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ABSTRACT. This paper is concerned with the problem of reconstructing an infinite-dimensional signal from a
limited amount of linear measurements. In particular, we show that for binary measurements (modelled with
Walsh functions and Hadamard matrices) and wavelet reconstruction, the stable sampling rate is linear. This
implies that binary measurements are as efficient as Fourier samples when using wavelets as the reconstruction
space. Powerful techniques for reconstructions include generalised sampling and its compressed versions, as well
as recent methods based on data assimilation. All of these methods have in common that the reconstruction qual-
ity depends highly on the subspace angle between the sampling and the reconstruction space, which is dictated
by the stable sampling rate. As a result of the theory provided in this paper, these methods can now easily use
binary measurements and wavelet reconstruction bases.

1. INTRODUCTION

Reconstructing infinite-dimensional signals from a limited amount of linear measurements is a key prob-
lem in sampling and approximation theory that has received substantial attention over the last decades due
to the many applications. The list of fields is comprehensive and include Magnetic Resonance Imaging
(MRI) [29, 40], electron tomography [37, 38], lensless cameras, fluorescence microscopy [45, 47], X-ray
computed tomography [16,44], surface scattering [34] etc. Efficient methods for such problems date back to
Shannon’s sampling theorem [33,46,48] and include generalized sampling, that has been studied by Adcock,
Hansen, Hrycak, Gröchenig, Kutyniok, Ma, Poon, Shadrin and others [1, 3, 4, 6, 31, 32, 41], its compressed
versions investigated by Adcock, Hansen, Kutyniok, Lim, Poon and Roman [2, 7, 36, 43] as well as the
predecessor; consistent sampling, analysed by Aldroubi, Eldar, Unser and others [8, 22–25, 49] . Note that
consistent sampling is very much related to the finite section method [11, 28, 30, 39]. More recently, new
methods based on data assimilation have successfully been developed by Binev, Cohen, Dahmen, DeVore,
Petrova, and Wojtaszczyk [9, 10, 20].

The problem is given as follows. An element f ∈ H, where H is a separable Hilbert space, is to be
reconstructed from measurements with linear functionals (mi)i∈N ∶ H → C that can be represented by
elements si ∈H as mi(f) = ⟨f, si⟩. The key issue is that the mi cannot be chosen freely, but are dictated by
the modality of the sampling device, say an Magnetic Resonance Imaging (MRI) scanner providing Fourier
samples or a fluorescence microscope giving binary measurements. The goal is to reconstruct f from the
finite amount of samples {mi(f)}Mi=1 for some M ∈ N. The space of the functions si is called the sampling
space and is denoted by S = span{si ∶ i ∈ N}, meaning the closure of the span. In practice, one can only
acquire a finite amount of samples, therefore we denote by SM = span{si ∶ i = 1, . . . ,M}, the sampling
space of the first M elements. The reconstruction is typically done via a reconstruction space denoted by R
and spanned by reconstruction functions (ri)i∈N, i.e. R = span{ri ∶ i ∈ N}. As in the case of the sampling
space, it is impossible to acquire and to save an infinite amount of reconstruction coefficients. Hence, one
has to restrict to a finite reconstruction space, which is denoted by RN = span{ri ∶ i = 1, . . . ,N}. The key
is that the ri can be tailored to the type of signal we want to recover. For example, spaces spanned by X-
lets (wavelets, curvelets, contourlets, shearlets) [13–15,17,18,21,35,42] may be preferable as reconstruction
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spaces in imaging applications, whereas polynomials may be useful when considering very smooth functions
to be recovered.

The methods mentioned above can be described as follows, for f ∈ H and N,M ∈ N, we define the
reconstruction method of generalised sampling GN,M ∶H →RN by

⟨PSM
GN,M(f), rj⟩ = ⟨PSM

f, rj⟩, rj ∈RN ,

where PSM
denotes the orthogonal projection on the subspace SM . Note that the stability and accuracy of

this method depends on the subspace angle between the sampling and the reconstruction space, i.e.

∥f −GN,M(f)∥ ≤ µ(RN ,SM)∥f − PRN
f∥,

where we define the subspace angle between closed subspaces U,V ∈H

cos(ω(U,V )) ∶= 1

µ(U,V ) ∶= inf
u∈U,∥u∥=1

∥PV u∥,

ω(U,V ) ∈ [0, π/2], Moreover, the condition number κ of GN,M is also given by κ(GN,M) = µ(RN ,SM).
In the approach invented by Binev et al. [20] the proposed algorithm calculates

FN,M(f) = argmin
u∈PSM f+S⊥

M

∥u − PRN
u∥,

and it can be shown that the accuracy then depends on subspace angle as follows

∥f − FN,M(f)∥ ≤ µ(RN ,SM)dist(f,RN ⊕ (SM ∩RN)⊥).

Moreover, this is sharp in the way that the constant µ(RN ,SM) cannot be improved. It is clear that, in both
approaches, the key to success lies in the ability to make sure that

µ(RN ,SM) ≤ θ, θ ∈ (1,∞).

Thus, we need to balance the number of samples M with the number of reconstruction vectors N , and this
lead to the so-called stable sampling rate:

Θ(N,θ) = min{M ∈ N ∶ µ(RN ,SM) ≤ θ} .

The methods above can only be used efficiently when the stable sampling rate is known and is reasonable.
In particular, numerical calculations of the stable sampling rate are very time consuming. Moreover, if the
stable sampling rate is worse than linear, the approximation quality of the reconstruction space must allow
for rapid approximation to compensate for a ”slow” sampling rate. Fortunately, it is possible to obtain sharp
results on describing Θ(N,θ) for popular sampling and reconstruction spaces, and often one can establish
linearity. In this paper we do so for sampling with Walsh functions and reconstructing with wavelets.

1.1. Connection to previous work and novelty of the paper. The stable sampling rate is well understood
when the samplesmi(f) = ⟨f, si⟩ are Fourier measurements. In other words, the si are complex exponentials
andmi(f) are the Fourier coefficients. In this case the stable sampling rate is linear for many X-lets including
wavelets and shearlets. Fourier samples and X-lets are a natural starting point given the vast applications that
are based on Fourier measurements (MRI, tomography problems with parallel beam, surface scattering,
radio interferometry etc.), however, the next question would be: how about binary measurements? By binary
measurements we mean that the sampling functions si can only take two values either {0,1} or {−1,1}.
Without loss of generality we can assume that the model uses {−1,1} as one can, by adding one extra
measurement with the constant function, convert from the {0,1} setup to the {−1,1} model.

Binary measurements are a mainstay in signal and image processing due to the ”on-off” nature of many
physical sampling devices. Microscopy is an obvious application as well as the newly emerging techniques
of lensless cameras. In the discrete setting binary measurements are often modelled with Hadamard matrices,
and this is one of the reasons why Hadamard matrices are so important in signal processing. To model binary
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measurements we change the model from Fourier samples ⟨f, si⟩ where the si are complex exponentials
to letting the si be Walsh functions. The Walsh functions are the binary counterpart to Fourier samples
and complex exponentials. Thus, the key question is as follows: what is the stable sampling rate when
sampling with Walsh functions and reconstruct with wavelets? The answer is that it is linear regardless
of the dimension when we consider separable boundary wavelets. This means that sampling with binary
measurements is as efficient (up to potentially a different constant) as sampling with Fourier samples when
reconstructing with wavelets. We expect the techniques used in this paper to extend to other X-lets as well,
however, the extension, as in the Fourier case, is non-trivial.

1.2. Main Theorem. We consider the sampling space S of Walsh functions, which will be described in
more detail in Chapter 2, and let the reconstruction spaceR be the space of boundary corrected Daubechies
wavelets (see Chapter 3 for details). The main theorem states that the stable sampling rate is indeed linear in
N .

Theorem 1.1. Let S and R be the sampling and reconstruction space spanned by the d-dimensional Walsh
functions and separable boundary wavelets respectively. Moreover, let N = 2dR with R ∈ N. Then for all
θ ∈ (1,∞) there exists Sθ such that for all M ≥ 2dRSθ we have µ(RN ,SM) ≤ θ. In particular one gets
Θ ≤ SθN . Hence, the relation Θ(N ; θ) = O(N) holds for all θ ∈ (1,∞).

2. WALSH FUNCTIONS - DEFINING THE SAMPLING SPACE SM

Due to the fact that we are dealing with the d-dimensional case, we introduce multi-indices to make the
notation more readable. Let j = {j1, . . . , jd} ∈ Nd, d ∈ N be a multi-index. A natural number n is in the
context of a multi-index interpreted as a multi-index with the same entry, i.e. n = {n, . . . , n}. Then we define
the addition of two multi-indices for j, r ∈ Nd by the pointwise addition, i.e. j + r = {j1 + r1, . . . , jd + rd}
and the sum

r

∑
j=k

xj ∶=
r1

∑
j1=k1

. . .
rd

∑
jd=kd

xj1,...,jd ,

where k, r ∈ Nd. The multiplication of an multi-index with a real number is understood pointwise, as well as
the division by a multi-index. The d dimensional functions that we use in this paper are constructed by the
tensor product. For a function f ∶ R→ R and a input parameter {xi}i=1,...,d = x ∈ Rd with xi ∈ R we use the
following notation to present the d-times tensor product of f , i.e.

f(x) = f(x1)⊗ . . .⊗ f(xd) (d-times).

It should be clear from the input parameter, whether f represents the function on R or Rd.

2.1. Defining Walsh functions. The key property that makes Walsh functions attractive in many appli-
cations is that they take only the values 1 and −1. However, as Walsh functions are defined in the dyadic
analysis, some properties only hold for dyadic addition. Recalling the basics of dyadic addition, we represent
elements x ∈ R+ with their dyadic representation as follows

x =∑
i∈Z
xi2

i,

where xi ∈ {0,1} for all i ∈ Z. The natural extension always ends in 0 for dyadic rational numbers and is
infinite for dyadic irrational numbers. The representation is therefore unique. Elements of R− are represented
as in the decimal analysis with an additional − in front of the representation. In the dyadic analysis the
addition ⊕ ∶ R+ ↦ R+ is defined by

x⊕ y =∑
i∈Z

(xi ⊕2 yi)2i,



4 A. C. HANSEN AND L. TERHAAR

where xi ⊕2 yi is addition modulo two, i.e. 0 ⊕2 0 = 0,0 ⊕2 1 = 1,1 ⊕2 0 = 1,1 ⊕2 1 = 0. For negative
numbers one has −x ⊕ y = x ⊕ −y = −(x ⊕ y). Note that there is no closed form between the decimal and
dyadic addition. Especially, for two numbers x,h ∈ R the expression of the decimal sum x+h has a different
expression in the dyadic addition for every pair of numbers. This leads to further investigation in the proof of
the main theorem. One part on the way to control the subspace angle is, not to deal with all timeshifts of the
wavelet but instead transfer them to the Walsh function and deal with the Walsh polynomial. Unfortunately,
all properties of Walsh functions are according to the dyadic addition and not the decimal addition. Therefore,
this difference of the additions need special care. In chapter 4.1 we will see that under mild assumptions the
additions can made be equal. In chapter 4.2 we tweak the wavelets to match these assumptions.

Now, we present the Walsh functions, which are used to represent the sampling space SM . Therefore,
we give a definition of the classical Walsh functions that highlights the difference between the possible
orderings.

Definition 2.1 ( [26]). Let s ∈ N and x ∈ [0,1). Then there exists a unique n = n(s) ∈ N such that s =
∑n−1i=0 si2

i, in particular sn−1 ≠ 0 and sk = 0 for all k ≥ n. Let sn = {s0, . . . , sn−1} and for x = ∑−1
i=−∞ xi2

i

define xn = {x−n, . . . , x−1}, and ωW : Rn ↦ Rn by

ωW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 1 1

⋮ ⋰ ⋰ 1 0

0 ⋰ ⋰ ⋰ ⋮
1 1 ⋰ ⋮
1 0 ⋯ ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The Walsh functions are then given by

wal(s;x) = (−1)s
n
⋅ωW xn

.

By changing the matrix ωW one gets different orderings of the Walsh functions. For example, the identity
matrix leads to the Walsh-Kronecker functions, which have the drawback that with a change of n(s) all
functions are altered, hence one has to fix the maximal s in advance. The Walsh-Paley ordering is obtained
by replacing ωW by the reversal matrix, i.e.

ωWP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 1

⋮ ⋰ ⋰ 1 0

0 ⋰ ⋰ ⋰ 0

0 1 ⋰ ⋰ ⋮
1 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

They overcome the previous problem, but the functions are not ordered such that the amount of zero crossings
increases with s. Both drawbacks are overcome with the Walsh-Kaczmarz ordering presented in the previous
definition.

The classical Walsh functions can be extended to the generalized Walsh functions Wal ∶ R2
+ → {−1,1}

which are defined with the classical Walsh functions and the periodic continuation with period 1 by

Wal(s, x) = (−1)s0x0 wal([s] ;x)wal([x] ; s),

where s and x have the dyadic representation (si)i∈Z and (xi)i∈Z and s0, x0 are the corresponding elements
of the sequence. This extension can also be defined by letting ωW be infinite, i.e. be defined over Z instead
of N and hence allow inputs with infinite dyadic representations over Z. Moreover, the Walsh functions can
also be extended to negative inputs. Therefore, we define the following equality as in [26]

Wal(−s, x) ∶= −Wal(s, x)
Wal(s,−x) ∶= −Wal(s, x).
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The Walsh functions in higher dimensions are obtained by the tensor product, i.e. for n = {nk}k=1,...,d , x =
{xk}k=1,...,d ∈ Rd

Wal(n,x) =
d

⊗
k=1

Wal(nk, xk).

The Walsh functions can also be combined to Walsh polynomials similar to trigonometric polynomials.

Definition 2.2. Let A,B ∈ Zd such that Ai ≤ Bi, i = 1, . . . , d and αji ∈ R. Then for z ∈ Rd+ we define the
Walsh polynomial of order n = ∣B∣ by Φ(z) = ∑Bj=A αj Wal(j, z). The set of all Walsh polynomials up to
degree n is given by

WPn =
⎧⎪⎪⎨⎪⎪⎩

B

∑
j=A

αj Wal(j, z), αj ∈ R,A,B ∈ Zd, ∣B∣ ≤ n
⎫⎪⎪⎬⎪⎪⎭
.

With the generalized Walsh functions one can define a continuous and discrete transform. To ensure that
the following integral exist, let f ∈ L2([0,1]d) the generalized Walsh transform is given by

f
⋀W

(s) = ⟨f(⋅),Wal(s, ⋅)⟩ = ∫
[0,1]d

f(x)Wal(s, x)dx, s ∈ Rd.

This is suitable for our setting, because we consider only the Walsh transform of functions which are sup-
ported in [0,1]d. In the discrete setting we have: Let N = 2n, n ∈ N and x = {x, . . . , xN−1} ∈ RN the one
dimensional discrete Walsh transform of x is given by X = {X0, . . . ,XN−1} with

Xj =
1

N

N−1

∑
k=0

xk Wal(j, k
N

).

This transform corresponds, as mentioned, to the multiplication with a Hadamard matrix. By the definition
of Wal it corresponds to the Hadamard matrix in Walsh-Kaczmarz ordering. The addition here is again
the dyadic addition. The discrete d-dimensional Walsh transformed of x ∈ RN1×...×Nd where xki ∈ R,
k = {ki}i=1,...,d , ki = 0, . . . ,Ni −1 is given by X = {Xj} ∈ RN1×...×Nd , where Xji ∈ R, j = {ji}i=1,...,d , ji =
0, . . . ,Ni − 1, with

Xj =
1

∏d
i=1Ni

N−1

∑
k=0

xk Wal(j, k
N

).

2.2. Properties of Walsh functions. The Walsh functions obey the following properties: They are symmet-
ric,

Wal(s, x) = Wal(x, s) for all s, x ∈ R,

and they obey the scaling property as well as the multiplicative identity, i.e

(2.1) Wal(2ks, x) = Wal(s,2kx) for all s, x ∈ R, k ∈ N

and

(2.2) Wal(s, x)Wal(s, t) = Wal(s, x⊕ t) for all s, x ∈ R.

These properties can be directly transferred to the d-dimensional Walsh functions and the continuous Walsh
transform, i.e. it holds, that the continuous Walsh transform is linear,

W {af(t) + bg(t)} = aW {f(t)} + bW {g(t)} for all a, b ∈ R and f, g ∈ L2([0,1]d),

obeys the following shift and scaling property, i.e.

W {f(t⊕ x)} (s) =W {f(t)} (s)Wal(x, s) for all x ∈ Rd and f ∈ L2([0,1]d)

and

W {f(2mt)} (s) = 1

2m
W {f(t)} ( s

2m
) for all m ∈ Nd and f ∈ L2([0,1]d).
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3. WAVELETS - DEFINING THE RECONSTRUCTION SPACE RN

3.1. Boundary Wavelets.

3.1.1. Boundary Wavelet space in one dimension. Daubechies boundary wavelets are reduced from general
Daubechies wavelets. They have the advantage that they keep nice properties, such as smoothness and van-
ishing moments, from their mother wavelet. In contrast, other approaches to find an orthonormal wavelet
basis for L2([0,1]) such as extension with zero, periodising or folding, loose smoothness. For the con-
struction of the Daubechies boundary wavelets, as presented in [19], one starts with the Daubechies scaling
functions. First, we deal with the scaling functions on the positive line [0,∞). Remember that a Daubechies
scaling function φ of order p has the support [−p + 1, p]. Then the functions φn(x) = φ(x − n) have their
support completely in [0,∞) for n ≥ p − 1. But these functions do not even generate the polynomials on
[0,∞), so they do not represent smooth functions well. Therefore, the following functions are added to
circumvent this issue:

φ̃left
n (x) =

2p−2

∑
l=0

( l
n
)φ(x + l − p + 1).

It is shown in [19] that these functions together with the inner ones, i.e. the translates of the scaling function,
whose support is completely contained in the positive real line, span all polynomials with degree smaller or
equal to p−1 on [0,∞). The same construction can be done for the negative line (−∞,0] and then be shifted
by 1 to get to the desired interval. This means in detail that the scaling function on the right hand side can be
reduced from those on the left side, i.e. the construction for the right hand side results by a shift of 1 in the
functions which do intersect with the right end of the interval and a reflection. We have that

φ̃right
n (x) = φ̃left

−1−n(−x).

In the next step we bring both systems together on [0,1]. To make sure that each shift of the scaling function
is either an inner a left or a right scaling function, we consider scaling functions at a level j ≥ J0, where
2J0 ≥ 2p − 1. This way the support size of the scaling function at that scale is smaller than 1. Therefore,
the scaling function can intersect only with 0 or 1 and hence the correction is well defined. The functions
are now all corrected on the boundaries and they span the desired space L2([0,1]). To form an orthonormal
basis, we simply apply a Gram-Schmidt procedure. The new functions, after the orthonormalisation, are
denoted by φleft

n , φright
n . The functions have staggered support, i.e. suppφleft

n = [0, p + n]. Therefore, all φ
have support length at most 2p−1. Hence, the change to the boundary wavelet preserves the good property of
a small support size. The dilated boundary scaling functions can be deduced from this construction, like the
scaling functions for the real line. With this construction we obtain 2j + 2 scaling functions at every scale j,
but in many applications one prefers to have 2j scaling functions. Therefore, we remove the two outermost
interior scaling functions, i.e. those whith the support closest to 0 and 1 but not intersecting with them. This
results in the subspaces

V bj = span{φbj,n ∶ n = 0, . . .2j − 1} ,

where

φbj,n(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2j/2φleft
n (2jx) n = 0, . . . p − 1

2j/2φn(2jx) n = p, . . .2j − p − 1

2j/2φright
2j−n−1

(2j(x − 1)) n = 2j − p, . . .2j − 1.

(3.1)

In [19] it is proven that we can define the wavelet space at every scale j similar to the case on the real line by

W b
j = V bj+1 ∩ (V bj )⊥.

The original wavelet functions ψj,k from the real line are in W b
j for k = p, . . . ,2j − p − 1. Because of the

dimension of the scaling space one has that dimW b
j = 2j . Hence, one has to add 2p wavelets. As they
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do not play an important role for the further investigation we point the interested reader to [19] for detailed
information.

Now, that the necessary information about wavelets is introduced, we discuss the reconstruction space.
The data is usually sparsely represented in the wavelet scheme, i.e. they only have large coefficients up to a
certain scale. Therefore, the reconstruction space contains only the wavelets up to some scale R. Moreover,
the low frequency part can be represented by the scaling space at some level. This results in the following
reconstruction space. For R ∈ N, the space of wavelets up to a scaling of R is given by

(3.2) RN = V bJ ⊕W b
J ⊕ . . .⊕W b

R−1 = V bR.

and has N = 2R elements. Due to the construction the ”left” scaling functions are translates of the mother
scaling functions and the ”right” scaling functions are reflected translated scaling functions, denoted by φ#.
Therefore,

(3.3) V bR = span{φR,n ∶ n = 0, . . . ,2R − p − 1, φ#R,n ∶ n = 2R − p, . . . ,2R − 1}

and every ϕ ∈RN with ∣∣ϕ∣∣ = 1 has the representation

(3.4) ϕ =
2R−p−1

∑
n=0

αkφR,n +
2R−1

∑
n=2R−p

βkφ
#
R,n with

2R−p−1

∑
n=0

∣αn∣2 +
2R−1

∑
n=2R−p

∣βn∣2 = 1.

3.1.2. Boundary wavelets in higher dimensions. In this paper, we also consider the d-dimensional case. For
the reconstruction in d-dimensions we focus on separable boundary wavelets. Therefore, the d-dimensional
wavelets can be derived from the one dimensional case by tensoring the scaling space and then study the
according wavelet space.

From (3.1) we got the one dimensional boundary scaling function. With the tensor product we get the d
dimensional one, i.e. φdj,n = φbj,n1

⊗ . . . ⊗ φj,nd
for n = {n1, . . . , nd} ∈ Nd, j ≥ J0. To make this easier to

read we set φj,n ∶= φdj,n, as the dimension is defined by the context. Then the d-dimensional scaling space is
given by

V b,dJ ∶= V bJ ⊗ . . .⊗ V bJ (d times)

For the purpose of constructing higher dimensional boundary wavelets we exploit the MRA structure. We
have that

V bj = V bj−1 ⊕W b
j−1.

Therefore, we can divide in higher dimensions the scaling space at one level in the scaling space and the
wavelet space in the lower level.

V b,dj = V bj ⊗ . . .⊗ V bj = (V bj−1 ⊕W b
j−1)⊗ . . .⊗ (V bj−1 ⊕W b

j−1) = V b,dj−1 ⊕W
b,d
j−1.

This way we have defined the d dimensional boundary corrected wavelet space W b,d
j−1 by

W b,d
j−1 ∶= (V bj−1 ⊕W b

j−1)⊗ . . .⊗ (V bj−1 ⊕W b
j−1)⊖ V b,dj−1.

Due to (3.2) we only have to focus on the scaling space, as the sum over the wavelet spaces can be represented
by the scaling space at highest scale. Therefore, we do not explain details about the wavelets here. We have
with (3.3)

V b,dj = V bj ⊗ . . .⊗ V bj = span{φdj,n ∶= φbj,n1
⊗ . . .⊗ φbj,nd

∶ n = {n1, . . . , nd} , ni = 0, . . .2j − 1} .

According to the size of the one dimensional scaling space. We have that the d-dimensional scaling space
has size 2dj . The reconstruction space for N = 22R is then just

RN = V b,dR .

In order to get the scaling space for the boundary wavelets in one dimension we had to reflect the scaling
function for translates k = 2j − p, . . . ,2j − 1. This means that V b,dj is spanned by the translates of 2d
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functions, which are constructed by tensoring of the original scaling function φ0 ∶= φ and the translated
version φ1 ∶= φ#. Define K0 = {0, . . . ,2j − p − 1} and K1 = {2j − p, . . . ,2j − 1}. Then the mapping
m ∶ {0, . . . ,2j − 1}↦ {0,1} is given by

m(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 n ∈K0

1 n ∈K1.

This allows us to represent ϕ ∈ V b,dj with ∣∣ϕ∣∣ = 1 by

(3.5) ϕ =
2j−1

∑
n=0

αnφ
m(n1)

j,n1
⊗ . . .⊗ φm(nd)

j,nd
= ∑
s∈{0,1}d

∑
n∈Ks

αn⊗φsj,n with ∑
s∈{0,1}d

∑
n∈Ks

∣αn∣2 = 1,

where

⊗φsj,n = φs1j,n1
⊗ . . .⊗ φsdj,nd

.

So at this point we have the wavelets and the scaling functions which span the space L2([0,1]d) and
therefore the reconstruction from Walsh functions in the wavelet space is guaranteed.

4. THE MAIN THEOREMS AND ITS PROOF

With all the previous information we can now prove the main result.

4.1. Useful lemmas about Walsh functions. For the proof of theorem 1.1 we have to combine the prop-
erties of Walsh functions in the dyadic analysis with the properties of the wavelets in the decimal analysis.
Therefore, we see under which conditions the decimal and dyadic additions are equal. This is important to
combine the multiplicative identity of the Walsh functions with the translates of the wavelets.

Lemma 4.1. Let x ∈ [0,1) and m ∈ N then x +m = x⊕m.

Proof. The dyadic representation of x is {. . . ,0, x−1, x−2, . . .} and the dyadic representation of

m is {. . . ,m2,m1,m0,0,0, . . .} .

One achieves, because the representations do not have non-zero elements at the same position, the following

x⊕m =
∞

∑
i=−∞

(xi ⊕2mi)2i =
∞

∑
i=−∞

(xi +mi)2i = x +m.

�

Next, we have a look at the inverse element for the dyadic addition. This is also discussed in [27] and will
be used in Corollary 4.3.

Lemma 4.2. The dyadic sum of two numbers x, y ∈ R+ is 0 if and only if x = y.

Proof. Let x, y ∈ R+ with the dyadic representation {xi}i∈Z and {yi}i∈Z. Then

x⊕ y =
∞

∑
i=−∞

(xi ⊕2 yi)2i = 0

if and only if xi ⊕2 yi = 0 for all i ∈ Z. This is the case if and only if xi = yi for all i ∈ Z, i.e. x = y. �

With this the relation between the decimal addition and the multiplicative identity of the Walsh functions
can be found.

Corollary 4.3. Let t ∈ N and x ∈ [0,1), then the following holds

W {f(x + t)} (s) =W {f(x)} (s)Wal(t, s).
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Proof. With Lemma 4.2 we have that x⊕ t = x + t. This allows

W {f(x + t)} (s) =W {f(x⊕ t)} (s) =W {f(x)} (s)Wal(t, s).

�

Next, we analyse the sum of Walsh functions with equally distributed inputs. This will be used in Lemma
4.5.

Lemma 4.4. Let N = 2n, n ∈ N, then for all s ∈ N the following addition theorem holds.

(4.1)
N−1

∑
i=0

wal(s, i
N

) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N if s = 0

0 else.

Proof. The first case for s = 0 follows directly by the definition of the Walsh function, as wal(0;x) ≡ 1

for all x ∈ [0,1). For the second part we use that the Walsh functions are equally distributed in intervals,
where the function is −1 and 1, i.e. for s ≤ 2m, m ∈ N0 the Walsh function wal(s;x) takes the value 1 on
2m−1 intervals of length 1

2m
and −1 on the same amount of intervals of that length [26]. As the sequence

{i/N}i=0,...N−1 is equally distributed on this interval, the sum equals 0. �

With this information in hand we can now prove the following lemma, which shows a relation between
the values of the discrete Walsh transform and the signal itself. This will then be used in Lemma 4.6.

Lemma 4.5. Let N = {Ni}i=1,...,d, where Ni = 2ni , ni ∈ N and i = 1, . . . , d. Let x ∈ RN1×...×Nd where
x = {xk} and xki ∈ R, k = {ki}i=1,...,d , ki = 0, . . . ,Ni − 1 be a discrete d-dimensional signal. Given the
discrete d-dimensional Walsh transformed by X = {Xj} ∈ RN1×...×Nd , where Xji ∈ R, j = {ji}i=1,...,d , ji =
0, . . . ,Ni − 1, with

Xj =
1

∏d
i=1Ni

N−1

∑
k=0

xk Wal(j, k
N

),

then it follows that
N−1

∑
j=0

∣Xj ∣2 =
1

∏d
i=1Ni

N−1

∑
k=0

∣xk ∣2.

Proof. First, one observes that by definition and the fact that Ni = 2ni , i = 1, . . . , d the following holds

∣Xj ∣2 =
1

∏d
i=1N

2
i

(
N−1

∑
k=0

xk Wal(j, k
N

))(
N−1

∑
k=0

xk Wal(j, k
N

))

= 1

∏d
i=1N

2
i

N−1

∑
k=0

N−1

∑
l=0

xkxl Wal(j1,
k1 ⊕ l1
N1

) ⋅ . . . ⋅Wal(jd,
kd ⊕ ld
Nd

).

Next, recalling (4.1) and Lemma 4.2 we directly get the desired property by
N−1

∑
j=0

∣Xj ∣2 =
1

∏d
i=1N

2
i

N−1

∑
j=0

N−1

∑
k=0

N−1

∑
l=0

xkxl Wal(j1,
k1 ⊕ l1
N1

) ⋅ . . . ⋅Wal(jd,
kd ⊕ ld
Nd

)

= 1

∏d
i=1N

2
i

N−1

∑
k=0

N−1

∑
l=0

xkxl
N1−1

∑
j1=0

Wal(j1,
k1 ⊕ l1
N1

) ⋅ . . . ⋅
Nd−1

∑
jd=0

Wal(jd,
kd ⊕ ld
Nd

)

= 1

∏d
i=1Ni

N−1

∑
k=0

∣xk ∣2.

�

With this we can achieve a useful relation between the Walsh polynomial, i.e. Φ(z) = ∑Bj=A αj Wal(j, z)
with A,B ∈ Zd and αji ∈ R for all ji = Ai, . . . ,Bi, i = 1, . . . , d, and its coefficients α similar to the
trigonometric polynomial in [5].
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Lemma 4.6. Let A,B ∈ Zd such that Ai ≤ Bi, i = 1, . . . , d and consider the Walsh polynomial Φ(z) =
∑Bj=A αj Wal(j, z) for z ∈ Rd+. If L = {L1, . . . , Ld} with Li = 2ni , ni ∈ N, i = 1, . . . , d such that 2Li ≥
Bi −Ai + 1, then

2L−1

∑
j=0

1

∏d
i=1 2Li

∣Φ( j
2L

)∣
2

=
B

∑
j=A

∣αj ∣2.

Proof. For the proof Lemma 4.5 is used. Therefore, let x = {xk}, where xki ∈ R, k = {ki}i=1,...,d , ki =
0, . . . ,2Li − 1 and x ∈ R2L1×...×2Ld with the discrete Walsh transformed X = {Xj} ∈ R2L1×...×2Ld , where
Xji ∈ R, j = {ji}i=1,...,d , ji = 0, . . . ,2Li − 1 and X ∈ R2L1×...×2Ld . Consider the sums ki +Ai, i = 1, . . . , d,
there exist a number Ãi(k), such that ki + Ai = ki ⊕ Ãi(ki) for all i = 1, . . . , d. As before, we denote by
Ã(k) the multi-index containing all Ãi(ki). Define the coefficients

α̃ki =
αki

Wal( ji
2L
, Ãi(ki))

and the sequence x as follows

xk+L =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α̃k+A+L −Li ≤ ki ≤ −Li +Bi −Ai
0 otherwise.

Then one gets with the scaling property (2.1) and the multiplicative identity (2.2)

Xj =
1

∏d
i=1 2Li

2L−1

∑
k=0

xk Wal(j, k
2L

) = 1

∏d
i=1 2Li

L−1

∑
k=−L

xk+LWal(j, k +L
2L

)

= 1

∏d
i=1 2Li

B

∑
k=A

α̃k Wal( j
2L
,k +A) = 1

∏d
i=1 2Li

B

∑
k=A

α̃k Wal( j
2L
,k ⊕ Ã(k))

= 1

∏d
i=1 2Li

B

∑
k=A

α̃k Wal( j
2L
, Ã(k))Wal( j

2L
,k) = 1

∏d
i=1 2Li

B

∑
k=A

αk Wal(k, j
2L

) = 1

∏d
i=1 2Li

Φ( j
2L

).

With that one can conclude

2L−1

∑
j=0

1

∏d
i=1 2Li

∣Φ( j
2L

)∣
2

=
2L−1

∑
j=0

d

∏
i=1

2Li∣Xj ∣2 =
2L2−1

∑
j=0

∣xj ∣2 =
B

∑
j=A

∣α̃j ∣2 =
B

∑
j=A

∣αj ∣2.

�

4.2. Changes of Wavelets. As mentioned in chapter 2 the decimal and dyadic addition do not correspond
directly to each other, especially the representation of the decimal addition with a number h to a number x
depends on both parts of the sum. But in Corollary 4.3 we have seen that for x ∈ [0,1) and n ∈ N the dyadic
and decimal addition coincide. In the proof of the main theorem we want to transfer the time shifts of the
wavelet to the Walsh function, i.e.

2−R(n+p)

∫
2−R(n−p+1)

2−R/2φ(2Rx − n)Wal(k, x)dx = 2−R/2

p

∫
−p+1

φ(x)Wal(k,2−R(x + n))dx

≠ 2−R/2

p

∫
−p+1

φ(x)Wal(k,2−R(x⊕ n))dx.

Therefore, to enable us to use Corollary 4.3 and make the last equation an equality, the domain of the
wavelets needs to be restricted to [0,1]d. This is not a contradiction to the construction of the previous
chapter, because the functions φR,n are indeed support in [0,1]d, but the scaling function at level 0 is not
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and that is the function which we are dealing with after the change of variables in the integral. To solve this
problem we represent the scaling function as a sum of functions that are supported in [0,1], i.e.

(4.2) φ(x) =
p

∑
i=−p+2

φi(x − i + 1) with φi(x) = φ(x + i − 1)X[0,1](x)

and

φR,n = 2R/2
p

∑
i=−p+2

φi(2Rx − i + 1 − n).

This can also be done accordingly for the reflected function φ#. In the higher dimensional case we have

(4.3) φ(x) = φ1(x1)⊗ . . .⊗ φd(xd) =
p

∑
i=−p+2

φi1(x1 − i1 + 1) ⋅ . . . ⋅ φid(xd − i2 + 1).

and φik defined as above. This way the multiplicative identity holds also for the decimal time shift of the
wavelets.

4.3. Useful lemmas about wavelets. For the proof of the main theorem we have to bound the decay rate
of the Wavelets under the Walsh transform. Therefore, we need to analyse the behaviour of Wavelets in the
dyadic analysis. Fortunately, it is possible to show that Wavelets belong to the Lipschitz class defined in
the following definition. Such functions have a known decay rate under the Walsh transform as presented in
Theorem 4.8.

Definition 4.7 ( [12]). The Lipschitz class LipW (α,L2([0,1])), α > 0 is the set of functions f ∈ L2([0,1])
with

∣∣f(⋅) − f(⋅ ⊕ h)∣∣2 = O(h−α), h→ 0.

One should notice the dyadic addition ⊕ in the definition. This underlines the difference to classical
Lipschitz functions. For this class of function the decay rate is known to be as follows.

Theorem 4.8 ( [12]). Let f ∈ LipW (α,L2([0,1])), 0 < α ≤ 1 then

En(f,L2([0,1])) ∶= inf
pn∈WPn

∣∣f − pn∣∣2 = O(n−α),

where WPn is the space of Walsh polynomials with degree k ≤ n.

With this we have all tools together to state the decay rate for the φi. Remark that this is not necessarily
intuitive as smoothness in the dyadic analysis is very different from smoothness in the classic analysis with
the standard arithmetical operations of real numbers. This is for example seen by the comparison of infinitely
many differentiable functions in both settings. Walsh functions are in this class for the dyadic analysis, but
not even continuous in the decimal analysis. Therefore, much care is needed to gain insight in the behaviour
of wavelets under the Walsh transform.

Lemma 4.9. Let φ be a one-dimensional Daubechies scaling function of p vanishing moments p > 1 and φi,
φ#i be as in (4.2). Then

∣φi
⋀W

(k)∣ ≤ A

(1 + ∣k∣) , ∣φ
#
i

⋀W

(k)∣ ≤ A#

(1 + ∣k∣) , k ∈ R+, i = −p + 2, . . . , p

for some A,A# ∈ R+, which depend on the scaling function.

Proof. The Daubechies scaling functions of order p > 1 are differentiable. Therefore,

(4.4) ∣∣φ(⋅) − φ(⋅ + h)∣∣2 = O(h−1)
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As we just focus on functions on [0,1] we also have that the φi are differentiable on (0,1) and fulfil (4.4).

Next, one needs to estimate the difference between the dyadic and the decimal addition of h =
n

∑
i=−∞

hi2
i,

n ∈ Z with hn ≠ 0. In particular,

x⊕ h − (x + h) =
∞

∑
i=n+1

xi2
i +

n

∑
i=−∞

(xi ⊕2 hi)2i −
∞

∑
i=n+1

xi2
i −

n

∑
i=−∞

xi2
i −

n

∑
i=−∞

hi2
i

=
n

∑
i=−∞

(xi ⊕2 hi)2i −
n

∑
i=−∞

xi2
i −

n

∑
i=−∞

hi2
i ≤ 2 ⋅ 2n+1 ≤ 8h

where (xi ⊕2 hi) is the addition modulo 2. So we conclude that

∣∣φi(⋅) − φi(⋅ ⊕ h)∣∣2 ≤ ∣∣φi(⋅) − φi(⋅ + h)∣∣2 + ∣∣φi(⋅ + h) − φi(⋅ ⊕ h)∣∣2
= O(h−1) +O((8h)−1) = O(h−1).

The same argument applies also for the reflected function φ#, because of the same smoothness properties.
Therefore, φi, φ

#
i ∈ LipW (1, L2([0,1])) and with Theorem 4.8 we achieve the desired decay rate. �

Due to the definition by the tensor product we can directly deduce the decay rate of the d-dimensional
Daubechies scaling function.

Corollary 4.10. Let φ be a d-dimensional scaling functions of p vanishing moments with p > 1 as defined in
(4.3). Then

∣φi
⋀W

(k)∣ ≤ A

∏d
i=1(1 + ∣ki∣)

, ki ∈ R+, i = 1, . . . , d.

for some A ∈ R+ which depend on the scaling function and the dimension.

Proof. This proof is straightforward with Lemma 4.9

∣φi
⋀W

(k)∣ =∣φi1
⋀W

(k1)∣ ⋅ . . . ⋅ ∣φid
⋀W

(kd)∣ ≤
A1

(1 + ∣k1∣)
⋅ . . . ⋅ Ad

(1 + ∣kd∣)
= A

∏d
i=1(1 + ∣ki∣)

.

�

4.4. Proof of the main theorem. With the tools established above, we can now prove the main result. To
make the exposition easier to read we first prove the theorem in one dimension and then make the generali-
sation to several dimensions in a separate proof. Given the setup with the multi-indices framework, this can
be done reasonably smoothly.

Proof of Theorem 1.1 in one dimension. The aim of this proof is to find for every θ ∈ (1,∞) an integer
Sθ ∈ N, such that for all M ≥ SθN the subspace angle is bounded, i.e. µ(RN ,SM) ≤ θ. Let R ∈ N be the
number of reconstructed levels, i.e. N = 2R. We start with a suitable representation of cos(ω(RN ,SM)).
There exist ϕ ∈ RN with ∣∣ϕ∣∣ = 1 such that inff∈RN ,∣∣f ∣∣=1 ∣∣PSM

f ∣∣ = ∣∣PSM
ϕ∣∣, because the closed unit ball

inRN is compact and PSM
is continuous. By (3.4) we can represent ϕ as

(4.5) ϕ =
2R−p−1

∑
l=0

αlφR,n +
2R−1

∑
l=2R−p

βlφ
#
R,n with

2R−p−1

∑
l=0

∣αn∣2 +
2R−1

∑
l=2R−p

∣βn∣2 = 1

and

cos(ω(RN ,SM)) = inf
f∈RN ,∣∣f ∣∣=1

∣∣PSM
f ∣∣ = ∣∣PSM

ϕ∣∣(4.6)

= ∣∣ϕ − P ⊥SM
ϕ∣∣ ≥ ∣∣ϕ∣∣ − ∣∣P ⊥SM

ϕ∣∣ = 1 − ∣∣P ⊥SM
ϕ∣∣.

The first equation (4.5) allows us to deal only with the scaling function instead of the wavelets at different
scales and the scaling function. The second one (4.6) enables to bound P ⊥SM

ϕ from above in lieu of PSM
ϕ

from below.
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Instead of dealing with all different shifts of the scaling function, we aim for a closed form that just
depends on the functions φ and φ#. An essential part in the construction of this is the use of the scaling
property in Corollary 4.3. Therefore, it is necessary, that m ∈ N and x ∈ [0,1). For this sake, the functions
φi were defined in (4.2) and we define

(4.7) pR ∶ Z→ N

with z ↦ pR(z) and pR(z) be the smallest integer such that pR(z)2R + z > 0. This yields

⟨φR,n,Wal(k, ⋅)⟩ =
p

∑
i=−p+2

⟨φi,R,n,Wal(k, ⋅)⟩(4.8)

= 2R/2
p

∑
i=−p+2

2−R(n+i)

∫
2−R(n+i−1)

φi(2Rx − n − i + 1)Wal(k, x)dx

= 2−R/2
p

∑
i=−p+2

1

∫
0

φi(x)Wal(k,2−R(x + n + i − 1))dx

= 2−R/2
p

∑
i=−p+2

1

∫
0

φi(x)Wal(k,2−R(x + n + i − 1 + 2RpR(i − 1)))dx,

where we used in the last line the fact that the Walsh functions are 1-periodic, if the other input data is an
integer. Then, we have that x ∈ [0,1] and n + i − 1 + 2RpR(n + i − 1) ∈ N. Hence, Corollary 4.3 can be used
in the third line to get

⟨φR,n,Wal(k, ⋅)⟩(4.9)

= 2−R/2
p

∑
i=−p+2

1

∫
0

φi(x)Wal(k,2−R(x + (n + i − 1 + 2RpR(i − 1))))dx

= 2−R/2
p

∑
i=−p+2

Wal(k,2−R(n + i − 1 + 2RpR(i − 1)))
1

∫
0

φi(x)Wal(k,2−Rx)dx

= 2−R/2
p

∑
i=−p+2

Wal(n + i − 1 + 2RpR(i − 1), k
2R

)φi
⋀W

( k
2R

).

With

Φi(z) =
2R−p−1

∑
n=0

αnWal(n + i − 1 + 2RpR(i − 1), z)(4.10)

it results in
2R−p−1

∑
n=0

αn⟨φi,R,n,Wal(k, ⋅)⟩ = 2−R/2
2R−p−1

∑
n=0

βnWal(n + i − 1 + 2RpR(i − 1), k
2R

)φi
⋀W

( k
2R

)(4.11)

= 2−R/2φi
⋀W

( k
2R

)Φi(
k

2R
).

Analogously this can be done for the reflected function φ#. Thus, by using

Φ#
i (z) =

2R−1

∑
n=2R−p

βnWal(n + i − 1 + 2RpR(i − 1), z)

similarly to what was done above, we get

2R−1

∑
n=2R−p

βn⟨φ#i,R,n,Wal(k, x)⟩ = 2−R/2
2R−1

∑
n=2R−p

βnWal(n + i − 1 + 2RpR(i − 1), k
2R

)φ#i
⋀W

( k
2R

)(4.12)

= 2−R/2φ#i

⋀W

( k
2R

)Φ#
i ( k

2R
).
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This representation is very useful, as one only has to take care of the decay rate of the Walsh transform of
the pieces of the mother scaling function, its reflection and the Walsh polynomial. Moreover, the pieces fulfil
f(t) = 0 for t < 0, such that the Walsh transform with one kernel can be used for the analysis. Next, one
uses the linearity of the orthogonal projection to change the order of the summands, such that the sum over
the scaling function pieces can be dealt with at last

∣∣P ⊥SM
ϕ∣∣ = ∣∣P ⊥SM

(
2R−p−1

∑
n=0

αnφR,n +
2R−1

∑
n=2R−p

βnφ
#
R,n)∣∣(4.13)

= ∣∣P ⊥SM
(
2R−p−1

∑
n=0

αn
p

∑
i=−p+2

φi,R,n +
2R−1

∑
n=2R−p

βn
p

∑
i=−p+2

φ#i,R,n)∣∣

In the next step we take out the sum over the parts of the Wavelet φi,R,n to handle every cut out of the wavelet
separately. In particular, by (4.13)

∣∣P ⊥SM
ϕ∣∣ = ∣∣

p

∑
i=−p+2

P ⊥SM
(
2R−p−1

∑
n=0

αnφi,R,n +
2R−1

∑
n=2R−p

βnφ
#
i,R,n)∣∣(4.14)

≤
p

∑
i=−p+2

∣∣P ⊥SM
(
2R−p−1

∑
n=0

αnφi,R,n +
2R−1

∑
n=2R−p

βnφ
#
i,R,n)∣∣

=
p

∑
i=−p+2

¿
ÁÁÁÀ ∑

k>M

RRRRRRRRRRRR

2R−p−1

∑
n=0

αn⟨φi,R,n,Wal(k, ⋅)⟩ +
2R−1

∑
n=2R−p

βn⟨φ#i,R,n,Wal(k, ⋅)⟩
RRRRRRRRRRRR

2

.

Thus it follows, by using (4.11), (4.12) and the Cauchy-Schwarz inequality, that

∣∣P ⊥SM
ϕ∣∣ ≤

p

∑
i=−p+2

¿
ÁÁÁÀ ∑

k>M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
) + φ#i
⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2

(4.15)

≤
p

∑
i=−p+2

⎛
⎝ ∑k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

+ ∑
k≥M

2−R ∣φ#i
⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2

+2( ∑
k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

)
1/2 ⎛

⎝ ∑k≥M
2−R ∣φ#i
⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2⎞
⎠

1/2⎞
⎟
⎠

1/2

.

We will only deal with the first summand and the other follow analogously. In the following step the 1-
periodicity of the Walsh function is used. Let S ∈ R+ such that M = S2R, then by replacing k ≥ M by
k =mL + j with L = 2R, m ≥ S and j = 0, . . . , L − 1 we have

∑
k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

≤
L−1

∑
j=0

1

L
∣Φi(

j

L
)∣

2

∑
m≥S

∣φi
⋀W

( j
L
+m)∣

2

.

The last sum can be estimated, via Lemma 4.9, by

∑
m≥S

∣φi
⋀W

( j
L
+m)∣

2

≤ ∑
m≥S

A2

m2
≤ A

2

S
.(4.16)
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For the first sum
L−1

∑
j=0

1
L
∣Φi( jL)∣2 we have with αn = 0 for n = −p + 1, . . . ,−1 that

Φi(z) =
2R−p

∑
n=0

αnWal(n + i − 1 + 2RpR(i − 1), z)(4.17)

=
2R−p

∑
n=−p+1

αl Wal(n + i − 1 + 2RpR(i − 1), z)

=
2R−p−i+1−2RpR(i−1)

∑
n=−p+1−i+1−2RpR(i−1)

αn−i+1−2RpR(i−1) Wal(n, z)

and L = 2R, such that we can use Lemma 4.6 as 2R−p−i+1−2RpR(i−1)−(−p+1−i+1−2RpR(i−1))+1 =
2R − p − (−p + 1) + 1 = 2R ≥ L and obtain

(4.18)
L−1

∑
j=0

1

L
∣Φi(

j

L
)∣

2

=
2R−p−i+1−2RpR(i−1)

∑
l=−p+1−i+1−2RpR(i−1)

∣αl−i+1−2RpR(i−1)∣2 =
2R−p

∑
n=−p+1

∣αn∣2 ≤ 1.

All together gives with Lemma 4.9

(4.19) ∑
k≥M

2−R ∣φi
⋀W

( k
2R

)Φi(
k

2R
)∣

2

≤ A
2

S
.

And similarly

(4.20) ∑
k≥M

2−R ∣φ#i
⋀W

( k
2R

)Φ#
i ( k

2R
)∣

2

≤ A
#2

S
.

Using (4.18), (4.19) and (4.20) yields the following estimation

∣∣P ⊥SM
ϕ∣∣ ≤

p

∑
i=−p+2

⎛
⎜
⎝
A2

S
+ A

#2

S
+ 2

¿
ÁÁÀA2A#2

S2

⎞
⎟
⎠

1/2

≤ (2p − 2)
⎛
⎜
⎝

4 max{A2,A#2}
S

⎞
⎟
⎠

1/2

= (2p − 2)(C
2

S
)
1/2

.

Thus, ∣∣P ⊥SM
ϕ∣∣ ≤ γ whenever

(4.21) S ≥ (C(2p − 2)
γ

)
2

,

where C = 4 max{A2,A#2}. It follows from (4.6) that cos(ω(RN ,SM)) ≥ 1−γ ≥ 1
θ

,i.e. µ(RN ,SM) ≤ θ,

whenever the constant S, which is dependent on θ and therefore denoted by Sθ, fulfils (4.21) with γ = 1− 1
θ

,
i.e

Sθ ≥ (C(2p − 2)θ
θ − 1

)
2

and M = SθL = SθN . �

Proof of Theorem 1.1 in d-dimensions. In higher dimensions we represent ϕ ∈RN in terms of the sum over
2d different tensor products. Then we need to investigate the inner products of these summands with the
Walsh functions as in the one dimensional case. At this point the results from the one dimensional case come
into play. Next, one investigates the parts of the set I⊥M , where IM = {l = {l1, . . . , ld} , lk = 0, . . . ,Mk − 1}
and M = {M1, . . . ,Mk} ∈ Nd, which correspond to the largest estimates of the inner products of the sum-
mands of the wavelet and the Walsh function. Finally, these can be bounded with estimates from the one
dimensional case and additional care for the finite sums.
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Now, we present the described steps in more detail. Let ϕ ∈ RN with ∣∣ϕ∣∣ = 1. Then we can represent ϕ
as in (3.5) in the following sum

ϕ = ∑
s∈{0,1}d

∑
n∈Ks

αk⊗φsR,n.

In the one dimensional case we derived the representation of ∑2R−p−1
n=0 αn⟨φi,R,n,Wal(k, ⋅)⟩ in terms of the

Walsh transform of the wavelet and the Walsh polynomial, i.e. 2−R/2φi
⋀W

( k
2R

)Φi( k
2R

). This equality from
(4.11) should be used to represent the inner product in higher dimensions. For this sake we need to define
pR from (4.7) for higher dimensions. In particular, let pR ∶ Zd → Nd with {zi}i=1,...,d = z ↦ pR(z) =
{pR(z)i}i=1,...,d and pR(z)i be the smallest integer such that pR(z)i2R − zi > 0 for all i = 1, . . . , d. Further,
let l = (l1, . . . , ld) ∈ Zd. This yields

⟨φsi,R,n,Wal(l, ⋅)⟩ =
d

∏
k=1

⟨φski,R,nk
,Wal(lk, ⋅)⟩

Here, the problem is reduced to the one dimensional case and we can apply (4.8) and (4.9) to get

⟨φsi,R,n,Wal(l, ⋅)⟩ =
d

∏
k=1

2−dR/2 Wal(nk + ik − 1 + 2RpR(ik − 1), lk
2R

)φskik
⋀W

( lk
2R

)

= Wal(n + i − 1 + 2RpR(i − 1), l
2R

)φsi
⋀W

( l

2R
).

Define now as in (4.10)

Φsi (z) = ∑
n∈Ks

αnWal(n + i − 1 + 2RpR(i − 1), z
2R

).

Note that the different definitions from the one dimensional case for Φ and Φ# are combined in the notation
with the Ks. We get with this the presentation of the inner products as desired

∑
n∈Ks

αn⟨φsi,R,n,Wal(l, ⋅)⟩ = 2−dR/2Φsi (
l

2R
)φ̂si (

l

2R
).

For the representation of indices which correspond to the sampling functions let IM = {l = {l1, . . . , ld}, lk =
0, . . . ,Mk − 1}, where M = {M1, . . . ,Mk} ∈ Nd is the amount of samples. Then l ∉ IM corresponds to
l > m in the one dimensional case. We now want to analyse the orthogonal projection on the orthogonal
complement of the sampling space.

∣∣P ⊥SM
ϕ∣∣ = ∣∣P ⊥SM

( ∑
s∈{0,1}d

∑
n∈Ks

αnφ
s
R,n)∣∣ = ∣∣P ⊥SM

( ∑
s∈{0,1}d

∑
n∈Ks

αn
p

∑
i=−p+2

φsi,R,n)∣∣

This way we ensured the use of Corollary 4.3. Next we change the order again to deal with the different cut
out functions separately. This was seen already in (4.14). We get

∣∣P ⊥SM
ϕ∣∣ = ∣∣

p

∑
i=−p+2

P ⊥SM
( ∑
s∈{0,1}d

∑
n∈Ks

αn
p

∑
i=−p+2

φsi,R,n)∣∣ ≤
p

∑
i=−p+2

∣∣P ⊥SM
( ∑
s∈{0,1}d

∑
n∈Ks

αn
p

∑
i=−p+2

φsi,R,n)∣∣.

With the Cauchy Schwarz inequality and a careful reordering we get as in (4.15)

∣∣P ⊥SM
ϕ∣∣ =

p

∑
i=−p+2

¿
ÁÁÁÁÀ ∑

l∉IM

RRRRRRRRRRRRR
∑

s∈{0,1}d
∑
n∈Ks

αn⟨φsi,R,n,Wal(l, ⋅)⟩
RRRRRRRRRRRRR

2

=
p

∑
i=−p+2

¿
ÁÁÁÁÀ ∑

l∉IM

2−dR
RRRRRRRRRRRRR
∑

s∈{0,1}d
Φsi (

l

2R
)φsi
⋀W

( l

2R
)
RRRRRRRRRRRRR

2

≤
p

∑
i=−p+2

∑
s∈{0,1}d

⎛
⎝ ∑l∉IM

2−dR∣Φsi (
l

2R
)φsi
⋀W

( l

2R
)∣2

⎞
⎠

1/2
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Now, let S ∈ N be given, such that the amount of samplesM = {M1, . . . ,Mk} ∈ Nd isMk = S2R. Then if
l = {l1, . . . , ld} ∉ IM at least one lk >Mk. The sum is the largest, if only one lk fulfils this estimate. Hence,
without loss of generality let l1 > M1 and lk ≤ Mk for k = 2, . . . , d. Let now lk = jk + uk2R. Then we get
similar to (4.16)

∑
l1>M1

∑
l2≤M2

. . . ∑
ld≤Md

2−dJ ∣Φsi (
l

2R
)φsi
⋀W

( l

2R
)∣

2

=
2R−1

∑
j=0

1

2dR
∣Φsi (

j

2R
)∣

2

∑
u1>S

∑
u2≤S

. . . ∑
ud≤S

∣φsi (
j

2R
+ u)∣

2

≤
2R−1

∑
j=0

1

2dR
∣Φsi (

j

2R
)∣

2

∑
u1>S

∑
u2≤S

. . . ∑
ud≤S

A1

1 + u1
. . .

Ad
1 + ud

≤ C
d−1

S

2R−1

∑
j=0

1

2dJ
∣Φsi (

j

2R
)∣

2

.

The last sum can be estimated with the help of Lemma 4.6. In (4.17) and (4.18) this was derived in the one
dimensional case which can be directly used here, such that

2R−1

∑
j=0

1

2dR
∣Φsi (

j

2R
)∣

2

= ∑
n∈Ks

∣αn∣2.

From the fact that the φsR,n form an orthonormal bases and ∣∣ϕ∣∣ = 1 we have

∑
n∈Ks

∣αn∣2 ≤ 1.

This together with the fact that ∣ {0,1}d ∣ = 2d gives

∑
s∈{0,1}d

⎛
⎝ ∑
l1>M1

∑
l2≤M2

. . . ∑
ld≤Md

2−dR ∣Φi(
l

2R
)φ̂i(

l

2R
)∣

2⎞
⎠

1/2

≤ 2d (C
d−1

S
)
1/2

.

With replacing Cd−1 by C we have

∣∣P ⊥SM
ϕ∣∣ ≤

p

∑
i=−p+2

2d (C
S
)
1/2

= (2p − 2)2d (C
S
)
1/2

.

Thus, ∣∣P ⊥SM
ϕ∣∣ ≤ γ whenever

(4.22) S ≥ C ((2p − 2)2d
γ

)
2

.

It follows from (4.6) that

cos(ω(RN ,SM)) ≥ 1 − γ ≥ 1

θ
,

i.e. µ(RN ,SM) ≤ θ, whenever Sθ fulfils (4.22) with γ = 1 − 1
θ

, i.e.

Sθ ≥ C ((2p − 2)2dθ
θ − 1

)
2

and ∣M ∣ =M1 ⋅ . . . ⋅Md = Sdθ2dR = SdθN . �

5. NUMERICAL EXPERIMENTS

In this chapter we underline the theoretical results with numerical experiments. Therefore, we first cal-
culate the stable sampling rate for different stabilities θ and Daubechies wavelets. Then, we see that the re-
construction with generalized sampling leads to much better results then the direct inversion with the Walsh
transform. Moreover, we point out, that it is importance to consider the stable sampling rate, as otherwise
the reconstruction gets very unstable with useless results.
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First, we see in Figure 1 the stable sampling rate for the different wavelets and stabilities. One can see,
that it is indeed linear with jumps according to the levels of the wavelets. Moreover, one can see that the
constant Sθ is considerable low, such that the amount of samples needed is only a bit larger than the amount
of coefficients that we reconstruct. It is not surprising, that the stable sampling rate gets larger for smaller
θ. In the theory of the reconstruction from Fourier measurements, we have a direct relation between the
smoothness of the wavelets and the size of the stable sampling rate. Similar relations are not known for the
Walsh wavelet case.
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(A) Θ(N ; 5) for DB2 with Nmax
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= 1.249
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= 1.49
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= 1.257

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500
SR 8 slope 2.003000e+00

(D) Θ(N ; 2) for DB8 with Nmax
Mmax

= 2.003

FIGURE 1. Plots of the stable sampling rate (orange) for Daubechies Wavelet of order 2

and 8 for a threshold θ = 2 and 5 and the linear line with Nmax/Mmax (blue).

In Figure 2, we demonstrate the reconstruction with generalized sampling. For this sake we consider two
different functions. First, we have a look at the cosine function in Figure 2a. We take 77 Walsh samples.
In Figure 2c the direct inversion is shown. It is clear that the reconstruction has a lot of block artefacts,
where in contrast the reconstruction with generalized sampling of 64 Daubechies 8 wavelets has nearly no
visible artefacts. The same artefacts can be seen in 2f. In that case 192 Walsh samples were taken and 128

wavelet coefficients were reconstructed. The artefacts with the direct Walsh inverse are much stronger than
the common Gibbs phenomena for the Fourier case. because of this, reconstructions with Walsh functions are
not feasible in practice. They are also the reason why one does not use Haar wavelets as they obey the same
block artefacts. This underlines the need of a reconstruction technique that refers the data from the sampling
space to a much more appropriate reconstruction space, where the data is represented sparsely. In this case
we get less artefacts. For completely continuous functions as in 2b one can hardly see any difference. In case
of discontinuities as in the second function 2d one gets some artefacts at the discontinuities as can be seen
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(A) Original function 1 (B) Reconstruction with Generalized
Sampling of function 1 with 64 Wavelet
coefficients from 77 measurements

(C) Truncated Walsh series of function
1 from 77 measurements

(D) Original function 2

(E) Reconstruction with Generalized
Sampling of function 2 with 128

Wavelet coefficients and 192 measure-
ments

(F) Truncated Walsh series from 192

measurements

FIGURE 2. Reconstruction with Generalized Sampling and Daubechies 8 Wavelets and
the inverse Walsh.
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FIGURE 3. Reconstruction with Generalized Sampling below the Stable Sampling Rate
with 512 Walsh samples and Daubechies 8 Wavelet coefficients

in 2e. Still, the overall reconstruction quality is much better and the reconstruction still obeys the regularity
properties of each part of the function.

Nevertheless, it is important to take the stable sampling rate in mind. If one tries to reconstruct with less
samples then needed the reconstruction gets very unstable and one gets useless results as in Figure 3, where
512 samples were taken, which is much more than the 77 and 192 for the other images.

6. CONCLUSION

We were able to investigate a very important part of the error estimate for different reconstruction meth-
ods. Moreover, we showed that binary measurements modelled by Walsh functions are well suited to re-
construct images with wavelets. This gives together with the results in [3, 5] a broad knowledge about the
accuracy and stability for two major applications of sampling theory, i.e. systems with Fourier samples and
those with binary measurements.
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