5]2 i= k] 1+1

¥ Sp{XinH( )gn,l i]\i;nl—i-l D Sp{XS\,H_Q (A>§M}7 k— o0,

where A\, € w\ {;\ "+l is the largest element such that St ( )éu # 0, (note that the

existence of A5 is guaranteed by the assumption that {x,,(A4)&; }2, are linearly independent)
and this yields the assertion.
Note that Case 2 has two subcases, namely,

(D xa(A)én =0, but {XS\”H(A)g"‘*‘lai}i]\i;:—l-l and xj ., (A)&y are linearly independent.

D) xa(A)ém = 0and {x;5 ,, (A)&n+1, f”gnlﬂ and xj ., (A)&y are linearly dependent, but
there exists a )\, the largest eigenvalue in {)\ }"Jrl such that {x; (A >£lvi}fl:kl_1+1 and
X5, (A)&ar are linearly independent.

Note that we cannot have x (A)&y = 0 and also have that
k; .
{5, (A&l and x5 (A, J<mn,

are linearly dependent as well as {x5_ ., (A )énititily and X5.,., (A)§n are linearly depen-
dent at the same time because that would violate the linear 1ndependence assumption on

To prove (II) we may argue as in the proof of (1) and deduce that

)
Sp{A él Z}Z kj—1+1 - Sp{Xj\l(A)gl,i}fl:kl—l'i‘l’ k — o0

and

Sp{Akgl,i}fl:kl71+1+Sp{AkXF(A)SM}
50, (A6, 1 + 500, (Aéar}, koo
where I' = w \ {), }5;11 Thus, using (6.10), it is easy to see that this gives
sp{ A"} i= o @SP{XA )&itil kj 1+1
& (sp{x5, (A}, 1 + 5p{5, (A )}

n

kj
@ Sp{XS\] (A>£J77f}l:k]_1+1 @ Sp{XS\n+1 ( )gn i kn“!‘l'

=141
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Thus, letting P be the projection onto sp{x;, (A& 1 k11, it follows that

Sp{Ak& i= o @SP{X,\ 531} =kj_1+1

® sp{x5, (A&t ile, 1 ® Psp{xs, (A)éar}

n

@ Sp{XS\j(A)éj,i}fikjfl-‘rl @SP{XS\,H_I( )gnz 1= kn+1

j=l+1
Now Case (I) follows by similar reasoning. O]

Theorem 6.9. Let A € B(H) be an invertible normal operator and let {e;} be an orthonormal
basis for H. Let {Q} and { Ry} be a Q- and R-sequences of A with respect to {e;}. Suppose
also that 0(A) = w U Q such that w N Q = 0 and w = {\;}Y,, where the \;s are isolated
eigenvalues with finite multiplicity satisfying |\1| > ... > |\y|. Suppose further that sup{|0| :
0 € Q} < |Ay|. Then there is a subset {¢;}}., C {e;} such that sp{Qré;} — sp{q;} where
q; is an eigenvector of A and M = dim(ranx,,(A)). Moreover, sp{g;}}L, = ranx.,(A). Also,
ife; ¢ {é; 131, then x.,(A)Qre; — 0.

The theorem will be proven in several steps. First we need a definition.

Definition 6.10. Suppose that the hypotheses in Theorem 6.9 are true and let K be the smallest
integer such that dim(sp{x.,(A)e;}1_,) = M. Define

A, ={ej: xu(A)e; #0,j < K} Ag={e;: xu(A)e; =0,5 < K}
and A, = {e; € Ayt xw(A)e; € Sp{xw(A)ei}g;l

The decomposition of A into

M
= (Z A& ® fj) S xa(4)4, A cw.
j=1

where {&;}, is an orthonormal set of eigenvectors of A as well as the following two technical
lemmas will be useful in the proof.

Lemma 6.11. Let {é,...,ép} = A, \ Ay If e € Ao U Ay, then

sPIXw(A)qr,;} e = sp{x.(4 )Qk]}] 1y kg = Qrej, ey = Qréy,
where s(m) is the largest integer such that {é, }j(:”}) C {e;},

Proof. We will show this by induction on the set {¢),...,é,} = Ag U A,. Consider ¢, €

{é1,...,&,}. Thené, = ey, for some integer /. Suppose that sp{x.,(A)qr;}7-; = Sp{Xw(Aﬂjk,j}j(:ﬁI).
We will show that

Sp{Xw(A)Qk,j};nzl = Sp{Xw( )Qk]}] 1
where e, = €,,11.
First, note that sp{x.,(4)q;}75" = sp{xw(A)dr; }j(:”f) follows from the induction hy-
pothesis. Indeed, let (3 be the largest integer such that 5 < m and eg € A, \ A, i.e. if & = ep
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then ¢t = s(m). Observe that since e;;, = €, and e,,, = €,41, it follows that if o < o < m then
=\ \A Soif 3 < m — 1 then there isno e, € A, \A such that . < o« < m. Thus,
m=m — 1landsot = s(m) = s(1), yielding the assertion.

If 3 = m — 1 then for every e; where m < j < m — 1 we have ¢; € Aw\f\w. So
Citr = Cstm)4v TOr M +1v <m—1and v > 1, hence, Gk sitv = Gr,s(i)+v TOr m+v <m— 1.
Also, €1 = €5(m) SO Gk,m—1 = Qk,s(m)- Thus,

sP{Xw (A) ki 17" = sp{xw(A) i}y + Sp{xw(A)qk,j}T7%+1
= Sp{Xw<A)Qk,j}§h=1 + Sp{Xw(A)QkJ} m)+17

and by recalling the induction hypothesis this yields the assertion. Thus, we only need to prove
that x.,(A)qrm € sP{Xw(A)qk;}]=;" To show this, note that

Fem = Zrk,ij(A)Qk,j, Trj = (Rrem, ;).

Note further that, since A is invertible, we have r,, # 0. In the case e,, € Ag we have
Yo(A)AFe,, = 0. So, since rkm # 0, it follows that x,,(A)gk., is a linear combination of
elements in sp{x.(A4)qk;}j= - In the case e, € A, note that, by again using the fact that
Yo(A)Afe,, = > rk,jxw(A)qk,J and ry,,, # 0, we only have to show that y,,(A)A*e,, €
sp{Xw(A)qk,j}T:_ll. Now, this is indeed the case. Since e,, € A, we have that Xo(A)e, €
sp{xw(A)e; 17" Thus, since A is invertible

Xw(A)Akem S Sp{Xw(A)Akej ;n 11'

Also, observe that, by (6.5),
sp{A¥e;}7" = sp{ans 175"

Hence,
sp{xw(A)A%e; 1 = sp{xw(A)ari }i
and this yields the assertion.
The initial induction step follows from a similar argument and we are done. [

Lemma 6.12. Let {éy, ..., éy} = A, \ Ay Suppose that sp{dr,;} — sp{q;} forall j < p for
some |1 < M, where G, ; = Qr€; and q; is an eigenvector ofzj]\il A& ® Ej Lete; = € 41. If
em € Ao U Ay, where m < [ then

XW(A)q]ﬂﬂn - 07 k — o0, Qkm = lem-

Proof. Arguing by contradiction, suppose that x.,(A)gk» — 0. Since x,,(A) has finite rank
we may assume that x,(A)gx.» — ¢. Note that by using the assumptions stated and the fact
that (), is unitary (since A is invertible) it is straightforward to show that

. 6 .
SPAXw(A) G }im1 — sp{xw(A)Gi i1, k — oo.
Also, by using the notation and results from Lemma 6.11 we have that s(m) = p and

Sp{Xw(A)Qk,j};‘nzl = sp{x.(4 >ij}g 15

24



and thus it follows that
q € sp{xw(A)d;}j_;-
Now
| (Xeo (A) @y i) | = (X (A)q, G5)], k=00, j<p.
Also, observe that
(X (A)@rms Gr5) — 0, k—o0, j<p
Indeed, this is true by the facts that g ,, L G, and (Xo(A)qkm, ;) — 0 forall j < p,
where the latter follows since sp{qx;j} — sp{¢;} and xa(A)g; = 0. Hence, it follows that

(Xw(A)q, q;) = 0 for j < . So since q € sp{x.(A)];};—,, we have that ¢ = 0, and we have
reached the contradiction. O

Proof. Proof of Theorem 6.9 Let {é1,...,éx} = A, \ A.,. We claim that this is the desired
subset of {e;} described in the theorem, i.e. we claim that for é; € A, \ A, it is true that
sp{dr;} — sp{q,}, where §r; = Qxé; and ¢; is an eigenvector of Zj\il A& @ & We will
prove this by induction.

Suppose that sp{¢; ;} — sp{q;} for j < u. Suppose also that

splAfe . L apla ., k- oo 6.11)

We will show that sp{y, u+1} — sp{qu+1} and sp{A’“el}’”rl 2 sp{g; 1] where G4 is
the desired eigenvector of Z 1N E® £]. By using (6.11) and appealing to Theorem 6.8 it
follows that

sp{ A} 0 spla, B sple), € € ranx.(A), (6.12)

where £ is an eigenvector of A. Hence, to prove the induction assertion we need to show that

sp{qut16} — sp{}-
Let e, = é,41. Note that §(sp{di}*_, @ sp{¢},sp{A¥&}*"]) — 0 implies

(sp{di}ic, ©sp{&}, sp{Akel 1) — 0,

since sp{A¥¢; Y1 < sp{A¥e;}._,. Thus, it follows that

6(sp{di i ®spi&}, Sp{%,z‘}ézl)

— S(spla” Akl (6.13)
5(Sp{ql}z:1 D Sp{f}, Sp{ € z:l) B 07 k — o0,

since A is invertible, A* = QR and Ry, is upper triangular with respect to {e;}. We will
use this to prove that sp{q,+1x} = sp{ar} — sp{{}. Note that this, by Proposition 6.6, is
equivalent to proving 6(sp{{},sp{q.«}) — 0, which we henceforth do. Note also that

sup _inf [[¢—nll = d(sp{¢}, spfaet),

CESp{E} nesp{qr}
i<ll=

thus the latter assertion follows if we can show that for any sequence {(;} of unit vectors in
sp{¢} there exists a sequence {7} of vectors in sp{g; x} such that ||(; — ng|| — 0. We will
demonstrate this. It is easy to see that we can, without loss of generality, assume that (;, = (
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where ¢ € sp{£} is a unit vector. Let € > 0. By (6.13) we can find 7j, € sp{q; 1 }'_; such that
IC — || < €/2 for sufficiently large k. Now, 7 = S+, ;i xqix Where S°0_ ;x> = 1. So

-1 -1

1 = 71> = 116 = cunauall® — 2Re(C — cupgue, Y inin) + D laixl’

i=1 i=1
-1 -1

= [I¢ — craquill” — 2Re(c, Z&i,kz%,k> + Z i k.
=1 i=1

Now ¢ L ¢; fori < pand also ¢ € rany,,(A). These observations together with the induction
hypothesis sp{qgx.;} — sp{d;} for i < p and the fact that, by Lemma 6.12, if e,, € Aq U A,
where m < [ then x,,(A)qk» — 0, imply that (C, Zi: @; 1q; ;) becomes arbitrarily small for
large k. Thus for sufficiently large £ we have

-1
1€ — cvaqurl” + Z oy |? < €.
i=1

By choosing n, = ayqr; € sp{qr.}, we have proved the assertion and hence the induction
hypothesis. The initial step is straightforward.

We are left with two things to prove. Firstly we demonstrate that sp{q; } )2, = sp{&; }}Z,. It
is easily seen, from orthonormality of {gy.;},, that {g;}}, are all orthonormal. Hence, since
they are eigenvectors of Z]]\il \; & @ & it follows that sp{cjj}j]\il = sp{¢; jj‘il = rany,,(4).
Finally, we need to show that e; ¢ {é;}M . then x,,(A)Qre; — 0, and this follows easily

=1
from Lemma 6.12. ]

The infinite dimensional QR algorithm occurred first in the paper “Toda Flows with In-
finitely Many Variables” [DLT85] by Deift, Li and Tomei, and the author is indebted to Percy
Deift for pointing out the connection. Theorem 6.9 is related to Theorem 1 in section 4 of
[DLTS85], however, the techniques used in [DLT85] deviate quite substantially from the frame-
work used in this paper. This is natural since one considers only self-adjoint operators in
[DLTS85]. Further connections between our results and [DLT85] are currently being investi-
gated.

7 Convergence of Densities

We finish by extending some of the results in [Arv94a] from bounded to unbounded operators.
In this section we change the point of view from single operators to algebras of operators. Let
us recall some basics and useful facts.

By a state 7 on a C*-algebra A with identity we mean a positive linear functional on the
positive elements of A such that 7(/) = 1 (I denoting the identity). The state 7 is tracial if
7(BB*) = 7(B*B) for all positive B € A and faithful if B = 0 when 7(B) = 0.

If A C B(H) is a C*-algebra and 7 is a state on A, then each self-adjoint element A € A
induces a unique Borel probability measure 1.7y on R with the property that

/_ " f@)din(@) = T(fA), f € ColR). .1)

Also, if 7 is a faithful tracial state we have supp(u7y) = o(A). Thus, if {A,,} is a sequence
of self-adjoint elements in .4 converging in some sense to a self-adjoint element A € A and
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we are interested in determining the behavior of o(A,,) as n — oo, the behavior of 7, is of
great interest. In particular, we consider under which conditions can we guarantee that

| @i, o) — [ i),

forall f € Cy(R).

As our goal is to extend some of the theorems in [Arv94a] from bounded to unbounded op-
erators, the C*-algebra framework sketched above must be modified slightly. Since collections
of unbounded operators can never form a C*-algebra we have to look at C*-algebras affiliated
with unbounded operators.

Definition 7.1. Let A be a self-adjoint, unbounded operator on H. The operator A is affiliated
with the C*-algebra A if and only if A D {f(A) : f € Co(R)}.

Note that (7.1) can be extended to unbounded operators. In particular if A is a C*-algebra
with a state 7 and if A is a self-adjoint operator affiliated with A then there is a probability
measure £, on R such that (7.1) is valid. Before we can prove the results we need some
preliminary theory.

Definition 7.2. Let A C B(H) be a C*-algebra. An A-filtration is a filtration (recall Definition
2.4) of H such that the x-subalgebra of all finite degree operators in A is norm dense in A.

Proposition 7.3. (Arveson) Let A C B(H) be a C*-algebra with a unique tracial state T and
suppose that {H,} is an A-filtration. Let T, be the state of A defined by

To(A) = ditrace(PnA), d, = dim(H,).
Then
To(A) — 7(A), forall Ac A

The next theorem will be crucial in the sequel. Firstly, some notation. We let trace denote
the trace on the set of trace class operators and || - || denote the Hilbert-Schmidt norm. Let
also W2 denote the Sobolev space of measurable functions on R with second derivative (in
the distributional sense) being L>.

Theorem 7.4. (Laptev, Safarov)[LS96] Let A be a self-adjoint, unbounded operator on H and
let P be projection such that PA is a Hilbert-Schmidt operator. Then for any 1 € W2 we
have that

[tr(Py(A)P — PY(PAP)P)| < || ||| PA(I = P)|I5.

The next theorem is an extension of Theorem 4.5 in [Arv94a] to unbounded operators.

Theorem 7.5. Let A be a self-adjoint, unbounded operator with domain D(A) and let A
be a C*-algebra with a unique tracial state T. Suppose that {H.,} is an A-filtration, where
H,, C D(A), and that A is affiliated with A. Let d,, = dim(H,,) and A1, \a, ..., Aa, be the
eigenvalues of A, = P,A[x,, repeated according to multiplicity. Suppose that one of the
following is true.

(i) | PaA(L — P)|l2/vd, — 0, as n — oo.

(ii) A= D+ C, where D commutes with P, and C € A C B(H) and A is a C*-algebra
such that {H,,} is also an A-filtration.
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Then for every f € Cy(R),
.1
lim (PO + £+ S0 = [ F@)duata
where |4 denotes the Borel measure induced by 7.

Proof. Define
1
Tn(T) = d—trace(PnT), T € A

n

Since 7, restricts to the normalized trace on P, B(’H) P, and since, by Proposition 7.3
T(B) — 7(B), n—oo, BeA
it follows that, in both cases (i) and (i1), it suffices to show that
To(f(A)) = To(f(P,AP,)) — 0, n — 0. (7.2)

To show this for (i), note that we can approximate f in the L> norm by elements from W2,
Combining that fact with the observation that the linear functional

[ ma(f(A) = ma(f(PLAF,))

has norm less than two, we reduce the problem to showing (7.2) when f € W2. Now, by
Theorem 7.4,

70 (f(A)) = T (f (PR AF))| = —\trace(P f(A)By) — trace(Pf (PyAP,) Fy)|

< 2d 57 1 o1 Pa AL = Po) |13,
where the right hand side of the inequality tends to zero by assumption.

To prove the theorem when (ii) is assumed, note that, by the Stone-Weierstrass theorem,
polynomials in (z + i)~ and (x — 1)~! are dense in Cy(R). Thus, by arguing as above, we
can assume that f(z) = (x +4)~*(z — i)' for some positive integers k, [. It is not too hard to
show that (D + C 41i)™' — (D + B +4)~! is small when ||C' — B|| is small and B € B(H) is
self-adjoint. Thus, for € > 0 we have

[f(Pa(D + C) ) = f(Pu(D + B)E)| <€, [[f(D+C) = f(D+ B)| <

for B € Aand when ||C — B|| is sufficiently small. Hence, since T, is uniformly bounded,
we can assume that C' has finite degree. Arguing as above we get

[7(£(A)) = Ta(F(PaAP))] < o= [ ool Pa(D + OYI = Po)l;

2d

" 2
< 5177 des(@)]CTP.

and this yields the assertion. The proof of the fact that ||P,C(I — P,)||? < deg(C)||C||? can
be found in the proof of Lemma 3.6 in [Arv94a]. [l
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8 The General Problem

So far in this article we have considered approximations of spectra of self-adjoint and normal
operators. We will in this section sketch some ideas on how to approach the task in general. To
approximate the spectrum of an arbitrary operator 7' € B(H) one has to take care of a slightly
unpleasant problem, namely the fact that the spectrum is very sensitive to perturbations. The
well known example is if we let A, : 12(Z) — [?(Z) be defined by

ef(n+1) n=0
f(n+1) n#0.

Now for € # 0 we have 0(A.) = {z : |2| = 1} but for e = 0 then 0(Ay) = {2z : 2| < 1}. In
fact, because of this example, Davies questions in [Dav05] whether one can actually compute
the spectrum of a bounded operator with the existing model of a computer we have today.
The problem is that due to the inexact arithmetic one may actually compute the spectrum
of a slightly perturbed problem. And as shown, that can have dramatic consequences. We
therefore suggest that instead of approximating the spectrum one should approximate a set
which is close to (here close means in the Hausdorff metric) the spectrum and also has nice
continuity properties.

(Acf)(n) = {

Definition 8.1. Let T' € B(H),n € Z, and € > 0. The (n, €)-pseudospectrum of T is defined
as the set

One(T) = o(T)U{z ¢ o(T) : |R(z, T)*"||'/*" > '}

As the following theorem shows the n-pseudospectrum is an excellent approximation to
the spectrum and in the same time it has the desired continuity properties.

Theorem 8.2. Let T' € B(H) and n € Z. . Then the following is true.

(i) The n-pseudospectra are nested i.e.

Ont1,6(T) C o (T).

(ii) Also,

it (00 (7). T(o(T))) — 0, 0 — o0,
where I'.(c(T")) denotes the e-neighborhood around o (T).
(iii) If {T.} C B(H) and Ty, — T in norm, it follows that

dy (Jw(Tk), am(T)) — 0, k— oo,

where dy denotes the Hausdorff metric.

Hence, the previous theorem suggests that to approximate the spectrum it is enough to
approximate the n-pseudospectrum. The following theorem gives an idea on how to do that.

Theorem 8.3. Let T' € B(H) and define for = € Candn € 7,

z) = min n — 2)* 2n — on 1/2n+1
e ((lnf, (T = 2)) (T = 2)7 &)

(inf (T —2)*"((T - 2)*)€e) >,

lEl=1,6eH
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Let {P;} be an increasing sequence of projections converging strongly to the identity, and

define

Vn,m(2)
= min (rnin{)\l/QnJrl A€o (Pm((T —2))*(T — 2)* L H) .
min{ A" A € o (Pm(T — (T - ) L H) }).
Then the following is true.
(i) 0ne(T) ={2 € C:y,(2) <€}
(ii) {z:Ym(z) <esNK — 0, (T)NK, m— oo,

for any compact set K O o, .(T'), where the convergence is understood to be in the Hausdorff
metric.

Proofs of the previous theorems can be found in [Han] as well as a more comprehensive
analysis of properties of the n-pseudospectra.
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