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Abstract
In this paper we analyze two-dimensional wavelet reconstructions from Fourier samples within the frame-

work of generalized sampling. For this, we consider both separable compactly-supported wavelets and boundary
wavelets. We prove that the number of samples that must be acquired to ensure a stable and accurate reconstruc-
tion scales linearly with the number of reconstructing wavelet functions. We also provide numerical experiments
that corroborate our theoretical results.

1 Introduction
A problem that appears in multiple disciplines is the reconstruction of an object from linear measurements.
One special situation of particular importance which we will focus on in this paper are Fourier measurements.
This particular reconstruction problem occurs in numerous applications such as Fourier optics, radar imaging,
magnetic resonance imaging (MRI) and X-ray CT (the latter after application of the Fourier slice theorem). One
of the main issues is that we are only able to acquire finitely many samples, since we cannot process an infinite
amount of information in practice. The reconstruction of an object from a finite collection of Fourier samples can
be obtained by a truncated Fourier series. However, this typically leads to undesirable effects such as the Gibbs
phenomenon, which are wild oscillation near points of discontinuity.

Beside the Gibbs phenomenon, the convergence of the Fourier series (in the Euclidean norm) is slow. Con-
versely, wavelets bases are well-known to achieve much better results (see [22, Ch. 9]). Indeed, wavelets have
much better localization properties than the standard Fourier transform, leading to a better detection of image
features. For this reason, wavelets have found widespread used in compression and denoising. For example the
algorithm of JPEG 2000 is based on wavelets. Moreover, they come equipped with fast algorithms which are of
great importance in today’s age of technology. Wavelets also play a pivotal role in biomedical imaging, with an
example being the technique of wavelet encoding in MRI (see [19, 23, 29, 30]).

The issue, however, is that physical samplers such as an MRI scanner naturally yield Fourier measurements,
not wavelet coefficients. Thus in order to exploit the power of wavelets, we need a reconstruction algorithm
capable of producing wavelet coefficients given a fixed set of Fourier measurements.

1.1 Generalized sampling
Generalized sampling is a framework for this problem developed by two of the authors in a series of papers
[2, 3, 4, 5] and based on past work of Unser and Aldroubi [27, 28], Eldar [15] and Hrycak and Gröchenig [18].
The theory allows for stable and accurate reconstructions in an arbitrary reconstruction system of choice given
fixed measurements with respect to another system.

The problem of reconstructing wavelet coefficients from Fourier samples is an important example of this ab-
stract framework. Mathematically, the reconstruction problem can be modeled in a separable Hilbert space H,
resulting in an infinite-dimensional linear algebra problem. Generalized sampling provides a faithful discretiza-
tion of such a problem. The stable sampling rate (see Section 2 for details) is fundamental characteristic within
generalized sampling that determines how many samples are needed in order to obtain stable and accurate recon-
structions with a given number of reconstruction elements. It is therefore vital that this rate be determined for
important instances of generalized sampling.

1.2 Our contribution
In [7] the respective authors proved the linearity of the stable sampling rate for one-dimensional compactly
supported wavelets based on finitely many Fourier samples. This means, up to a constant, one needs the same
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number of samples as reconstruction elements. Our results extend the previous one to dimension two, although
higher dimensional results can be obtained in a straightforward manner. This is an important extension, since
most of the above applications involve two- or three-dimensional images. The crucial part that makes our result
non-trivial is the allowance of non-diagonal scaling matrices neglecting straightforward arguments for separable
two dimensional wavelets from 1D to 2D. Moreover, we will not only prove the linearity for standard two-
dimensional separable wavelets, but also for two-dimensional boundary wavelets which are of particular interest
for smooth images. This case was not considered in [7] but was addressed recently in [1] for the case on 1D
nonuniform Fourier samples. Here, for simplicity, we consider only uniform samples but in the 2D setting.

At this stage we note that other higher dimensional concepts, such as curvelets and shearlets, can provide
better approximations rates for cartoon-like-images; a specific class of functions ([10], [20]). However, this
paper serves as an extension of known 1D results [7]. It thus provides a necessary first step in the study of
reconstructions from Fourier samples within the context of generalized sampling in higher-dimensional settings.
We shall discuss shearlets in an upcoming paper.

Let us now make one further remark. The reader may at this stage wonder why, given a vector y of Fourier
samples of a 2D image, one cannot simply form the vector x = U−1

dft y, and then form z = Vdwtx and hope that z
would represent wavelet coefficients of the function f to be reconstructed (here Udft and Vdwt denote the discrete
Fourier and wavelet transforms respectively). Unfortunately, x represents a discretization of the truncated Fourier
series of f . Thus, ignoring the wavelet crime [25, p. 232] for a moment, we find that z represents the wavelet
coefficients of the truncated Fourier series and not the wavelet coefficients of f itself (taking the wavelet crime
into account, z would actually be an approximation to the wavelet coefficients of the truncated Fourier series).
Thus, z will typically have lost all the decay properties of the original wavelet coefficients. Moreover, if we map
z back to the image domain we get x = V −1

dwtz and thus we do not gain anything as x is the discretized truncated
Fourier series.

This paper is about getting the actual wavelet coefficients of f from the Fourier samples, thus preserving
all the decay properties of the original coefficients. This is done using generalized sampling. We show that the
number of samples that must be acquired to ensure a stable and accurate reconstruction scales linearly with the
number of reconstructing wavelet functions. This means that one can reconstruct a function from its Fourier
coefficients yet get error bounds on the reconstruction (up to a constant) in terms of the decay properties of
the wavelet coefficients. Put in short: seeing Fourier coefficients of a function is asymptotically as good as
seeing the wavelet coefficients directly. As we will see in the numerical experiments, the generalized sampling
reconstruction provides a substantial gain over the classical Fourier reconstruction.

The outline of the remainder of this paper is as follows. In Section 2 we give a more elaborate introduction
into generalized sampling and present the main results of this method. Furthermore, we introduce the stable
sampling rate to which our main focus is devoted. Having presented the framework we are dealing with, we
introduce the wavelet reconstruction systems and the Fourier sampling systems in Section 3. The main results
are then presented in Section 4. Finally we demonstrate our theoretical results in application by presenting some
numerical experiments in Section 5. Proofs of the main results are given in Section 6.

2 Generalized Sampling
In this section, we recall the main definitions and results of the methodology of generalized sampling from
[2, 3, 4, 5]. For this, we start by introducing a general model situation for reconstruction from samples with
associated quality measures.

2.1 General Setting
Let H be a (separable) Hilbert space H with an inner product 〈·, ·〉, which will be our ambient space throughout
this section. For modeling the acquisition of samples, let S ⊂ H be a closed subspace and {sk}k∈N ⊂ H be an
orthonormal basis for S. We will refer to {sk}k∈N as the sampling system and S as the sampling space. For a
signal f ∈ H, we then assume that the associated samples (also called measurements) are given by

m(f)k := 〈f, sk〉, k ∈ N. (2.1)

Based on the measurements m(f) = (〈f, sk〉)k∈N, we aim to reconstruct the original signal f . To be able to
utilize some prior knowledge concerning the initial signal f , we also require a carefully chosen reconstruction
system {ri}i∈N ⊂ H. The space R = span{ri : i ∈ N}, in which f is assumed to lie or be well approximated
in, is then referred to as the corresponding reconstruction space.
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Since in an algorithmic realization, only finitely many samples – and likewise a finite linear combination of
reconstruction elements – is possible, we also introduce the finite-dimensional spaces

SM = span{s1, . . . , sM}, M ∈ N

and
RN = span{r1, . . . , rN}, N ∈ N.

Thus, the reconstruction problem can now be phrased as follows: Given samplesm(f)1, . . . ,m(f)M of an initial
signal f ∈ H, compute a good approximation to f in the reconstruction spaceRN . Aiming to compare different
methodologies for solving this problem, we next formally introduce the notion of reconstruction method.

Definition 2.1. Let a sampling system {sk}k∈N and reconstruction spaces RN , N ∈ N be defined as before.
Further, let f ∈ H and let M,N ∈ N. Then some mapping

FN,M : H −→ RN

is called reconstruction method, if, for every f ∈ H, the signal FN,M (f) depends only on m(f)1, . . . ,m(f)M ,
where the samples m(f)j are defined in (2.1).

We can now strengthen the reconstruction problem in the following way: Given the dimension of the recon-
struction space N , how many samples M are required to obtain a stable and optimally accurate reconstruction
method? This intuitive phrasing will be made precise in the next subsections.

2.2 Quality Measures for Reconstruction Methods
We start by introducing two quality measures for reconstruction methods that analyze the degree of approxima-
tion within the reconstruction space and robustness for reconstruction. For this, throughout this subsection, let
{sk}k∈N be a sampling system, and letRN , N ∈ N be reconstruction spaces.

The first measure quantifies the closeness of the reconstruction to the ‘best’ reconstruction in the sense of the
orthogonal projection onto the reconstruction space. In the sequel, for the orthogonal projection onto a closed
subspace U , we will always utilize the notation PU : H −→ U .

Definition 2.2 ([6]). Let FN,M : H −→ RN be a reconstruction method. Moreover, let µ = µ(FN,M ) > 0 be
the least number such that

‖f − FN,M (f)‖ ≤ µ‖f − PRN (f)‖ for all f ∈ H.

Then we call µ the quasi-optimality constant of FN,M . If no such constant exists, then we write µ = ∞. If µ is
small, we say FN,M is quasi-optimal.

The second measure quantifies stability in the sense of robustness against perturbations.

Definition 2.3 ([6]). Let FN,M : H −→ RN be a reconstruction method. The (absolute) condition number
κ = κ(FN,M ) > 0 is then given by

κ = sup
f∈H

lim
ε↘0

sup
g∈H,

0<‖m(g)‖`2≤ε

(
‖FN,M (f + g)− FN,M (f)‖

‖m(g)‖`2

)
,

wherem(g) = (m(g)1, . . . ,m(g)M , 0, . . .). If κ is small, then we say FN,M is well conditioned, otherwise FN,M
is called ill-conditioned.

We now merge both definitions in order to have only one single measure for a reconstruction method.

Definition 2.4 ([6, 7]). Let FN,M : H −→ RN be a reconstruction method. The reconstruction constant of FN,M
is defined as

C(FN,M ) = max{µ(FN,M ), κ(FN,M )},

where µ(FN,M ) is the quasi-optimality constant and κ(FN,M ) is the (absolute) condition number.
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2.3 The Infimum Cosine Angle
Intuitively, the angle between the sampling and reconstruction space should play a role in determining the recon-
struction constant for a given reconstruction method. As we will see, this will be in particular the case for the
reconstruction method of generalized sampling. To prepare those results, in this subsection, we first introduce
a particularly useful notion of angle. The concept of principal angles between two Euclidean subspaces is well
known in the literature. However, for arbitrary closed subspaces of a Hilbert space many different notions of an
angle exist. We exemplarily mention the Friedrichs angle and the Dixmier angle (cf. [12, 14]). For our analysis,
the notion of infimum cosine angle – utilized, for instance, in [8, 28] – will be the most appropriate. It is defined
as follows.

Definition 2.5. Let U, V be closed subspaces ofH. Then the infimum cosine angle cos(ω(U, V )) between U and
V is defined by

cos(ω(U, V )) = inf
u∈U,
‖u‖=1

‖PV u‖, ω(U, V ) ∈ [0, π/2].

We remark that the infimum cosine angle is not symmetric in general. For example, if U and V are two
non-trivial closed subspaces of H and U 6= V with U ⊂ V , then cos(ω(U, V )) = 1, whereas cos(ω(V,U)) = 0.
The following general characterization of pairs of closed subspaces for which the infimum cosine angle is not
symmetric was proven in [9].

Lemma 2.6 ([9]). For two non-trivial closed subspaces U, V ⊂ H, we have cos(ω(U, V )) 6= cos(ω(V,U)) if
and only if one of these quantities is zero and the other is positive.

A positive infimum cosine angle between the sampling and reconstruction space will be crucial for enabling
reconstruction at all. The next theorem provides a characterization of subspaces which admit a positive infimum
cosine angle.

Theorem 2.7 ([26]). Let U, V be closed subspaces of H. Then, we have that cos(ω(U, V )) > 0 if and only if
U ∩ V ⊥ = {0} and U + V ⊥ is closed inH.

This characterization gives rise to the following definition.

Definition 2.8 ([6, 8]). If cos(ω(U, V ⊥)) > 0 for two closed subspaces U, V of H, then we say U and V obey
the subspace condition. In this case, we define the associated (oblique) projection

PU,V : U ⊕ V −→ H

with range of P equal to U and kernel of P equal to V .

We wish to mention that oblique projections are customarily used in sampling theory, such as, for instance,
in [8, 15, 16, 28].

2.4 Reconstruction Method of Generalized Sampling
We are now ready to introduce the method of generalized sampling. To this end, we will always assume that
the reconstruction space R and the sampling space S⊥ fulfill the subspace condition. In other words, we have
cos(ω(R,S)) > 0. For any M ∈ N, let PSM be the orthogonal projection given by

PSM : H −→ SM , h 7→
M∑
k=1

〈h, sk〉sk.

This enables us to formally define the reconstruction method of generalized sampling.

Definition 2.9. For f ∈ H and N,M ∈ N, we define the reconstruction method of generalized sampling
GN,M : H → RN by

〈PSMGN,M (f), rj〉 = 〈PSM f, rj〉, j = 1, . . . , N. (2.2)

We also refer to GN,M (f) as the generalized sampling reconstruction of f .
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We emphasize that this is indeed a reconstruction method in the sense of Definition 2.1, since the right-
hand side of (2.2) only depends on the given samples (〈f, sk〉)Mk=1 and not on f itself. Moreover, generalized
sampling is a linear reconstruction method. Algorithmically, to determine GN,M (f), i.e., solving (2.2), can be
phrased as the numerical linear algebra problem of computing the coefficients α[N ] = (α1, . . . , αN ) ∈ CN as
the least-squares solution of

U [M,N ]α[N ] = m(f)[M ], where U [M,N ] =

 u11 . . . u1N

...
. . .

...
uM1 . . . uMN

 , uij = 〈rj , si〉.

Note that, if U [M,N ] is well-conditioned this requires O(MN) operations in general. However, in the case of
Fourier samples and wavelet reconstruction one can make use of the Fast Fourier Transform and the discrete
wavelet transform and thus reduce this figure down to only O(M logM) operations.

The philosophy of generalized sampling is to allow the number of samples M to grow independently of the
fixed number of reconstruction elements N . This flexibility of M and N is crucial for stable reconstruction. The
next theorem guarantees the existence of the reconstruction for any f ∈ H provided that the number of samples
M is large enough.

Theorem 2.10 ([6]). Let N ∈ N. Then, there exists an M0 ∈ N, such that, for every f ∈ H, (2.2) has a unique
solution GN,M (f) for all M ≥M0. In particular, we then have

GN,M = PRN ,(PSM (RN ))⊥ .

Moreover, the smallest M0 is the least number such that cos(ω(RN ,SM0
)) > 0.

It is a priori not clear how to find M ∈ N large enough such that cos(ω(RN ,SM )) > 0, or even determine
the smallest such value M0 ∈ N. In the next subsection, it will turn out that this is intimately related to the
reconstruction constant defined in Definition 2.4, and will lead to the notion of a stable sampling rate.

2.5 Stable Sampling Rate
In Subsection 2.2, we introduced the reconstruction constant as the main quality measure for stable and accurate
reconstructions. Intriguingly, we can now relate this notion to the infimum cosine angle in the case of generalized
sampling as reconstruction method.

Theorem 2.11 ([6]). Retaining the definitions and notations from Subsection 2.4, for all f ∈ H, we have

‖GN,M (f)‖ ≤ 1

cos(ω(RN ,SM ))
‖f‖,

and

‖f − PRN f‖ ≤ ‖f −GN,M (f)‖ ≤ 1

cos(ω(RN ,SM ))
‖f − PRN f‖.

In particular, these bounds are sharp. Moreover, the reconstruction constant of generalized sampling C(GN,M )
obeys

C(GN,M ) = µ(GN,M ) = κ(GN,M ) =
1

cos(ω(RN ,SM ))
.

Hence, in order to obtain stable and accurate reconstructions, it is both necessary and sufficient to control the
angle betweenRN and SM . This leads us to the definition of the stable sampling rate.

Definition 2.12. For N ∈ N and θ > 1, the stable sampling rate is defined as

Θ(N, θ) = min {M ∈ N : C(GN,M ) < θ} .

Note that the stable sampling rate is of interest, since it determines the number of samples required for
guaranteed, quasi-optimal and numerically stable reconstructions.

We next aim to compare generalized sampling to other reconstruction methods. For this, we first introduce a
class of reconstruction methods, which recover signals from the reconstruction space exactly.
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Definition 2.13. A reconstruction method FN,M : H −→ RN is called perfect, if FN,M (f) = f whenever
f ∈ RN .

Note that any reconstruction method with finite quasi-optimality constant is automatically perfect. The next
result proves that generalized sampling is in the sense superior to any other perfect reconstruction method that its
condition number as well as even its reconstruction constant is smaller.

Theorem 2.14 ([6]). Let M ≥ N , and let FN,M : H −→ RN be a linear or non linear perfect reconstruction
method. Then

κ(GN,M ) ≤ κ(FN,M ),

where GN,M is the reconstruction method of generalized sampling. In particular, we have

C(GN,M ) ≤ C(FN,M ).

Next, we aim to compare the quasi-optimality constant of generalized sampling to other reconstruction meth-
ods. For this, assume that the stable sampling rate of generalized sampling is linear in N , i.e., Θ(N, θ) = O(N)
as N → ∞, and assume that there exist constants Cf , Df , γf > 0 depending on the initial signal f ∈ H such
that

CfN
−γf ≤ ‖f − PRN f‖ ≤ DfN

−γf , for all N ∈ N. (2.3)

The following result then shows that the error of any reconstruction method FM can be only up to a constant
better than the error of generalized sampling reconstruction.

Theorem 2.15 ([6]). Suppose that the stable sampling rate Θ(N, θ) is linear in N , i.e. Θ(N, θ) = O(N) as
N →∞. Let f ∈ H be fixed and let

FM : (m(f)1, . . . ,m(f)M ) 7→ FM (f) ∈ Rψf (M),

be a reconstruction method, where ψf : N −→ N with ψf (M) ≤ λM for some λ > 0. Assume that (2.3) holds.
Then, for any θ > 1, there exist constants d(θ) ∈ (0, 1) and c(θ, Cf , Df ) > 0 such that

‖f −Gd(θ)M,M (f)‖ ≤ c(θ, Cf , Df )‖f − FM (f)||, for all M ∈ N,

where GN,M denotes the generalized sampling reconstruction method.

3 Linear Sampling Rate for Compactly Supported 2D Wavelets
As already elaborated upon in the introduction, the situation of taking the Fourier basis as sampling system is of
particular importance to applications. A very common choice for a reconstruction system in imaging sciences are
2D wavelets, predominantly of compact support due to their high spatial localization.

In this section, we will state our main result for the situation of Fourier samples and reconstruction within
a wavelet basis using 2D compactly supported wavelets. More precisely, we will show linearity of the stable
sampling rate for the associated generalized sampling scheme, which shows by Theorem 2.15 the near-optimality
of this reconstruction method. For this, we start by defining first the reconstruction and second the sampling
space, followed by the statement of our main result. Due to its technical nature, we present its proof in a separate
section, namely Section 6.

3.1 Sampling and Reconstruction Spaces
3.1.1 Compactly Supported 2D Wavelets

We start by recalling the notion of scaling matrices.

Definition 3.1. Let A be a 2 × 2 matrix with non-negative integer entries and eigenvalues greater than one in
modulus. Then we call A a scaling matrix.

For the sake of brevity, in the sequel, we will use the notation

A =

(
λ1 λ2

λ3 λ4

)
.
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Moreover, for the entries of Aj we write

Aj =

(
λ

(j)
1 λ

(j)
2

λ
(j)
3 λ

(j)
4

)
, j ∈ N.

Notice that λ(j)
i 6= (λi)

j in general. For the sake of completeness, we next give the definition of a 2D multireso-
lution analysis (MRA). For more details, we refer to the existing literature, e.g [13, 21].

Definition 3.2. Let A be a scaling matrix. Then a sequence of closed subspaces (Vj)j∈Z of L2(R2) is called a
multiresolution analysis, if the following properties are satisfied.

i) {0} ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ L2(R2),
ii)

⋂
j∈Z

Vj = {0},

iii)
⋃
j∈Z

Vj = L2(R2),

iv) f ∈ Vj ⇔ f(A·) ∈ Vj+1,
v) there exists a function φ ∈ L2(R2) (called scaling function), such that

{φ0,m := φ(· −m) : m ∈ Z2}

constitutes an orthonormal basis for V0.

The associated wavelet spaces (Wj)j∈Z are then defined by

Vj+1 = Vj ⊕Wj .

It is well known that there exist |detA| − 1 corresponding compactly supported wavelets ψ1, . . . , ψ| detA|−1

such that
{ψpj,m := |detA|j/2ψp(Aj · −m) : m = (m1,m2) ∈ Z2, p = 1, . . . , |detA| − 1}

forms an orthonormal basis for Wj for each j, see, e.g., [?]. We now consider the decomposition

L2(R2) = V0 ⊕
⊕
j∈N

Wj ,

where
V0 := span{φ0,m : m = (m1,m2) ∈ Z2}

and
Wj := span{ψpj,m : m = (m1,m2) ∈ Z2, p = 1, . . . , |detA| − 1}, j ∈ N.

3.1.2 Reconstruction Space

Our aim is to reconstruct functions that are supported on [0, a]2. To this end, suppose that the scaling function
and wavelet functions are supported in [0, a]2. To mimic the fact that practical applications can only handle finite
systems, we restrict to those functions whose support intersects [0, a]2, i.e., to the systems

Ω1 = {φ0,m : m = (m1,m2) ∈ Z2,−a < m1,m2 < a}

and

Ω2 = {ψpj,m : j ∈ N ∪ {0}, m = (m1,m2) ∈ Z2,−a < m1 < a(λ
(j)
1 + λ

(j)
2 ),

− a < m2 < a(λ
(j)
3 + λ

(j)
4 ), p = 1, . . . , |detA| − 1}.

The reconstruction spaceR is then defined as the closed linear span of these functions, which is

R = span{ϕ : ϕ ∈ Ω1 ∪ Ω2}.

To define the finite-dimensional subspaces RN , we require an ordering for this system. The most natural way to
order Ω1 ∪ Ω2 is starting from wavelets at coarsest scale and then continue to higher scales. Within one scale,
one might order the translation (m1,m2) in a lexicographical manner starting from the smallest number up the
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largest. More precisely, we fixm1 and letm2 run, increasem1 by one and repeat. This then leads to the following
ordering of Ω1 ∪ Ω2:

{ϕi}i∈N
= {φ0,(−a+1,−a+1), . . . φ0,(−a+1,a−1), φ0,(−a+2,−a+1) . . . , φ0,(−a+2,a−1), . . . , φ0,(a−1,a−1),

ψ1
0,(−a+1,−a+1), . . . , ψ

1

0,(−a+1,m
(0)
2 −1)

, . . . , ψ1

0,(m
(0)
1 −1,−a+1)

, . . . , ψ1

0,(m
(0)
1 −1,m

(0)
2 −1)

, . . . ,

ψ
| detA|−1
0,(−a+1,−a+1), . . . , ψ

| detA|−1

0,(−a+1,m
(0)
2 −1)

, . . . , ψ
| detA|−1

0,(m
(0)
1 −1,−m(0)

2 +1)
, . . . , ψ

| detA|−1

0,(m
(0)
1 −1,m

(0)
2 −1)

,

ψ1

1,(−a+1,−m(1)
2 +1)

, . . . , ψ1

1,(−a+1,m
(1)
2 −1)

, ψ1

1,(−a+2,−m(1)
2 +1)

, . . . , ψ1

1,(−a+2,m
(1)
2 −1)

, . . .} (3.1)

where m(j)
1 = a(λ

(j)
1 + λ

(j)
2 ) and m(j)

2 = a(λ
(j)
3 + λ

(j)
4 ). We emphasize that the presented results do not depend

on the specific ordering within the scale. Finally, based on the chosen ordering, we define the reconstruction
spaceRN by

RN = span{ϕi : i = 1, . . . , N}, N ∈ N.
In practise, it is much more common to use as approximation spaces those being generated up to a specific

scale, say, J . To mimic this approach, we coarsen the choices of N ∈ N for which we consider RN suitably in
the following way. First, we observe that the number of functions being inR up to a fixed scale J − 1 ∈ N is

NJ = (2a− 1)2 + (|detA| − 1)

J−1∑
j=0

(a(λ
(j)
1 + λ

(j)
2 + 1)− 1)(a(λ

(j)
3 + λ

(j)
4 + 1)− 1). (3.2)

Lemma 3.3. Retaining the definitions and notations above, then NJ ≤ Ca(λ
(J)
1 + λ

(J)
2 )(λ

(J)
3 + λ

(J)
4 ) for some

constant Ca depending on a.

Proof. The total number of elements NJ in the reconstruction spaceRNJ up to a scale J − 1 is prescribed by the
matrix A and the support of the scaling function φ and the wavelet ψ, respectively. However, since the support
of both φ and ψ is a square of the form [0, a]2, the total number of elements in the reconstruction space NJ is the
same as if we would have generated the wavelet system with the transpose of A. Hence, it is sufficient to prove

NJ . (λ
(J)
1 + λ

(J)
2 )(λ

(J)
3 + λ

(J)
4 ),

where the constant depends on a. We prove the result by induction. For J = 1 it is clearly true. Hence,

(2a− 1)2 + (|detA| − 1)

J−1∑
j=0

(a(λ
(j)
1 + λ

(j)
2 + 1)− 1)(a(λ

(j)
3 + λ

(j)
4 + 1)− 1)

. (λ
(J−1)
1 + λ

(J−1)
2 )(λ

(J−1)
3 + λ

(J−1)
4 ) + (|detA| − 1)(a(λ

(J−1)
1

+ λ
(J−1)
2 + 1)− 1)(a(λ

(J−1)
3 + λ

(J−1)
4 + 1)− 1)

Now,

AJ =

(
λ

(J)
1 λ

(J)
2

λ
(J)
3 λ

(J)
4

)
=

(
λ

(J−1)
1 λ

(J−1)
2

λ
(J−1)
3 λ

(J−1)
4

)(
λ1 λ2

λ3 λ4

)
=

(
λ

(J−1)
1 λ1 + λ

(J−1)
2 λ3 λ

(J−1)
1 λ2 + λ

(J−1)
2 λ4

λ
(J−1)
3 λ1 + λ

(J−1)
4 λ3 λ

(J−1)
3 λ2 + λ

(J−1)
4 λ4

)
which implies

λ
(J)
1 + λ

(J)
2 = λ

(J−1)
1 (λ1 + λ2) + λ

(J−1)
2 (λ3 + λ4),

λ
(J)
3 + λ

(J)
4 = λ

(J−1)
3 (λ1 + λ2) + λ

(J−1)
4 (λ3 + λ4).

Similar to the construction in [7], we now define the truncated scaling space by

V
(a)
0 := span{φ0,m : m = (m1,m2) ∈ Z2,−a < m1,m2 < a}

and the truncated wavelet spaces by

W
(a)
j := span{ψpj,m : m = (m1,m2) ∈ Z2,−a < m1 < a(λ

(j)
1 + λ

(j)
2 ),

− a < m2 < a(λ
(j)
3 + λ

(j)
4 ), p = 1, . . . , |detA| − 1}.

The reconstruction space of interest to us is then defined by

RNJ = V
(a)
0 ⊕W (a)

0 ⊕ . . .⊕W (a)
J−1.
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3.1.3 Sampling Space

To define the sampling space consisting of elements of the Fourier basis, we first choose T1, T2 > 0 sufficiently
large such that

R ⊂ L2([−T1, T2]2).

Thus, only functions supported on [−T1, T2]2 are relevant to us. Indeed, choosing T1 ≥ a− 1 and T2 ≥ 2a− 1

is enough. Note that λ(0)
1 = λ

(0)
4 = 1 and λ(0)

2 = λ
(0)
3 = 0. To allow an arbitrarily dense sampling, for each

ε ≤ 1
T1+T2

, we define the sampling vectors by

s
(ε)
l = εe2πiε〈l,·〉 · χ[−T1,T2]2 , l ∈ Z2. (3.3)

Thus, we sample in each direction with the same sampling rate ε. Based on these sampling vectors, we now
define the sampling space S(ε) by

S(ε) = span
{
s

(ε)
l : l ∈ Z2

}
.

The finite-dimensional subspaces S(ε)
M , M = (M1,M2) ∈ N× N, are then given by

S(ε)
M = span

{
s

(ε)
l : l = (l1, l2) ∈ Z2,−Mi ≤ li ≤Mi, i = 1, 2

}
.

3.2 Main Result
Our main results concerns the stable sampling rate of the generalized sampling scheme for the sampling spaces
S(ε)
M and the reconstruction spacesRNJ . By Theorem 2.11, for this, we have to control the infimum cosine angle

between the RNJ and S(ε)
M . In particular, we wish to determine M = (M1,M2) ∈ N × N such that, for given

θ > 1 and J − 1 ∈ N the term cos(ω(RNJ ,S
(ε)
M )) can be bounded from below by θ−1, where NJ denotes the

total number of reconstruction elements up to scale J − 1.
For this to work, we will assume that the scaling matrix does not distort the grid too much. To make this

precise, let IM = {(l1, l2) ∈ Z2 : −Mi ≤ li ≤Mi, i = 1, 2}, LM = [−M1,M1]× [−M2,M2] for (M1,M2) ∈
N2. Then, we assume that the so-called mesh norm δ obeys

δ := max
x∈εA−J (LM )

min
k∈εA−J (Z2)

‖x− y + k‖∞ <

log

(
1√

µ(LM )
+ 1

)
4πmax{|L1|, |L2|, |L3|, |L4|}

, (3.4)

for some ε independent of J , where µ denotes the 2D lebesgue measure and Li, i = 1, 2, 3, 4 are bounds that are
obtained by Lemma 6.1. We will also discuss this assumption in Example 3.5 for better understanding.

The following result shows that the stable sampling rate is indeed linear in the considered situation, showing
that this scheme is superior to any other reconstruction method in the sense of Theorem 2.15.

Theorem 3.4. Let NJ be the number of reconstruction elements up to a fixed scale J − 1, and letRNJ and S(ε)
M

be the reconstruction space and sampling space, respectively. Furthermore, assume (3.4) is fulfilled. If θ > 1,
then there exists a constant S(θ) independent of J and ε such that, if

M1 ≥
λ

(J)
1 + λ

(J)
3

ε
S(θ), M2 ≥

λ
(J)
2 + λ

(J)
4

ε
S(θ),

then, for M = (M1,M2),

cos(ω(RNJ ,S
(ε)
M )) ≥ 1

θ
.

In particular, the stable sampling rate obeys Θ(NJ , θ) = O(NJ) as NJ →∞ for every fixed θ > 1.

Summarizing, this result shows that the required number of Fourier samples is optimally small up to a constant
when utilizing 2D compactly supported wavelets for the generalized sampling reconstruction. This extends the
result of [7] to the two-dimensional case. We next consider a special, yet widely used choice for scaling matrices,
namely diagonal matrices. This includes two dimensional dyadic wavelets, which are those typically used in
applications. This situation is also considered in the numerical experiments presented in Section 5.
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Example 3.5. In this example we want to demonstrate our results and, in particular, give some better understand-
ing of the construction and assumption (3.4). Furthermore, this example shall show that there are large classes of
2D wavelets that fulfill (3.4). For this purpose, let

A =

(
2 0
0 2

)
be the scaling matrix, which – as mentioned before – gives rise to three wavelet generators. Let φ and ψp, p =
1, 2, 3 be two dimensional scaling and wavelet functions with compact support in [0, a]2, a ∈ N, which might be
obtained by tensor products of one dimensional scaling and wavelet functions, see [13, 22].

As in Subsection 3.1.2, we define

Ω1 := {φ0,m : m = (m1,m2) ∈ Z2, |mi| < a, i = 1, 2} (3.5)

and
Ω2 := {ψpj,m : j ∈ N ∪ {0},m = (m1,m2) ∈ Z2,−a < mi < 2ja, i = 1, 2, p = 1, 2, 3}, (3.6)

since these are the only functions whose support intersects [0, a]2. Again, in line with our previous approach, we
then define the reconstruction spaceR by

R = span{ϕ : ϕ ∈ Ω1 ∪ Ω2},

order the elements Ω1 ∪ Ω2 analogously to (3.1), and set

RN = span{ϕi : i = 1, . . . , N}, N ∈ N.

Now, each function ϕ in RN can be represented as a linear combination of scaling functions at highest level J ,
in particular, there exist positive integers L1, L2, L3, and L4 such that

ϕ =

L1∑
l1=L3

L2∑
l2=L4

αl1,l2φJ,(l1,l2), αl1,l2 ∈ C.

This statement will be proven in Lemma 6.1. With a view to (3.4), the explicit expression of the bounds Li, i =
1, 2, 3, 4 are highly important. In fact, we should not choose them too large, otherwise (3.4) might not hold. Since

ϕ =

L1∑
l1=L3

L2∑
l2=L4

〈ϕ, φJ,(l1,l2)〉φJ,(l1,l2),

and is compactly supported, shifting by (l1, l2) far enough leads to the fact that the coefficients become zero. For
the scaling matrix A = diag(2, 2) we have (see proof of Lemma 6.1)

L1 = L3 = 2J(3a− 1), L2 = L4 = −a+ 2J(−a+ 1).

Moreover, the mesh norm δ obeys δ ≤ ε
2J
. Hence, for ε = 1

4π(3a−1)

δ ≤ 1

4π(3a− 1)2J
≤

log

((
2J

ε

)2

+ 1

)
2π(3a− 1)2J

, (3.7)

so assumption (3.4) is fulfilled. Thus, we can apply Theorem 3.4 to obtain a constant Sθ independent of J , such
that for

M1,M2 =

⌈
2JSθ

ε

⌉
we have

cos(ω(RNJ ,S
(ε)
M )) >

1

θ
.

Counting the numbers of elements in the spaceRNJ gives

NJ = (2a−1)2+3

J−1∑
j=0

(2ja+a−1)2 = (22J−1)a2+6a(a−1)(2J−1)+3J(a−1)2+(2a−1)2 = O(22J), (3.8)

which means the number of samples scales linearly with the number of reconstruction elements.
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4 Linear Sampling Rate for 2D Boundary Wavelets
In applications, typically signals on a bounded domain are considered such as on the interval [0, 1]. Aiming
to avoid artifacts at the boundaries x = 0, 1, in [11] (see also [22]) boundary wavelets were introduced. The
considered wavelet system then consists of interior wavelets, which do not touch the boundary, and the just
mentioned boundary wavelets, leading to a system with an associated multiresolution analysis and prescribed
vanishing moments even at the boundary. Similar to the classical wavelet construction, this system can be lifted
to 2D by tensor products.

In this section, we will show that in fact also this (boundary) wavelet system allows a linear stable sampling
rate, though with a proof differing significantly from the one of the ‘classical wavelet case’ due to the different
structure at the highest scale. For this, we start with formally introducing 2D boundary wavelets – which we use
as an expression for the whole wavelet system – followed by our choice of reconstruction and sampling space.

4.1 Construction of Boundary Wavelets
We start with the 1D construction of wavelets on the interval as introduced in [11]. For this, let φ be a compactly
supported Daubechies scaling function with p vanishing moments. It is well known that φ must then have a
support of size 2p− 1. By a shifting argument, we can assume that supp (φ) = [−p+ 1, p]. In order to properly
define interior wavelets and boundary wavelets, the scale need to be large enough – i.e., the support of the
wavelets need to be small enough – to be able to distinguish between wavelets whose support fully lie in [0, 1]
and wavelets whose support intersect the boundary x = 0 and, likewise, x = 1.

Therefore, we now let j ∈ N such that 2p ≤ 2j . Then there exist 2j − 2p interior scaling functions, i.e.,
scaling functions which have support inside [0, 1], defined by

φb
j,n = φj,n = 2j/2φ(2j · −n), for p ≤ n < 2j − p.

Depending on boundary scaling functions {φleft
n }n=0,...,p−1 and {φright

n }n=0,...,p−1, which we will introduce
below, the p left boundary scaling functions are defined by

φb
j,n = 2j/2φleft

n (2j ·), for 0 ≤ n < p,

and the p right boundary scaling functions are

φb
j,n = 2j/2φright

2j−1−n(2j(· − 1)), for 2j − p ≤ n < 2j .

We remark that this leads to 2j scaling functions in total, which is the number of original scaling functions (φj,n)n
that intersect [0, 1].

We next sketch the idea of the construction of boundary scaling functions {φleft
n }n=0,...,p−1 as well as

{φright
n }n=0,...,p−1 following [11], to the extent to which we require it in our proofs. One starts by defining

edge functions φ̃k on the positive axis [0,∞) by

φ̃k(x) =

2p−2∑
n=0

(
n

k

)
φ(x+ n− p+ 1), k = 0, . . . , p− 1,

such that these edge functions are orthogonal to the interior scaling functions and such that they together generate
all polynomials up to degree p − 1. After performing a Gram-Schmidt procedure one obtains the left boundary
functions φleft

k , k = 0, . . . , p−1. The right boundary functions are then – after some minor adjustments – obtained
by reflecting the left boundary functions. This construction from [11] allows one to obtain a multiresolution
analysis.

Theorem 4.1 ([11]). If 2j ≥ 2p, then {φb
j,n}n=0,...,2j−1 is an orthonormal basis for a space V b

j that is nested,
i.e.

V b
j ⊂ V b

j+1,

and complete, i.e. ⋃
j≥log2 2p

V b
j = L2[0, 1].
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Next, we define an orthonormal basis for the wavelet space W b
j , which is as usual defined as the orthogonal

complement of V b
j in V b

j+1. For this, let ψ be the corresponding wavelet function to φ with p vanishing moments
and supp ψ = [−p + 1, p]. Similar to the construction of the scaling functions, we will obtain interior wavelets
and boundary wavelets, which then constitutes the set of wavelets in the interval. Again based on a careful choice
of boundary wavelets (ψleft

n )n and (ψright
k )k, for which we refer to [11], we define 2j − 2p interior wavelets by

ψb
j,n = ψj,n = 2j/2ψ(2j · −n), for p ≤ n < 2j − p,

p left boundary wavelets
ψb
j,n = 2j/2ψleft

n (2j ·), for 0 ≤ n < p,

and p right boundary wavelets

ψb
j,n = 2j/2ψright

2j−1−n(2j(· − 1)), for 2j − p ≤ n < 1j .

Summarizing, the following result hold for these wavelet functions.

Theorem 4.2 ([11]). Let 2J ≥ 2p. Then the following properties hold:
i) {ψb

J,n}n=0,...,2J−1 is an orthonormal basis for W b
J .

ii) L2[0, 1] can be decomposed as

L2[0, 1] = V b
J ⊕W b

J ⊕W b
J+1 ⊕W b

J+2 ⊕ . . . = V b
J

∞⊕
j=J

W b
j .

iii)
{
{φb

J,m}m=0,...,2J−1, {ψb
j,n}j≥J,n=0,...,2j−1

}
is an orthonormal basis for L2[0, 1].

iv) If φ, ψ ∈ Cr[0, 1], then
{
{φb

j,m}m=0,...,2J−1, {ψb
j,n}j≥J,n=0,...,2j−1

}
is an unconditional basis for Cs[0, 1]

for all s < r.

As mentioned before, this system gives rise to a 2D system by tensor products, i.e., by the standard 2D
separable wavelet construction. In particular, this 2D system again constitutes an MRA, see [22].

4.2 Sampling and Reconstruction Space
4.2.1 Reconstruction Space

For defining the reconstruction space, we will now assume that the region of interest is [0, 1]2 instead of [0, a]2

with a ∈ N, as previously chosen. Our starting point is a 1D compactly supported Daubechies scaling function
with p vanishing moments (cf. Subsection 4.1). Recall that Daubechies wavelets have at least the following
frequency decay,

|φ̂(ξ)| . 1

1 + |ξ|
, as |ξ| → ∞. (4.1)

Let ψ be a corresponding wavelet with p vanishing moments, and let φb and ψb be the wavelets on the interval
as introduced in the previous subsection. Let J0 be the smallest number such that 2J0 ≥ 2p. Then the associated
2D scaling functions are of the form

φb
J0,(n1,n2) := φb

J0,n1
⊗ φb

J0,n2
, 0 ≤ n1, n2 ≤ 2J0 − 1

and, for 0 ≤ n1, n2 ≤ 2j − 1 with j ≥ J0, the 2D wavelet functions are defined by

ψb,k
j,(n1,n2) :=


φb
j,n1
⊗ ψb

j,n2
, j ≥ J0, k = 1,

ψb
j,n1
⊗ φb

j,n2
, j ≥ J0, k = 2,

ψb
j,n1
⊗ ψb

j,n2
, j ≥ J0, k = 3.

Next, let
Ω1 = {φb

J0,(n1,n2) : 0 ≤ n1, n2 ≤ 2J0 − 1}
and

Ω2 = {ψb,k
j,(n1,n2) : j = J0, 1, . . . , J − 1, 0 ≤ n1, n2 ≤ 2j − 1, k = 1, 2, 3}.

Then, for a fixed scale J , and for NJ = 22J , the reconstruction spaceRNJ is given by

RNJ = span{ϕi : ϕi ∈ Ω1 ∪ Ω2, i = 1, . . . , NJ}. (4.2)

An ordering can be obtained analogously as in Subsection 3.1.2.
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Numbers for Haar and θ−1 = 0.45
J NJ M for ε = 1/2 M for ε = 1/3
0 4 25 25
1 16 81 169
2 64 289 625
3 256 1089 2401
4 1024 4225 9409

Numbers for Daubechies and θ−1 = 0.45
J NJ M for ε = 1/7 M for ε = 1/8
0 100 225 289
1 292 841 1089
2 880 3249 4225
3 2908 12769 16641
4 10408 - -

Table 1: Number of reconstruction elements and samples for Haar and Daubechies-4. Note that these numbers
predict the jumps in Figure 1.

4.2.2 Sampling Space

The sampling space can be chosen similar to Subsection 3.1.3, i.e., for ε ≤ 1, we set

s
(ε)
l = εe2πiε〈l,·〉 · χ[0,1]2 , l ∈ Z2,

and for M = (M1,M2) ∈ N× N

S(ε)
M = span

{
s

(ε)
l : l = (l1, l2) ∈ Z2,−Mi ≤ li ≤Mi, i = 1, 2

}
. (4.3)

4.3 Main Result
Our main result of this section states the linearity of the stable sampling rate for boundary wavelets, whose proof
is presented in Section 7.

Theorem 4.3. Let J ∈ N, ε ≤ 1, and θ > 1. Further, let S(ε)
M andRNJ be defined as 4.3 and (4.2), respectively.

Then

inf
ϕ∈RNJ
‖ϕ‖=1

‖P
S

(ε)
M

ϕ‖ ≥ 1

θ

for M = (dSθ/εe2J , dSθ/εe2J) ∈ N × N, where Sθ is a constant independent of J . In particular, the stable
sampling rate obeys Θ(NJ , θ) = O(NJ) as NJ →∞ for every fixed θ > 1

Remark 4.4. This result will be proved independently of Theorem 3.4, since boundary wavelets do constitute an
MRA but at highest scaling level, the space VJ contains more than one generating function φ. It uses the reflected
functions as well.

5 Numerical Experiments
In this section we numerically demonstrate the linearity of the stable sampling rate as stated in Theorem 3.4. We
will also demonstrate how this combines with generalized sampling in practice. In particular, given this linearity,
reconstructing from Fourier samples in smooth boundary wavelets will give an error decaying according to the
smoothness and the number of vanishing moments.

In this section we consider dyadic scaling matrices

A =

(
2 0
0 2

)
. (5.1)

Furthermore, our focus are separable wavelets, i.e. wavelets that are obtained by tensor products of one dimen-
sional scaling functions and one dimensional wavelet functions, respectively. Scaling matrices of the form (5.1)
preserve the separability.
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(a) Θ(N, θ) for Haar. Computed for J = 4 up to N = 1024
with ε = 1/2 and θ−1 = 0.45.
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(b) Θ(N, θ) for Haar. Computed for J = 4 up to N = 1024
with ε = 1/3 and θ−1 = 0.45.
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(c) Θ(N, θ) for Daubechies-4. Computed for J = 3 up to
N = 2908 with ε = 1/7 and θ−1 = 0.45.
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(d) Θ(N, θ) for Daubechies-4. Computed for J = 3 up to
N = 2908 with ε = 1/8 and θ−1 = 0.45.

Figure 1: Stable sampling rate Θ(N, θ) for two dimensional dyadic Haar wavelets and two dimensional dyadic
Daubechies-4 wavelets.

5.1 Linearity examples with Haar and Daubechies-4 wavelets
We use the description of Section 3.1 and Example 3.5 in order to perform numerical experiments for some
known wavelets. This gives the reconstruction spaceR = span{ϕ : ϕ ∈ Ω1∪Ω2} where Ω1 and Ω2 are defined
in (3.5) and (3.6) respectively. We order the reconstruction space R in the same manner as presented at the end
of Section 3. In (3.8) we counted the number of reconstruction elements up to level J − 1, which leads to

NJ = (22J − 1)a2 + 6a(a− 1)(2J − 1) + 3J(a− 1)2 + (2a− 1)2 (5.2)

many elements, which is asymptotically of order 22J .
We test Haar wavelets and 2D Daubechies-4 wavelets. Figure 1 shows the linear behaviour of the stable

sampling rate for these two types of wavelet generators. By a small abuse of notation, we also write M for the
total number of samples. In our analysis in Section 3 we estimated the angle cos(ω(RN ,S(ε)

M )) (recall that ε is
the sampling rate) with respect to some fixed θ > 1. In fact we computed M such that

inf
ϕ∈RN
‖ϕ‖=1

‖PS(ε)
M

ϕ‖ ≥ 1

θ
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Figure 2: Reconstruction of the function f1(x, y) = cos2(x) exp(−y). The second row shows an 8 times zoomed-
in version of the upper left corner. Left: original function. Middle: truncated Fourier series with 2562 Fourier
coefficients. Right: generalized sampling with Daubechies-3 wavelets computed from the same Fourier coeffi-
cients.

holds. We proved that M is up to a constant of the same size as NJ . Figure 1 shows the stable sampling rate (in
blue)

Θ(N, θ) = min

{
M ∈ N, cos(ω(RN ,SM )) ≥ 1

θ

}
and the linear function f (in red) given by

f(N) =
Mmax

Nmax
N,

where Nmax is the maximum value of N used in the experiment and Mmax = Θ(Nmax, θ). We computed the
stable sampling rate up to level J = 4. Note the (significant) jumps of the stable sampling rate occur whenever
N ∈ N crosses the scaling level NJ , J = 0, . . . , 4. In the Haar case these are

N0 = 4, N1 = 16, N2 = 64, N3 = 256, N4 = 1024,

see (5.2). Note that a = 1 in the Haar case. In particular, the jumps are linear, suggesting a linear stable sampling
rate. Figure 1 (b), (c), and (d) are interpreted similarly. However, the theoretical results are asymptotic results.
Therefore, it should not be surprising that the stable sampling rate is below the linear line in some cases. It aligns
asymptotically.

5.2 Fourier samples and boundary wavelet reconstruction
In this example we will demonstrate the efficiency of generalized sampling given the established linearity of the
stable sampling rate. In particular, suppose that f is a function we want to recover from its Fourier information.
It is smooth, however, not periodic – a problem that occurs for example in electron microscopy and also in MRI.
This causes the classical Fourier reconstruction to converge slowly, yet a smooth boundary wavelet basis will
give much faster convergence (see [22, Ch. 9]). As discussed, the issue is that we are given Fourier samples,
not wavelet coefficients. However, this is not a problem in view of the linearity of the stable sampling rate. In
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Figure 3: Reconstruction of the function f2(x, y) = (1 + x2)(2y− 12). Upper left: truncated Fourier series with
5122 Fourier coefficients. Middle left: 8 times zoomed-in version of the upper figure. Lower left: error committed
by the truncated Fourier series. Upper right: generalized sampling with Daubechies-3 wavelets computed from
the same 5122 Fourier coefficients. Middle right: 8 times zoomed-in version of the upper figure. Lower right:
error committed by generalized sampling.
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particular, if f ∈ W s(0, 1), where Ws(0, 1) denotes the usual Sobolev space, and PRN denotes the projection
onto the spaceRN of the first N boundary wavelets (see (4.2)), then

‖f − PRN f‖ = O(N−s), N →∞,

provided that the wavelet has sufficiently many vanishing moments. Now, if GN,M (f) ∈ RN is the generalized
sampling solution from Definition 2.9 given M Fourier coefficients, and M is chosen according to the stable
sampling rate then

‖f −GN,M (f)‖ = O(N−s) = O(M−s), N →∞.

Hence, we obtain the same convergence rate up to a constant, by simply postprocessing the given samples.
To illustrate this advantage we will consider the following two functions:

f1(x, y) = cos2(x) exp(−y), f2(x, y) = (1 + x2)(2y − 12).

In Figure 2 we have shown the results for f1 and compared the classical Fourier reconstruction with the general-
ized sampling reconstruction. Both examples use exactly the same samples, however, note the pleasant absence
of the Gibb’s ringing in the generalized sampling case. The same experiment is carried out for f2 in Figure 3,
however, here we have displayed the reconstructions in 3D in order to visualize the error.

6 Proof of Theorem 3.4
The proof of Theorem 3.4 is somewhat technical, wherefore we divide the proof into several steps. First, in
Subsection 6.1, the overall structure of the proof is presented, and the respective details can then be found in
Subsection 6.1.

6.1 Structure of the Proof
Let ε ∈ (0, 1/(T1 + T2)] and θ > 1. Then we have to prove that

inf
ϕ∈RNJ
‖ϕ‖=1

‖PS(ε)
M

ϕ‖ ≥ 1

θ
, (6.1)

for

M = (M1,M2) =

(
λ

(J)
1 + λ

(J)
3

ε
S(θ),

λ
(J)
2 + λ

(J)
4

ε
S(θ)

)
,

and some S(θ) independent of J . To this end, let ϕ ∈ RN be such that ‖ϕ‖ = 1. Since the sampling functions
form an orthonormal basis of S(ε)

M , we obtain

‖PS(ε)
M

ϕ‖2 =

M1∑
l1=−M1

M2∑
l2=−M2

|〈ϕ, s(ε)
l 〉|

2, l = (l1, l2). (6.2)

By Lemma 6.1, which relies mainly on the underlying MRA structure, we can write ϕ in terms of scaling func-
tions at highest scale, i.e.,

ϕ =

L1∑
l1=L3

L2∑
l2=L4

αl1,l2φJ,(l1,l2),

for some L1, L2, L3, L4 ∈ Z. Lemma 6.3, which is proven by direct computations, then shows that

〈ϕ, s(ε)
l 〉 = ε|detA|−J/2Φ(ε(A−J)T l)φ̂(ε(A−J)T l),

where Φ is a trigonometric polynomial of the form

Φ(z) =

L1∑
m1=L3

L2∑
m2=L4

αm1,m2
e−2πi〈z,m〉, z ∈ R2,m = (m1,m2).
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Using (6.2), we conclude that

‖PS(ε)
M

ϕ‖2 =

M1∑
l1=−M1

M2∑
l2=−M2

ε2|detA|−J |Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2, l = (l1, l2).

By Theorem 6.10, there exist some ε0 > 0 and S(θ) =
(
S

(θ)
1 , S

(θ)
2

)
∈ N × N that does not depend on J such

that
M1∑

l1=−M1

M2∑
l2=−M2

ε2
0|detA−J ||Φ(ε0(A−J)T l)|2|φ̂(ε0(A−J)T l)|2 ≥ ‖Φ‖

2

θ2

for

M =
1

ε0
(AJ)T S̃(θ) =

λ
(J)
1 +λ

(J)
3

ε0
S

(θ)
1

λ
(J)
2 +λ

(J)
4

ε0
S

(θ)
2

 .

Since

‖Φ‖2 =

L1∑
m1=L3

L2∑
m2=−L4

|βm1,m2 |2 = ‖ϕ‖2 = 1,

we obtain
‖PS(ε0)

M

ϕ‖2 ≥ 1

θ2
.

Finally, Lemma 6.11 implies that a change of ε only changes the constant, showing that (6.1) is true for any
ε ∈ (0, 1/(T1 + T2)], thereby proving Theorem 3.4.

6.2 Auxiliary results
In this section we will prove the results mentioned in Subsection 6.1, which are required for completing the proof
of Theorem 3.4. The following result is an extension of a result from [6] to the two dimensional setting.

Lemma 6.1. Let J ∈ N and ϕ ∈ V (a)
0 ⊕W (a)

0 ⊕ . . .⊕W (a)
J−1. Then there exist L1, L2, L3, L4 ∈ Z dependent of

J such that

ϕ =

L1∑
l1=L3

L2∑
l2=L4

αl1,l2φJ,(l1,l2).

Proof. Let ϕ ∈ V (a)
0 ⊕W (a)

0 ⊕ . . .⊕W (a)
J−1. Then ϕ has an expansion of the following form

ϕ =

m1=a−1∑
m1=−a+1

m2=a−1∑
m2=−a+1

αm1,m2φ0,(m1,m2) +

| detA|−1∑
p=1

J−1∑
j=0

a(λj1+λj2)−1∑
m1=−a+1

a(λj3+λj4)−1∑
m2=−a+1

βpj,(m1,m2)ψ
p
j,(m1,m2). (6.3)

Since V (a)
0 ⊂ V0 and W (a)

j ⊂Wj for j ∈ N and the sequence (Vj)j∈Z forms an MRA, it follows that

V
(a)
0 ⊕W (a)

0 ⊕ . . .⊕W (a)
J−1 ⊂ VJ .

Since an orthonormal basis for VJ is given by the functions {φJ,m : m ∈ Z2}, for each |mi| < a, i = 1, 2, we
have

φ0,(m1,m2) =
∑
l∈Z2

〈φ0,(m1,m2), φJ,l〉φJ,l

Moreover, since φ0,(m1,m2) and φJ,l are compactly supported, we obtain

〈φ0,(m1,m2), φJ,l〉 6= 0,

if
−a+ (−a+ 1)(λ

(J)
1 + λ

(J)
2 ) ≤ l1 ≤ (2a− 1)(λ

(J)
1 + λ

(J)
2 )

and
−a+ (−a+ 1)(λ

(J)
3 + λ

(J)
4 ) ≤ l2 ≤ (2a− 1)(λ

(J)
3 + λ

(J)
4 ).
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This follows by a straightforward computation from the support conditions of φ0,(m1,m2) and φJ,l together with
|mi| < a, i = 1, 2. Similarly, we have 〈ψpj,(m1,m2), φJ,(l1,l2)〉 6= 0 if

Case I: detAj ≥ 0

−a− λ(J)
1

(−a+ 1)λ
(j)
4 + λ

(j)
2 (a(λ

(j)
3 + λ

(j)
4 )− 1)

detAj
+ λ

(J)
2

(−a+ 1)λ
(j)
1 + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
3

detAj

< l1 < λ
(J)
1

a(λ
(j)
4 − λ

(j)
2 ) + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
4 + (a− 1)λ

(j)
2

detAj
+

+ λ
(J)
2

a(λ
(j)
1 − λ

(j)
3 ) + (a(λ

(j)
3 + λ

(j)
4 )− 1)λ

(j)
1 + (a− 1)λ

(j)
3

detAj

and

−a− λ(J)
3

(−a+ 1)λ
(j)
4 + λ

(j)
2 (a(λ

(j)
3 + λ

(j)
4 )− 1)

detAj
+ λ

(J)
4

(−a+ 1)λ
(j)
1 + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
3

detAj

< l2 < λ
(J)
3

a(λ
(j)
4 − λ

(j)
2 ) + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
4 + (a− 1)λ

(j)
2

detAj
+

+ λ
(J)
4

a(λ
(j)
1 − λ

(j)
3 ) + (a(λ

(j)
3 + λ

(j)
4 )− 1)λ

(j)
1 + (a− 1)λ

(j)
3

detAj
.

Case II: detAj < 0

−a− λ(J)
1

(−a+ 1)λ
(j)
4 + λ

(j)
2 (a(λ

(j)
3 + λ

(j)
4 )− 1)

detAj
+ λ

(J)
2

(−a+ 1)λ
(j)
1 + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
3

detAj

> l1 > λ
(J)
1

a(λ
(j)
4 − λ

(j)
2 ) + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
4 + (a− 1)λ

(j)
2

detAj
+

+ λ
(J)
2

a(λ
(j)
1 − λ

(j)
3 ) + (a(λ

(j)
3 + λ

(j)
4 )− 1)λ

(j)
1 + (a− 1)λ

(j)
3

detAj

and

−a− λ(J)
3

(−a+ 1)λ
(j)
4 + λ

(j)
2 (a(λ

(j)
3 + λ

(j)
4 )− 1)

detAj
+ λ

(J)
4

(−a+ 1)λ
(j)
1 + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
3

detAj

> l2 > λ
(J)
3

a(λ
(j)
4 − λ

(j)
2 ) + (a(λ

(j)
1 + λ

(j)
2 )− 1)λ

(j)
4 + (a− 1)λ

(j)
2

detAj
+

+ λ
(J)
4

a(λ
(j)
1 − λ

(j)
3 ) + (a(λ

(j)
3 + λ

(j)
4 )− 1)λ

(j)
1 + (a− 1)λ

(j)
3

detAj
.

Minimizing the lower bounds with respect to j ∈ {0, . . . , J − 1} and maximizing the upper bounds with respect
to j, respectively, yields the claim.

The following lemma is well known (see [22]).

Lemma 6.2. Let f ∈ L2(R2). Then {f(· −m) : m ∈ Z2} is an orthonormal system if and only if∑
m∈Z2

|f̂(ξ +m)|2 = 1 for almost every ξ ∈ R2.

Finally, one more technical lemma is needed.

Lemma 6.3. Let A be a scaling matrix, J ∈ Z, and m = (m1,m2) ∈ Z2. Further, let ϕ ∈ span{φJ,m : m ∈
Z2} be compactly supported in [−T1, T2]2, and let L1, L2, L3, L4 ∈ Z be such that

ϕ =

L1∑
m1=L3

L2∑
m2=L4

αm1,m2φJ,(m1,m2), αm ∈ C.

Then, for all l ∈ Z2,
〈ϕ, s(ε)

l 〉 = ε|detA|−J/2Φ(ε(A−J)T l)φ̂(ε(A−J)T l),
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where s(ε)
l is defined in (3.3) and Φ is the trigonometric polynomial given by

Φ(z) =
∑

L3≤m1≤L1,
L4≤m2≤L2,

αme
−2πi〈z,m〉, z ∈ R2,m = (m1,m2).

Proof. Since ϕ is supported in [−T1, T2]2, we obtain

〈ϕ, s(ε)
l 〉 = ε

∫
R2

ϕ(x)e−2πiε〈l,x〉 · χ[−T1,T2]2 dx

= εϕ̂(εl)

= ε

(
L2∑

m1=L1

L4∑
m2=L3

αm1,m2
φJ,(m1,m2)

)∧
(εl)

= ε

L2∑
m1=L1

L4∑
m2=L3

αm1,m2

(
φJ,(m1,m2)

)∧
(εl)

= ε|detA|−J/2Φ(ε(A−J)T l)φ̂(ε(A−J)T l).

This proves the claim.

6.3 Theorem 6.10
The proof of Theorem 6.10 requires a particular estimate (Proposition 6.9) for the norm of trigonometric polyno-
mials depending on their evaluations on a particular grid whose mesh norm and associated Voronoi regions come
also into play.

6.3.1 Mesh Norm

We start with the definition of a mesh norm for the situation we are faced with. A mesh norm can be interpreted
as the largest distance between neighboring nodes.

Definition 6.4. Let Λ ⊂ Z2 be an integer grid of the form

Λ :=
{

(l1, l2) ∈ Z2 : −Mi ≤ li ≤Mi, i = 1, 2
}
, M1,M2 ∈ N,

and let A be a scaling matrix. Set

Ω := Λ
A

:= A([−M1,M1]× [−M2,M2]) ⊂ R2,

and define a metric ρ on Ω by

ρ : Ω× Ω −→ R+, (x, y) 7→ min
k∈A(Z2)

‖x− y + k‖∞.

The mesh norm of {xl ∈ Ω : l ∈ Λ} is then defined as

δ := max
x∈Ω

min
l∈Λ

ρ(xl, x),

where xl := A · l, l ∈ Λ denote the nodes in Ω.

Before we can continue, we require some notions and results on Voronoi regions and trigonometric polyno-
mials. Our first result shows that if the distance between the nodes {xl}l converges to zero, the mesh norm of the
entire grid Ω converges to zero.

Lemma 6.5. Let ε > 0 and Λ ⊂ Z2 be defined by

Λ :=
{

(l1, l2) ∈ Z2 : −Mi ≤ li ≤Mi, i = 1, 2
}
,

where M1,M2 ∈ N. Furthermore, suppose A is a scaling matrix, and let Ω(ε) := Λ
εA

. If ε −→ 0, then
δ(ε) −→ 0, where δ(ε) denotes the mesh norm of {εAl ∈ Ω(ε) : l ∈ Λ}.
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Proof. If ε→ 0, then
εA(Λ) = {εAl : l ∈ Λ} −→ {(0, 0)}

with respect to the standard Euclidean distance. Furthermore, for xl := εAl, we have

lim
ε→0

δ(ε) = lim
ε→0

max
x∈Ω(ε)

min
l∈Λ

min
k∈εA(Z2)

‖x− xl + k‖∞ ≤ lim
ε→0

max
x∈Ω(ε)

min
l∈Λ
‖x− xl‖∞. (6.4)

Since x, xl ∈ Ω(ε) for all l ∈ Λ, we obtain

lim
ε→0

2 max
x∈Ω(ε)

min
l∈Λ
‖x− xl‖∞ ≤ lim

ε→0
max

x,y∈Ω(ε)
‖x− y‖∞.

Inserting this estimate into (6.4) yields

lim
ε→0

δ(ε) ≤ lim
ε→0

max
x,y∈Ω(ε)

‖x− y‖∞ ≤ lim
ε→0

diam Ω(ε) = lim
ε→0

diam Λ
εA

= lim
ε→0

diam εΛ
A

= lim
ε→0

ε diam Λ
A︸ ︷︷ ︸

<∞

= 0,

where diam(F ) denotes the diameter of a set F ⊂ Rd, i.e.,

diam(F ) = sup
x,y∈F

d2(x, y),

and d2 denotes the Euclidean metric on Rd. Since the mesh norm is always non-negative, the lemma is proven.

6.3.2 Voronoi Regions

The next result studies the volume of the Voronoi regions associated to the previously considered grid Λ with
respect to the metric ρ defined in Definition 6.4. We start by formally defining the notion of Voronoi region in
our setting.

Definition 6.6. Let Ω ⊂ R2, and let (xl)l∈Λ be a sequence in R2. Then we refer to the sets (Vl)l∈Λ defined by

Vl := {x ∈ Ω : ρ(x, xl) ≤ ρ(x, xk) for all k 6= l}

as Voronoi regions with respect to Λ, Ω, ρ, and xl.

We can now state the previously announced result.

Lemma 6.7. Let M1,M2 ∈ N and

Λ :=
{

(l1, l2) ∈ Z2 : −Mi ≤ li ≤Mi, i = 1, 2
}
.

Moreover, let Ω = Λ
Id

, where Id denotes the 2 × 2-identity matrix, and let (Vl)l∈Λ be the Voronoi regions with
respect to Λ, Ω, ρ, and l. Then, for all l ∈ Λ,

µ(Vl) ≤ 1,

where µ denotes the 2D Lebesgue measure.

Proof. Notice that the Voronoi regions (Vl)l∈Λ are in fact rectangles, since the grid is an integer grid with a
constant step-size. Hence, for each l ∈ Λ,

µ(Vl) = al1,l2 · bl1,l2 , al1,l2 , bl1,l2 ∈ R, (6.5)

where al1,l2 denotes the width and bl1,l2 the height of the rectangle Vl.
Towards a contradiction, assume that Vl does contain two different nodes xk and xl with k 6= l. This implies

0 6= ρ(xk, xl) ≤ ρ(xl, xl) = 0,

which is a contradiction. Thus, we can conclude that

al1,l2 ≤ ρ(xl1+1,l2 , xl1,l2) and bl ≤ ρ(xl1,l2 , xl1,l2+1),

which, by (6.5), proves the claim.
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We next obtain a slight generalization of the previous result.

Lemma 6.8. Let A be a (linear) bijective transformation acting on R2 with matrix representation

A =

(
λ1 λ2

λ3 λ4

)
,

and let Λ and (Vl)l∈Λ be defined as in Lemma 6.7. Then

µ(A(Vl)) ≤ |detA|.

Proof. The result follows from Lemma 6.7 by an integration by substitution.

6.3.3 Trigonometric Polynomials

The next theorem is an adapted version of a result presented in [24, Thm. 3.2] which again is a reformulation of
a result proven by Gröchenig in [17].

Proposition 6.9. Let J, L1, L2, L3, L4 ∈ Z such that L1 ≥ L3 and L2 ≥ L4, and let Φ a trigonometric
polynomial of the form

Φ(z) =

L1∑
m1=L3

L2∑
m2=L4

αm1,m2
e−2πi〈z,m〉, z ∈ R2,m = (m1,m2).

Further, let the grid Λ be defined as in Lemma 6.7, let A be a scaling matrix, and let Ω(ε) := Λ
εA−J

for ε > 0.
Set xl := ε(A−J)T l, l ∈ Λ. If the mesh norm δ of {xl ∈ Ω(ε) : l ∈ Λ} obeys

δ <

log

(
1√

µ(Ω(ε))
+ 1

)
2πmax{|L1|, |L2|, |L3|, |L4|}

,

where µ is the 2D Lebesgue measure, then there exists a positive constant C(δ, L1, L2, L3, L4) such that

C(δ, L1, L2, L3, L4)‖Φ‖ ≤

(∑
l∈Λ

ε2|detA−J ||Φ(ε(A−J)T l|2
) 1

2

,

where

C(δ, L1, L2, L3, L4) =

(
1−

(
e2πδmax{|L1|,|L2|,|L3|,|L4|} − 1

)√
µ(Ω(ε))

)
and

‖f‖ :=

(∫
Ω(ε)

|f(x)|2 dx
)1/2

, f ∈ L2(Ω(ε)).

Proof. We first observe that by the hypotheses, the constant C(δ, L1, L2, L3, L4) is indeed positive.
Second, let (Vl)l∈Λ be the Voronoi regions with respect to Λ, Ω(ε), and ρ. For l ∈ Λ, we define the weights

ωl := µ(Vl). As in Lemma 6.8, integration by substitution yields

ωl = µ(Vl) ≤ ε2|detA−J |.

Hence it suffices to prove the existence of a constant C(δ, L1, L2, L3, L4) > 0 such that

C(δ, L1, L2, L3, L4)‖Φ‖ ≤

(∑
l∈Λ

ωl|Φ(ε(A−J)T l|2
) 1

2

, (6.6)

For this, we first observe that(∑
l∈Λ

ωl|Φ(ε(A−J)T l|2
) 1

2

=

 ∫
Ω(ε)

∑
l∈Λ

|Φ(ε(A−J)T l|2
 1

2

=

∥∥∥∥∥∑
l∈Λ

Φ(xl)χVl

∥∥∥∥∥ . (6.7)
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By the (inverse) triangle inequality,∥∥∥∥∥∑
l∈Λ

Φ(xl)χVl

∥∥∥∥∥ ≥ ‖Φ‖ −
∥∥∥∥∥Φ−

∑
l∈Λ

Φ(xl)χVl

∥∥∥∥∥ . (6.8)

Hence, we require an upper bound for ‖Φ−
∑
l∈Λ Φ(xl)χVl‖. By Taylor expansion and Bernstein’s inequality,

∥∥∥∥∥Φ−
∑
l∈Λ

Φ(xl)χVl

∥∥∥∥∥
2

=

∫
Ω(ε)

∣∣∣∣∣Φ(x)−
∑
l∈Λ

Φ(xl)χVl(x)

∣∣∣∣∣
2

dx

=

∫
Ω(ε)

∣∣∣∣∣∑
l∈Λ

Φ(x)χVl(x)− Φ(xl)χVl(x)

∣∣∣∣∣
2

dx

≤
∑
l∈Λ

∫
Vl

|Φ(x)− Φ(xl)|2 dx

≤
∑
l∈Λ

∫
Vl

∣∣∣∣∣∣
∑

α∈N2\{(0,0)}

1

α!
‖x− xl‖α|DαΦ(x)|

∣∣∣∣∣∣
2

dx

≤
∑
l∈Λ

∫
Vl

∣∣∣∣∣∣
∑

α∈N2\{(0,0)}

1

α!
δ|α|(max{|L1|, |L2|, |L3|, |L4|}π)|α|‖Φ‖

∣∣∣∣∣∣
2

dx

≤

∣∣∣∣∣∣
∑

α∈N2\{(0,0)}

1

α!
δ|α|(max{|L1|, |L2|, |L3|, |L4|}π)|α|‖Φ‖

∣∣∣∣∣∣
2

·
∑
l∈Λ

∫
Vl

1 dx

Since the Voronoi regions build a partition of Ω(ε),∑
l∈Λ

µ(Vl) = µ(Ω(ε)),

and we can continue by∥∥∥∥∥Φ−
∑
l∈Λ

Φ(xl)χVl

∥∥∥∥∥
2

≤
∣∣∣(e2πδmax{|L1|,|L2|,|L3|,|L4|} − 1

)∣∣∣2 ‖Φ‖2µ(Ω(ε)). (6.9)

Using (6.9) and (6.8), we obtain∥∥∥∥∥∑
l∈Λ

Φ(xl)χVl

∥∥∥∥∥ ≥ ‖Φ‖ −
∥∥∥∥∥Φ−

∑
l∈Λ

Φ(xl)χVl

∥∥∥∥∥
≥ ‖Φ‖ −

∣∣∣∣‖Φ‖(e2πδmax{|L1|,|L2|,|L3|,|L4|} − 1
)√

µ(Ω(ε))

∣∣∣∣
= ‖Φ‖

(
1−

(
e2πδmax{|L1|,|L2|,|L3|,|L4|} − 1

)√
µ(Ω(ε))

)
.

Combining this estimate with (6.7) proves (6.6).

Finally, we can state and prove Theorem 6.10, which is one main ingredient for the proof of Theorem 3.4 in
Subsection 6.1.

Theorem 6.10. Let L1, L2, L3, L4 ∈ Z such that L1 ≥ L3 and L2 ≥ L4 and αm1,m2
∈ C, and let Φ be the

trigonometric polynomial

Φ(·, ·) =

L1∑
m1=L3

L2∑
m2=L4

αm1,m2
e−2πi(·)m1e−2πi(·)m2 .
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Further, let A =

(
λ1 λ2

λ3 λ4

)
be a scaling matrix, J ∈ N a maximal scale, and Λ ⊂ Z2 the grid defined by

Λ :=
{

(l1, l2) ∈ Z2 : −Mi ≤ li ≤Mi, i = 1, 2
}
,

where M1,M2 ∈ N. If there exists ε ≤ 1/(T1 + T2) independent of J such that δ fulfills

δ <

log

(
1√

µ(Ω(ε))
+ 1

)
4πmax{|L1|, |L2|, |L3|, |L4|}

,

then there exists S̃(θ) = (S
(θ)
1 , S

(θ)
2 ) ∈ N× N, independent of J , such that, for all θ > 1, we have∑

l∈Λ

ε2|detA−J ||Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2 ≥ ‖Φ‖
2

2θ2
,

for M = (M1,M2) = 1
ε (AJ)T S̃(θ) and scaling function φ.

Proof. Since 0 < ε < 1, there exists an m ∈ N, such that

1

m+ 1
≤ ε < 1

m
.

Set ε = 1
m+1 , and note that (3.4) still holds, since the logarithm is monotonically increasing.

Next, for some S ∈ N to be determined later, let(
M1

M2

)
:=

1

ε
(AJ)T

(
S
S

)
=

1

ε

(
λ

(J)
1 + λ

(J)
3

λ
(J)
2 + λ

(J)
4

)
S, where as before AJ =

(
λ

(J)
1 λ

(J)
2

λ
(J)
3 λ

(J)
4

)
.

For l = (l1, l2) ∈ Z2, we then obtain∑
l∈Λ

ε2|detA−J ||Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2

=

M1−1∑
l1=−M1

M2−1∑
l2=M2

ε2|detA−J ||Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2

=

λ
(J)
1 +λ

(J)
3

ε −1∑
l1=0

λ
(J)
2 +λ

(J)
4

ε −1∑
l2=0

S−1∑
s=−S

S−1∑
t=−S

(
ε2|detA−J | ·

∣∣∣∣Φ(ε(A−J)T
(
l +

1

ε
(AJ)T

(
s
t

)))∣∣∣∣2
·
∣∣∣∣φ̂(ε(A−J)T

(
l +

1

ε
(AJ)T

(
s
t

)))∣∣∣∣2), (6.10)

Integer periodicity of the trigonometric polynomial implies that, for all s ∈ Z,

Φ

(
ε(A−J)T

(
l +

1

ε
(AJ)T

(
s
t

)))
= Φ

(
ε(A−J)T l +

(
s
t

))
= Φ

(
ε(A−J)T l

)
.

Therefore, by (6.10)∑
l∈Λ

ε2|detA−J ||Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2

=

λ
(J)
1 +λ

(J)
3

ε −1∑
l1=0

λ
(J)
2 +λ

(J)
4

ε −1∑
l2=0

(
ε2|detA−J ||Φ(ε(A−J)T l)|2

S−1∑
s=−S

S−1∑
t=−S

∣∣∣∣φ̂((A−J)T l +

(
s
t

))∣∣∣∣2). (6.11)

Let θ > 1. Then, by Lemma 6.2, there exists S(θ) ∈ N such that

S(θ)−1∑
s=−S(θ)

S−1∑
t=−S

∣∣∣∣φ̂((A−J)T l +

(
s
t

))∣∣∣∣2 ≥ 1

θ
. (6.12)
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We now choose S := S(θ). Combining (6.11) and (6.12) yields∑
l∈Λ

ε2|detA−J ||Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2

≥

λ
(J)
1 +λ

(J)
3

ε −1∑
l1=0

λ
(J)
2 +λ

(J)
4

ε −1∑
l2=0

ε2|detA−J ||Φ(ε(A−J)T l)|2 · 1

θ
. (6.13)

Next, we apply Proposition 6.9 to (6.13) to obtain∑
l∈Λ

ε2|detA−J ||Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2

≥
(
‖Φ‖

(
1−

(
e2πδmax{|L1|,|L2|,|L3|,|L4|} − 1

)√
µ(Ω(ε))

))2

· 1

θ

Since

1+
(

1− e2πδmax{|L1|,|L2|,|L3|,|L4|}
)√

µ(Ω(ε))

≥ 1 +

1− e2πmax{|L1|,|L2|,|L3|,|L4|}
log

 1√
µ(Ω(ε))

+1


4πmax{|L1|,|L2|,|L3|,|L4|}

√µ(Ω(ε))

= 1 +

(
1−

(√
µ(Ω(ε)) + 1

)1/2
)√

µ(Ω(ε))

= 1 +

(√
µ(Ω(ε))−

(
µ(Ω(ε))3/2 + µ(Ω(ε))

)1/2
)

≥ 1− µ(Ω(ε))3/4

≥ 1− ε3/4
(
detA−J

)3/4
≥ 1

2

we can conclude ∑
l∈Λ

ε2|detA−J ||Φ(ε(A−J)T l)|2|φ̂(ε(A−J)T l)|2 ≥ ‖Φ‖
2

2θ
.

Hence the theorem is proven for

M1 =
λ

(J)
1 + λ

(J)
3

ε
S(θ) and M2 =

λ
(J)
2 + λ

(J)
4

ε
S(θ).

6.3.4 Lemma 6.11

We mention that this result is proved in the same manner as the one dimensional result from [6].

Lemma 6.11. For γ > 1 and ε1, ε2 ∈ (0, 1/(T1 + T2)], let θ(γ), C(γ) > 1 be such that√
1

θ(γ)2
− 16

π4(C(γ)− 1)2
−

√
1− 1

θ(γ)
>

1

γ
. (6.14)

If there exists M = (M1,M2) ∈ N× N such that

inf
ϕ∈RN
‖ϕ‖=1

‖PS(ε1)

M

ϕ‖ ≥ 1

θ(γ)
, (6.15)

25



then
inf

ϕ∈RN
‖ϕ‖=1

‖PS(ε2)

K

ϕ‖ ≥ 1

γ
,

whenever K = (K1,K2) =
(⌈

C(γ)M1ε1
ε2

⌉
,
⌈
C(γ)M2ε1

ε2

⌉)
.

Proof. First, notice that for any γ ∈ (0, 1), there exist θ(γ) and C(γ) such that (6.14) is fulfilled. Now, let γ > 1
and ε2 > 0. Then, by (6.15),

inf
ϕ∈RN
‖ϕ‖=1

‖PS(ε2)

K

ϕ‖ ≥ inf
ϕ∈RN
‖ϕ‖=1

(
‖PS(ε2)

K

PS(ε1)

M

ϕ‖ − ‖PS(ε2)

K

P⊥
S(ε1)

M

ϕ‖
)

≥ inf
ϕ∈RN
‖ϕ‖=1

(
‖PS(ε2)

K

PS(ε1)

M

ϕ‖ −

√
1− 1

θ(γ)

)
. (6.16)

In order to estimate ‖PS(ε2)

K

PS(ε1)

M

ϕ‖, we decompose this term by

‖PS(ε2)

K

PS(ε1)

M

ϕ‖2 = ‖PS(ε1)

M

ϕ‖2 − ‖P⊥
S(ε2)

K

PS(ε1)

M

ϕ‖2. (6.17)

Thus, we require a suitable upper bound for ‖P⊥
S(ε2)

K

PS(ε1)

M

ϕ‖2. For this, let

IM = {l = (l1, l2) ∈ Z2 : −Mi/2 ≤ li ≤Mi/2− 1, i = 1, 2},
IK = {j = (j1, j2) ∈ Z2 : −Ki/2 ≤ ji ≤ Ki/2− 1, i = 1, 2},

and for the complementary sets in Z2 we write

IcM = {l = (l1, l2) ∈ Z2 : l /∈ IM},
IcK = {j = (j1, j2) ∈ Z2 : j /∈ IK}.

Then, we have

‖P⊥
S(ε2)

K

PS(ε1)

M

ϕ‖2 =

∥∥∥∥∥∥
∑
j∈IcK

〈PS(ε1)

M

ϕ, s
(ε2)
j 〉s(ε2)

j

∥∥∥∥∥∥
2

=
∑
j∈IcK

∣∣∣∣∣∑
l∈IM

〈ϕ, s(ε1)
l 〉〈s(ε1)

l , s
(ε2)
j 〉

∣∣∣∣∣
2

≤
∑
j∈IcK

(∑
l∈IM

|〈ϕ, s(ε1)
l 〉|2

∑
l∈IM

|〈s(ε1)
l , s

(ε2)
j 〉|2

)

≤
∑
j∈IcK

∑
l∈IM

|〈s(ε1)
l , s

(ε2)
j 〉|2. (6.18)

Now, for ε = max{ε1, ε2}, we obtain

|〈s(ε1)
l , s

(ε2)
j 〉| =

∣∣∣∣∣∣∣∣ε1 · ε2 ·
∫

[− 1
2ε ,

1
2ε ]

2

e2πiε1〈l,x〉e2πiε2〈j,x〉 dx

∣∣∣∣∣∣∣∣
≤
∣∣∣∣ ε1ε2

π2(ε1l1 − ε2j1)(ε1l2 − ε2j2)

∣∣∣∣ .
Therefore, by using (6.18),

‖P⊥
S(ε2)

K

PS(ε1)

M

ϕ‖2 ≤
∑
j∈IcK

∑
l∈IM

∣∣∣∣ ε1ε2

π2(ε1l1 − ε2j1)(ε1l2 − ε2j2)

∣∣∣∣2 .
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Assuming Ki = C(γ)Miε1
ε2

, i = 1, 2, we can continue by

‖P⊥
S(ε2)

K

PS(ε1)

M

ϕ‖2 ≤
(ε1ε2

π2

)2

M1M2

∑
(j1,j2)/∈IK

4

|(ε1
M1

2 − ε2j1)(ε1
M2

2 − ε2j2)|2

≤
(ε1ε2

π2

)2

M1M2
16

ε2
2|(ε1M1 − ε2K1)(ε1M2 − ε2K2)|

≤
( ε1

π2

)2

M1M2
16

|(ε1M1 − ε2K1)(ε1M2 − ε2K2)|

≤
( ε1

π2

)2

M1M2
16

|(ε1M1 − C(γ)M1ε1)(ε1M2 − C(γ)M2ε1)|

=
16

(π2(C(γ)− 1))
2 .

Thus, by (6.17),

‖PS(ε2)

K

PS(ε1)

M

ϕ‖2 ≥ 1

θ(γ)2
− 16

(π2(C(γ)− 1))
2

which, using (6.16), yields

inf
ϕ∈RN
‖ϕ‖=1

‖PS(ε2)

K

ϕ‖ ≥
√

1

θ(γ)2
− 16

(π2(C(γ)− 1))
2 −

√
1− 1

θ
.

The lemma is proved.

7 Proof of Theorem 4.3
The following lemma will be used in the upcoming proof Theorem 4.3. A one dimensional analogue can be found
in [6]. The proof extends straightforwardly and we omit it here.

Lemma 7.1. Let A1, A2, A3, and A4 ∈ Z, A1 ≤ A2, A3 ≤ A4. Moreover, let L1, L2 ∈ N such that 2L1 ≥
A2 −A1 + 1 and 2L2 ≥ A4 −A3 + 1. Then the trigonometric polynomial

Φ(z1, z2) =

A2∑
k=A1

A4∑
l=A3

αk,le
2πikz1e2πilz2

satisfies

2L1−1∑
m=0

2L2−1∑
n=0

1

4L1L2

∣∣∣∣Φ( m

2L1
,
n

2L2

)∣∣∣∣2 =

A2∑
k=A1

A4∑
l=A3

|αk,l|2.

Proof of Theorem 4.3. Let ϕ ∈ RN such that ‖ϕ‖ = 1. Then ϕ can be expanded as

ϕ =

2J0−1∑
n1,n2=0

αJ0,(n1,n2)φJ0,(n1,n2) +

3∑
k=1

J−1∑
j=J0

2j−1∑
n1,n2=0

βkj,(n1,n2)ψ
b,k
j,(n1,n2) (7.1)

We will now use the nestedness of the two dimensional MRA that is generated by the one dimensional wavelet
system

{
{φb

J0,m
}m=0,...,2J−1, {ψb

j,n}j≥J0,n=0,...,2j−1

}
. In particular, we have

V b,2
j ⊂ V b,2

j+1, j ≥ J0,

and

V b,2
j+1 = V b,2

j ⊕W b,2
j , j ≥ J0,

with V b,2
j = V b

j ⊗ V b
j and W b,2

j = (V b
j ⊗ W b

j ) ⊕ (W b
j ⊗ V b

j ) ⊕ (W b
j ⊗ W b

j ). Loosely speaking, due to
the MRA embedding properties we can expand functions from the reconstructions space into scaling functions
(φb
J,(n1,n2))n1,n2

at highest scale. Since the left boundary functions can be constructed by translates of the initial
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scaling function φ and the right scaling function can be obtained by reflecting the left boundary functions. The
reflected function will be denoted by φ#. This gives us in (7.1)

ϕ =

2J−p−1∑
n1,n2=0

αn1,n2φ(2J · −n) +

2J∑
n1,n2=2J−p

βn1,n2φ
#(2J · −n), (7.2)

where only finitely many αn1,n2
and βn1,n2

are non-zero. Now, for any l = (l1, l2) ∈ Z2 we obtain by basic
properties of the Fourier transform

〈ϕ, s(ε)
l 〉 =

2J−p−1∑
n1,n2=0

αn1,n2

ε

2J
e−2πiε〈n,2−J l〉φ̂

( ε

2J
l
)

+

2J∑
n1,n2=2J−p

βn1,n2

ε

2J
e−2πiε〈n,2−J l〉φ̂#

( ε

2J
l
)
. (7.3)

For the sake of brevity, we shall write in the following

Φ1(z) =

2J−p−1∑
n1,n2=0

αn1,n2

ε

2J
e−2πiε〈n,z〉,

Φ2(z) =

2J∑
n1,n2=2J−p

βn1,n2

ε

2J
e−2πiε〈n,z〉. (7.4)

By our assumptions on the scaling function

|φ̂(ξ1, ξ2)| . 1

(1 + |ξ1|)(1 + |ξ2|)
, (7.5)

and by the same argument

|φ̂#(ξ1, ξ2)| . 1

(1 + |ξ1|)(1 + |ξ2|)
. (7.6)

Using (7.4), (7.5), and (7.6) in (7.3) yields∑
l/∈IM

|〈ϕ, s(ε)
l 〉|

2 ≤
∑
l/∈IM

∣∣∣ ε
2J

Φ1

( ε

2J
l
)
φ̂
( ε

2J
l
)∣∣∣2 +

∑
l/∈IM

∣∣∣ ε
2J

Φ2

( ε

2J
l
)
φ̂#
( ε

2J
l
)∣∣∣2 +

+ 2

∑
l/∈IM

∣∣∣ ε
2J

Φ1

( ε

2J
l
)
φ̂
( ε

2J
l
)∣∣∣2
1/2∑

l/∈IM

∣∣∣ ε
2J

Φ2

( ε

2J
l
)
φ̂#
( ε

2J
l
)∣∣∣2
1/2

. (7.7)

We assume 2J/ε ∈ N and the number of samples M = (M1,M2) ∈ N× N is

Mi = S · 2J

ε
, i = 1, 2

where S is some positive constant. Now, (l1, l2) /∈ IM if
Case I: |l1| > M1 and |l2| < M2,
Case II: |l1| < M1 and |l2| > M2, or
Case III: |l1| > M1 and |l2| > M2.
It is sufficient to consider the sum for Case I. Case II can be obtained by symmetry and Case III yields a

smaller sum. For K = 2J/ε, we have∑
|l2|<M2

∑
|l1|>M1

∣∣∣ ε
2J

Φ1

( ε

2J
l
)
φ̂
( ε

2J
l
)∣∣∣2

=

K−1∑
j2

K−1∑
j1

1

K

1

K

∣∣∣∣Φ1

(
j1
K
,
j2
K

)∣∣∣∣2 ∑
|s2|<S

∑
|s1|>S

∣∣∣∣φ̂( j1K + s1,
j2
K

+ s2

)∣∣∣∣2

.
K−1∑
j2

K−1∑
j1

1

K

1

K

∣∣∣∣Φ1

(
j1
K
,
j2
K

)∣∣∣∣2 ∑
|s2|<S

∑
|s1|>S

1

(1 + |j1/K + s1|)2

1

(1 + |j2/K + s2|)2
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≤ C1

K−1∑
j2

K−1∑
j1

1

K

1

K

∣∣∣∣Φ1

(
j1
K
,
j2
K

)∣∣∣∣2 1

S
. (7.8)

By Lemma 7.1 we obtain in (7.9)

∑
|l2|>M2

∑
|l1|>M1

∣∣∣ ε
2J

Φ1

( ε

2J
l
)
φ̂
( ε

2J
l
)∣∣∣2 ≤ C1

2J−1∑
n1,n2=0

|αn1,n2
|2 1

S
. (7.9)

Since the functions form an orthonormal basis and ‖ϕ‖ = 1 we have∑
n1,n2∈N

|αn1,n2 |2 +
∑

n1,n2∈N
|βn1,n2 |2 = 1

and hence ∑
n1,n2∈N

|αn1,n2
|2 ≤ 1

Similarly, one shows ∑
|l2|>M2

∑
|l1|>M1

∣∣∣ ε
2J

Φ2

( ε

2J
l
)
φ̂#
( ε

2J
l
)∣∣∣2 ≤ C2

∑
n1,n2∈N

|βn1,n2
|2 1

S
. (7.10)

Therefore, in (7.7) we have that∑
|l2|<M2

∑
|l1|>M1

|〈ϕ, s(ε)
l 〉|

2 ≤ C1

∑
n1,n2∈N

|αn1,n2
|2 1

S
+ C2

∑
n1,n2∈N

|βn1,n2
|2 1

S
+

+ 2

C1

∑
n1,n2∈N

|αn1,n2
|2 1

S

1/2C2

∑
n1,n2∈N

|βn1,n2
|2 1

S

1/2

≤
(√

2C1 +
√

2C2√
S

)2

Now, for θ > 1 choosing S large enough, such that(√
2C1 +

√
2C2√

S

)2

≤ θ2 − 1

3θ2

gives the claim.
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