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Abstract

Generalized sampling is new framework for sampling and reconstruction in infinite-dimensional
Hilbert spaces. Given measurements (inner products) of an element with respect to one basis, it al-
lows one to reconstruct in another, arbitrary basis, in a way that is both convergent and numerically
stable. However, generalized sampling is thus far only valid for sampling and reconstruction in systems
that comprise bases. Thus, in the first part of this paper we extend this framework from bases to frames,
and provide fundamental sampling theorems for this more general case. The second part of the paper
is concerned with extending the idea of generalized sampling to the solution of inverse and ill-posed
problems. In particular, we introduce two generalized sampling frameworks for such problems, based
on regularized and non-regularized approaches. We furnish evidence of the usefulness of the proposed
theories by providing a number of numerical experiments.

1 Introduction
A vital task in applied mathematics and engineering is the recovery of an object – a signal or image, for
example – from a collection of its samples (or measurements). This problem, which lies at the heart of
modern sampling theory, can be modelled in a Hilbert space H, with the samples of the unknown f ∈ H
being of the form

〈f, sj〉, j ∈ N,

for some system {sj}j∈N ⊂ H. In many important cases, one encounters the situation where the system
{sj}j∈N is fixed. Also, one usually only has access to a finite number of measurements, say

〈f, sj〉, j = 1, . . . ,m.

Thus, the computational problem is to recover f from a fixed, and finite, collection of its measurements.
Consider, for example, the Magnetic Resonance Imaging (MRI) problem of reconstructing an image

from pointwise samples of its Fourier transform. Here H = L2([−1, 1]) (in the 1D setting) and sj(t) =
eπiρ(j)t, where ρ : N → Z is the standard re-indexing function. The particular design of the MRI scanner
means that the sampling scheme cannot be easily altered. Moreover, it is infeasible in practice to take
too many measurements, meaning that the parameter m may well be small. Of course, reconstructions
from Fourier samples are precisely the setting of arguably the most classical result in sampling theory, the
celebrated Shannon Sampling Theorem [21, 24]. However, whilst this theorem guarantees a reconstruction
of f via its Fourier series, this is often an extremely poor way to proceed. Indeed, one typically requires
an intolerably large number of samples m to recover f to any reasonably accuracy [13, 24]. Other effects,
such as the Gibbs phenomenon, can also be highly problematic.

This concern aside, note that the MRI problem is fundamentally well posed: it involves the inversion
of the Fourier transform. However, in applications, one may also encounter considerably more challenging
situations. In particular, it may well be the case that f is the solution of Af = g, where A is some bounded
linear operator, and, rather than measurements of f , we are actually given measurements of g. Thus, to
recover f , one has to invert A, making the Shannon Sampling Theorem (for example) no longer directly
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applicable. Another concern is that the operatorAmay well in practice be ill-posed. This is the case for the
problem of X-Ray tomography, where one is tasked with inverting the famously ill-posed Radon transform.

With this in mind, the purpose of this paper is to study novel approaches for these types of reconstruc-
tion problems, based on the framework of generalized sampling (GS) introduced by Adcock & Hansen
[6, 2, 3, 4]. Specifically, we provide two generalizations of this framework: in the first part of the paper
we augment this framework to systems {sj}j∈N that comprise frames (as opposed to previously studied
case of Riesz bases), and in the second part we present an extension of GS to the solution of inverse and
ill-posed problems.

We explain GS in more detail in the forthcoming section. Before doing so, let us first mention one
point that is essential to what follows. Given that we only have access to a finite number of measurements
of f (or g), it is quite common to treat the reconstruction problem as finite dimensional, i.e. living in a
finite-dimensional vector space. However, as we explain in due course, there are a number of potential
pitfalls of ignoring the true infinite dimensionality of the problem. In particular, one may well end up with
reconstructions that are neither stable nor convergent (in the sensem→∞). Fortunately, as we explain, GS
allows one to work directly with the infinite-dimensional model, whilst giving stable, convergent numerical
methods.

When introducing new sampling techniques (such as those we present in this paper) it is natural to ask
the following question: can such one exploit sparsity in order to subsample? In many cases, the answer
turns out to be yes. In [1, 19] (see also [5]), a new theory of compressed sensing for infinite-dimensional
problems was introduced, based directly on ideas from GS. This development relates directly to the point
made above: current compressed sensing theory (and techniques) are based largely on finite-dimensional
models, which are not sufficient in all circumstances. Having said this, the focus of this paper will be
on classical (i.e. nonsparse) sampling. In Section 5 we discuss how to extend and combine the sampling
theorems introduced in this paper with infinite-dimensional compressed sensing techniques.

The outline of the remainder of this paper is as follows. In Section 2 we describe the problems we
consider in more detail and recap GS. Section 3 extends GS to the setting of frames. In Section 4 we
discussed inverse and ill-posed problems.

2 Generalized sampling

2.1 The Problems
The purpose of this paper is to study the following recovery problems. We are given a signal f ∈ H, where
H is an infinite-dimensional separable Hilbert space. We are also given a sampling system {sk}k∈N ⊂ H
and a bounded linear operator A onH, where A may be compact. The problems are as follows:

(i) Recover a good approximation to f from the samples {〈f, sk〉}mk=1, for some m ∈ N.

(ii) Recover a good approximation to f from the samples {〈g, sk〉}mk=1, for somem ∈ N, where g = Af .

We shall also consider the case where the samples are contaminated by noise.
As mentioned, a basic example of Problem (i) is the recovery of f ∈ L2([−1, 1]) from its Fourier

coefficients. In this case, the sampling system consists of the usual complex exponentials. Of course, one
could construct the Fourier series approximation fm =

∑m
k=1〈f, sk〉sk, knowing that fm → f asm→∞.

Yet, as discussed, such convergence is often in practice intolerably slow.
An alternative in this case is to proceed as follows. Suppose that we know that f has a ‘nice’ expansion

in another system {wj}j∈N ⊂ H. In other words, there exists αj ∈ C such that

n∑
j=1

αjwj → f,

rapidly as n → ∞. In the above problem of Fourier sampling it is easy to think that this may well
be the case. For example, the wk could be wavelets of some variety, or more exotic objects such as
curvelets, shearlets or contourlets. Now, had we access to {αj}nj=1 we could have recovered f to high
accuracy. However, we only know {〈f, sj〉}mj=1. Nonetheless, given the additional information that f is
well represented in {wj}j∈N, we can now ask the following question: how do we obtain the values {αj}nj=1

(or some approximation thereof) from the given measurements?
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This question is more subtle than it appears. As we explain in the next section, the most straightforward
approach is not guaranteed to succeed.

2.2 Consistent Reconstructions
Suppose now that {wk}k∈N are orthonormal vectors in a Hilbert spaceH, and that {sk}k∈N is an orthonor-
mal basis ofH. Let f ∈ H be given by

f =
m∑
j=1

αjwj , αj = 〈f, wj〉, (2.1)

where 〈·, ·〉 is the inner product on H. Suppose that we can access samples 〈f, sk〉 for k ∈ N. It is then
tempting to form

Um =

u11 . . . u1m

...
. . .

...
um1 . . . umm

 , uij = 〈wj , si〉,

and approach the problem of obtaining the αjs by solving the linear system of equations

Umx = ym, ym = {〈f, s1〉, . . . , 〈f, sm〉}. (2.2)

This approach is often referred to as a consistent reconstruction technique (i.e. the first m measurements
of the reconstruction f̃ =

∑m
k=1 xkwk coincide with those of f ). Introduced (in the context of sampling)

by Unser & Aldroubi [25, 26, 7], and later generalized significantly by Eldar et al [10, 12, 11, 14], this
technique is quite widely used in applications [24]. Note in the case above that f has only m nonzero
coefficients in the basis {wj}j∈N. Thus, ignoring any noise or numerical issues, the solution x of (2.2) will
coincide with {α1, . . . , αm}, and thus f should, at least theoretically, be recovered perfectly by (2.2).

Let us now consider an example of this approach:

Example 2.1. Suppose that the wks are the Haar wavelets on [−1/2, 1/2], and take m = 769. Let 〈f, sk〉
be Fourier samples of f , i.e. sk = e2πiρ(k)·, where ρ : N → N is defined by ρ(1) = 0, ρ(2) = 1, ρ(3) =
−1, ρ(4) = 2, ρ(5) = −2 . . . (ρ is merely a re-indexing function).

If we form the matrix Um, then, although Um is invertible, and in particular the problem (2.2) has a
unique solution, one finds that its condition number is intolerably large (in this instance it is≈ 4.62×1016).
Thus, if the observations ym are perturbed by δm ∈ Cm, and we solve Umx = ym + δm, then we expect
a catastrophic failure. Indeed, this is the case even in the simplest setting. For f =

∑m
j=1 αjwj , where

α1 = α2 = α6 = α7 = 1, α769 = −1/20 and αj = 0 otherwise we get that when ‖δ‖ = 3.85 × 10−13,
the reconstruction f̃ =

∑m
j=1 xjwj satisfies ‖f − f̃‖L2 = 146.85. The disastrous error f − f̃ as well as f

is visualized in Figure 1. Note that, even though the perturbation is small, the exceedingly large condition
number leads to a complete failure in the reconstruction.

One may think that a remedy could be to increase m. In particular, maybe taking more Fourier samples
would cure the problem. Let us increase m to 1351, but keeping f as before as well as the noise level.
Unfortunately, this also gives a completely unsatisfactory result (even worse than before) with ‖f−f̃‖L2 =
360.12 as visualized in Figure 1.

There is, however, a remedy to the problem. In particular, by defining f̃n,m as in (3.1), with parameters
m = 1351 and n = 769, we obtain a recovery error that is very close to the noise level. This approach was
first introduced in [3, 4], and we will in this paper extend this framework even further.

This failure is somewhat surprising (for similar examples, see [2, 3]). Since Um is nothing more than
the change-of-basis matrix between two systems of m orthogonal functions, it is tempting to think that
Um is unitary (and therefore well-conditioned). However, herein lies a critical misunderstanding. There
is no reason why Um should be unitary (or even invertible). The trained eye of an operator theorist will
immediately spot the mistake: Um is unitary if and only if span{wk}mk=1 = span{sk}mk=1. The problem
is that this may very well not be the case since H is infinite-dimensional. Indeed, it is straightforward to
see that the two bases in Example 2.1 do not lead to a unitary matrix: the first m Haar wavelets span a
space of piecewise constant functions, whereas the standard complex exponentials span a space of (smooth)
trigonometric polynomials.
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Figure 1: The figure displays f (upper left) as well as f − f̃ for two different values of m (upper right and
lower left), and f − f̃n,m (lower right).

The approach considered above can be loosely described as ‘finite-dimensional’: one simply interpo-
lates between two m-dimensional spaces. Herein lies the problem: the recovery of f , an element of the
infinite-dimensional Hilbert space, is inherently infinite-dimensional. In particular, a typical f ∈ H will
have an infinite expansion in

∑∞
k=1 αkwk in the basis {wk}k∈N, and a countably infinite collection of mea-

surements {〈f, sk〉}k∈N. Thus, to tackle the reconstruction problem effectively, i.e. to avoid the pitfalls
encountered above, it is necessary to pursue an infinite-dimensional approach.

2.3 The new approach
To compensate for the problems that consistent reconstructions cause, a new type of theory, and associated
technique, was introduced, known as generalized sampling (GS) [2, 3, 4]. This theory generalizes the
Shannon Sampling Theorem [21], as well as some fundamental work by Hrycak & Gröchenig [20].

The main message of GS is the following: one can obtain samples via inner products with respect to
one basis (e.g. Fourier coefficients) and reconstruct in another basis of choice, and this can always be
done in a completely stable and convergent way. Hence, one can combat the problem of potentially slow
convergence in the sampling basis by simply reconstructing in a basis more appropriate for the signal to be
reconstructed. Stability also implies complete robustness with respect to noise.

2.4 Overview of the paper
GS was introduced in a series of papers [2, 6, 3, 4]. However, there are several important problems that
have not yet been addressed. These form the content of this paper:

• Frames: GS is so far only valid for sampling and reconstruction systems {sk}k∈N and {wk}k∈N that
comprise Riesz bases. Given the vast literature on frames and the wide variety of applications it is
crucial that the GS is extended to frames. This is content of the first part of the paper.

• Ill-posed problems: GS is concerned with the problem of reconstructing an element f from samples
〈f, sj〉. However, what if we cannot sample f , but rather g := Af , where A is a compact operator.
The topic of ill-posed problems is vast and of great importance. Therefore it is vital to have an
extension of GS that includes such problems. In the second part of this paper, we will introduce new
techniques with GS using regularization, as well as a non-regularized technique.
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Let us remark in passing that the ideas leading to GS originate computational spectral theory [17, 18]. In
particular, the technique of uneven sections of infinite matrices. Spectral theory has been used in sampling
before (although in a very different context than what will be presented here) to great success, with the
fundamental paper [22] of Landau being an important example. The problems above will also addressed
through extensions and refinements of the uneven section technique (see also [8] and [16] for other results
on even and uneven section techniques).

2.5 Background and Notation
We will letH denote a separable Hilbert space. Let {wk}k∈N be a frame forW = span{wk}k∈N ⊂ H and
{sk}k∈N be a frame for S = span{sk}k∈N ⊂ H. In particular, this means that for all f ∈ W there exist
constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
k∈N
|〈f, wk〉|2 ≤ B‖f‖2, (2.3)

and that for all f ∈ S there exist constants 0 < C ≤ D <∞ such that

C‖g‖2 ≤
∑
k∈N
|〈g, sk〉|2 ≤ D‖g‖2. (2.4)

Recall the so-called synthesis operators S,W : l2(N)→ H are defined by

Sx = x1s1 + x2s2 + . . . , Wy = y1w1 + y2w2 + . . . ,

and their adjoints (the analysis operators) S∗,W ∗ : H → l2(N) are easily seen to be

S∗g = {〈g, s1〉, 〈g, s2〉, . . .}, W ∗h = {〈h,w1〉, 〈h,w2〉 . . .}.

Define also the operators Sm,Wm : Cm → H by

Smx = x1s1 + . . .+ xmsm, Wmy = y1w1 + . . .+ ymwm, (2.5)

with adjoints S∗,W ∗ : H → Cm given by

S∗mg = {〈g, s1〉, . . . , 〈g, sm〉}, W ∗mh = {〈h,w1〉, . . . , 〈h,wm〉}.

Define also the corresponding spaces

Sm = span{s1, . . . , sm}, Wn = span{w1, . . . , wn}.

For any closed subspace V ⊂ H we denote the orthogonal projection onto V by PV . We shall also let
{ej}j∈N denote the canonical basis of l2(N), and, for any k ∈ N, write Pk for the orthogonal projection
onto span{e1, . . . , ek}. Lastly, if A : H → H is bounded, where H is a Hilbert space, we denote its
pseudo-inverse by A†.

3 Generalized Sampling with Frames
Let f ∈ H and {wk}k∈N, {sk}k∈N be as in the previous section. Suppose also that we can, for some
m ∈ N, access the samples S∗mf . The task is to reconstruct an approximation to f from these samples. As
mentioned, if {sk}k∈N was an orthonormal basis (and f ∈ S) we could have formed the approximation
fm =

∑m
k=1〈f, sk〉sk. However, it may well be the case that fm → f intolerably slowly and therefore fm

would be a rather poor approximation. Moreover, if {sk}k∈N is merely a frame, then fm in general will
not converge to f , and hence will be completely useless.

Suppose now that PWn
f → f rapidly – in particular, much faster than fm → f (if valid). Given this

information we are lead to the following question: can we reconstruct PWnf (or at least an approximation)
from the samples S∗mf?
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3.1 Reconstruction
Suppose now that we are given f ∈ W and that we can access the samples S∗mf . Based on this information
we will construct the GS approximation f̃n,m ∈ Wn as follows:

f̃n,m = Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mf. (3.1)

The following theorem, which is proved in section 3.3, concerns the behaviour of f̃n,m:

Theorem 3.1. LetH be a separable Hilbert space and S,W ⊂ H be closed subspaces such thatW∩S⊥ =
{0}. Suppose that {sk}k∈N and {wk}k∈N are frames for S and W respectively with frame bounds as in
(2.3) and (2.4) respectively. Then, for each n ∈ N and any f ∈ W , there is an M ∈ N such that, for all
m ≥M , the reconstruction f̃n,m (defined in (3.1)) exists and is unique. Moreover,∥∥P⊥Wn

f
∥∥
H ≤ ‖f − f̃n,m‖H ≤ (1 +Kn,m)

∥∥P⊥Wn
f
∥∥
H ,

where PWn
is the orthogonal projection ontoWn, P⊥Wn

= I − PWn
and

Kn,m =
∥∥Wn(W ∗nSmS

∗
mWn)†W ∗nSmS

∗
mP
⊥
Wn

∥∥ . (3.2)

For each fixed n we have that Kn,m → Kn as m→∞, where

Kn =
∥∥Wn(W ∗nSS

∗Wn)†W ∗nSS
∗P⊥Wn

∥∥ ≤ D

C
.

Moreover, when {sk}k∈N is an orthonormal basis andW ⊂ S then, for fixed n, Kn,m → 0 as m→∞.

Note that this theorem generalizes the results in [3, 4] to frames (we give a proof in the next section).

3.2 Stability
The stability of GS is very important to analyze. One may at first glance suspect that this method could
be unstable, due to the fact that ‖(W ∗nSmS∗mWn)†‖ could blow up for large n, even when m is arbitrarily
large. Indeed, this could very well happen as suggested in the next proposition.

Proposition 3.2. There exists a Hilbert spaceH with frames {wk}k∈N and {sk}k∈N such that

lim
m→∞

‖(W ∗nSmS∗mWn)†‖ −→ ∞, n→∞.

Proof. LetH = l2(N) and write {ek}k∈N for its canonical basis. Let {wk}k∈N be defined by w1 = e1 and
wk = ek−1 + ek

k , k ≥ 2, and let {sk}k∈N be given by sk = ek. Then, as shown in [9], {wk}k∈N is a frame
with frame bounds 1−

√
π2/6− 1 and 3 respectively. Note that

Wny = y1e1 +
n∑
k=2

yk

(ek
k

+ ek−1

)
, y ∈ Cn,

and therefore

S∗mWn =



1 1 0 0 . . . 0

0 1
2 1 0

. . . 0

0 0 1
3

. . . . . .
...

0 0 0
. . . . . .

...

0 0 0
. . . . . . 1

0 0 0 . . . . . . 1
n

0 0 0 . . . . . . 0
...

...
...

...
...

...
0 0 0 . . . . . . 0



∈ Cm×n, m ≥ n.

In particular, we have that ‖(W ∗nSmS∗mWn)†‖ ≥ n2, yielding the assertion.
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Despite this rather pessimistic result, the method is perfectly stable. Indeed, although ‖(W ∗nSmS∗mWn)†‖
may blow up, it is always the case that ‖Wn(W ∗nSmS

∗
mWn)†W ∗n‖ stays bounded providedm is sufficiently

large. Specifically, we have the following theorem (proved in section 3.3).

Theorem 3.3. LetH, S,W , {sk}k∈N, {wk}k∈N, n and m be as in Theorem 3.1. Suppose that the samples
of f ∈ H are contaminated by noise. In particular, suppose that we are given S∗m(f + h) for some h ∈ H.
If

f̃hn,m = Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
m(f + h),

then
‖f − f̃hn,m‖H ≤ (1 +Kn,m)

(∥∥P⊥Wn
f
∥∥
H + ‖h‖H

)
,

for all m ≥M where M is as in Theorem 3.1.

3.3 Proofs
Proof of Theorem 3.1. Let us first observe that due to the fact that Ran(W ∗nSmS

∗
mWn) is finite dimen-

sional, and hence closed, then the pseudo-inverse is unique and hence f̃n,m exists and is unique. Moreover,
we observe that

Wn(W ∗nWn)†W ∗nWn(W ∗nWn)†W ∗n = Wn(W ∗nWn)†PRan(W∗
nWn)W

∗
n = Wn(W ∗nWn)†W ∗n .

In particular, by self-adjointness, it follows that

PWn
= Wn(W ∗nWn)†W ∗n . (3.3)

Note that

W ∗nSmS
∗
mf = W ∗nSmS

∗
m(PWn

f + P⊥Wn
f)

= W ∗nSmS
∗
mWn(W ∗nWn)†W ∗nf +W ∗nSmS

∗
mP
⊥
Wn

f.
(3.4)

Equation (3.4) now gives

Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mf = Wn(W ∗nSmS

∗
mWn)†W ∗nSmS

∗
mWn(W ∗nWn)†W ∗nf

+Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mP
⊥
Wn

f.
(3.5)

We now claim that there exists an M such that

Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mWn(W ∗nWn)†W ∗nf = PWn

f, ∀m ≥M.

To see this, we first observe that

Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mWn(W ∗nWn)†W ∗nf = WnPRan(W∗

nSmS
∗
mWn)(W ∗nWn)†W ∗nf,

and it therefore suffices to show that

Ran(W ∗nSmS
∗
mWn) = Ran(W ∗nWn) (3.6)

for all sufficiently large m. By assumption we haveW ∩ S⊥ = {0}. Thus, for all n ∈ N we deduce that
Wn ∩ S⊥ = {0}. It follows that

inf{‖S∗x‖ : x ∈ Ran(Wn), ‖x‖ = 1} > 0.

In particular, we have that Rank(S∗Wn) = Rank(W ∗nWn), and therefore Rank(W ∗nSS
∗Wn) = Rank(W ∗nWn),

which yields that Ran(W ∗nSS
∗Wn) = Ran(W ∗nWn). Note that SmS∗m → SS∗ strongly, however, by

compactness of Wn it follows that W ∗nSmS
∗
mWn → W ∗nSS

∗Wn in norm as m→∞. Hence, we deduce
(3.6) for all sufficiently large m. Thus,

‖f − f̃n,m‖H ≤
∥∥P⊥Wn

−Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mP
⊥
Wn

∥∥
H

∥∥P⊥Wn
f
∥∥
H ,

which gives the first part of the theorem.
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To prove the second assertion note that

Wn(W ∗nSS
∗Wn)†W ∗nSS

∗P⊥Wn
= (SS∗)−1SS∗Wn(W ∗nSS

∗Wn)†W ∗nSS
∗P⊥Wn

,

and therefore, since S∗Wn(W ∗nSS
∗Wn)†W ∗nS is the orthogonal projection PRan(S∗Wn), it follows that

‖Wn(W ∗nSS
∗Wn)†W ∗nSS

∗P⊥Wn
‖ ≤ ‖(SS∗)−1‖S→S‖S‖l2(N)→S‖S∗‖S→l2(N)

= ‖(SS∗)−1‖S→S‖SS∗‖S→S ≤
D

C
.

Also, by a compactness argument, since SmS∗m → SS∗ strongly, it follows that

Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mP
⊥
Wn
−→Wn(W ∗nSS

∗Wn)†W ∗nSS
∗P⊥Wn

, m→∞. (3.7)

Therefore Kn,m → ‖Wn(W ∗nSS
∗Wn)†W ∗nSS

∗P⊥Wn
‖ as m → ∞ and we have proved the second asser-

tion.
To prove that Kn,m → 0 as m → ∞ when {sk}k∈N is an orthonormal basis, we start by making the

following observation: since W ⊂ S we certainly have that Wn ⊂ S . Therefore PSPWn
= PWn

=
PWn

PS . Also, W ∗n = W ∗nPWn
, and therefore

W ∗nPSP
⊥
Wn

= W ∗nPS(I − PWn
) = 0.

We therefore immediately obtain

Wn(W ∗nSS
∗Wn)†W ∗nSS

∗P⊥Wn
= Wn(W ∗nPSWn)†W ∗nPSP

⊥
Wn

= 0.

So, by (3.7) the assertion follows, and we are done.

Proof of Theorem 3.3. Note that (3.5) and the reasoning in the proof of Theorem 3.3 give

f − f̃hn,m = P⊥Wn
f −Wn(W ∗nSmS

∗
mWn)†W ∗nSmS

∗
mP
⊥
Wn

(f + h)− h,

which yields the assertion.

3.4 Determining m: The Stable Sampling Rate
For Theorems 3.1 and 3.3 we require m ≥M samples, where M depends only on n and the sampling and
reconstruction systems. This leads to the question: how large must m be? This was first explored in [3, 4]
in the context of Riesz bases. Continuing in the same way, let us define the stable sampling rate

Φ(n, θ) = min {m ∈ N : Kn,m ≤ θ} , (n, θ) ∈ N× R+, (3.8)

where Kn,m is as in (3.2). This quantity tells us how many samples one has to take, as a function of the
number of coefficients to be computed, in order to secure a stable and convergent solution. It is of course
very important to get analytical bounds for Φ. However, these may be very difficult to derive for arbitrary
sampling and reconstruction systems. Fortunately, as we now explain, we can always obtain numerical
estimates for Φ.

When confronted with the problem of computing Φ there are two obvious obstacles:

(i) The operator P⊥Wn
does not have finite rank (and this suggests therefore the need for an infinite

amount of information to compute Kn,m).

(ii) The operator Wn(W ∗nSmS
∗
mWn)†W ∗nSmS

∗
mP
⊥
Wn

acts on the abstract Hilbert space H. In it there-
fore unclear how to obtain numerical norm estimates when the information we will (at best) be able
to access are the numerical values of the inner products 〈si, wj〉 and 〈wi, wj〉 for i, j ∈ N.
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Figure 2: The left figure shows the error f − fm (the truncated Fourier series) for m = 501. The right
figure shows the error f − f̃n,m for m = 501, n = 45. Note that both fm and f̃n,m use exactly the same
samples.

Fortunately, one can at least obtain a computable upper bound for Kn,m (and therefore Φ). Indeed, if
{sk}k∈N is an orthonormal basis for S,W ⊂ S and U and V are the infinite matrices

U =


u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

...
...

...
. . .

 , V =


v11 v12 v13 . . .
v21 v22 v23 . . .
v31 v32 v33 . . .

...
...

...
. . .

 uij = 〈si, wj〉, vij = 〈wi, wj〉,

(3.9)
then it is a straightforward exercise (along the same lines as arguments given in [3]) to show that Kn,m ≤
K̃n,m, where

K̃n,m =
√
B
∥∥(PnU∗PmUPn)†PnU∗Pm − (PnV Pn)†PnU∗Pm

∥∥
+
∥∥(PnV Pn)†(PnU∗PmUPn − PnV Pn)(PnV Pn)†

∥∥1/2
.

Thus, we have

Φ(n, θ) ≤ Ψ(n, θ) = min
{
m ∈ N : K̃n,m ≤ θ

}
, ∀(n, θ) ∈ N× R+, (3.10)

where the right-hand side can be computed numerically, since K̃n,m involves only sections of the matrices
U and V . Thus, in practice, one can always ensure, via a numerical computation, the bounds of Theorems
3.1 and 3.3, and therefore convergence and stability. In the next section we give an example of the behaviour
of Ψ(n, θ) for a typical problem (further examples in the case of bases are given in [3, 4]).

3.5 Numerical Examples
In this section we will test the framework suggested in the previous section with the following frames: let
{pk}k∈N denote the Legendre polynomials on [−1, 1] and {hk}k∈N the Haar wavelets on [0, 1]. Define the
frames

{wk}k∈N, w2k−1 = pk, w2k = hk, {w̃k}k∈N, w̃k = pk. (3.11)

Note that {w̃k}k∈N is actually an orthonormal basis. When it comes to indexing the frame we simply make
the most natural choice. However, one should note that one has complete freedom to choose the indexing,
although the synthesis and analysis operators will obviously depend on such a choice. We will denote
the operators and spaces associated with this basis (as defined in Section 3) by simply adding a tilde, for
example W̃n, W̃

∗
n , W̃ etc. Also, define the orthonormal basis for L2([−1, 1])

{sk}k∈Z, sk(t) =
1√
2

eπikt.

Thus, our samples of any function f ∈ L2([−1, 1]) will be its Fourier coefficients. In particular,

f̂(k) = 〈f, sk〉 =
1√
2

∫ 1

−1

f(t)eπikt dt.

9
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Figure 3: The figure shows the errors fd − fd,m (left), fd − f̃d,n,m (middle) and fd − fd,k,m (right) for
m = 501, n = 45, k = 150. Note that fd,m, f̃d,n,m and fd,k,m use exactly the same samples.

Thus, in this case we haveW = W̃ = S = L2([−1, 1]). In the previous framework we have indexed the
operators over the natural numbers, so to make it compatible with the setup in this section we will let (for
odd m) Sm : Cm → L2([−1, 1]) and S∗m : L2([−1, 1])→ Cm be defined by

Smx = x1s−(m−1)/2 + . . .+ xms(m−1)/2, S∗mg = {〈g, s−(m−1)/2〉, . . . , 〈g, s(m−1)/2〉}.

Also, for f ∈ L2([−1, 1]) and for odd m ∈ N we let fm denote the truncated Fourier series of f . In
particular,

fm(t) = (SmS∗mf)(t) =
1
2

(m−1)/2∑
j=−(m−1)/2

f̂(j)eπijt.

Example 3.4. In order to illustrate the theory developed in the previous sections we have tested the func-
tions

f(t) = t3et, fd(t) = t3et(1− χ[0.5,0.75])(t).

Note that the analyticity of f strongly favors reconstruction in a polynomial basis. In particular, the fact
that f is non-periodic prevents rapid convergence of the Fourier series as shown in Figure 2, where we
have displayed the error f − fm for m = 501. As an alternative we have defined the GS reconstruction

f̃n,m = W̃n(W̃ ∗nSmS
∗
mW̃n)†W̃ ∗nSmS

∗
mf,

where m = 501 and n = 45. By using exactly the same samples as for fm, namely S∗mf , we simply
reconstruct in a different basis (the Legendre basis), and dramatically reduce the error. This is illustrated in
Figure 2. For more examples with reconstructions in different bases see [6, 2, 3, 4]. However, this paper is
primarily about the use of frames. In particular, frames that can be used to capture specific characteristics
of the function to be recovered.

To illustrate the effectiveness of the use of frames, consider the following. What happens if we intro-
duce a discontinuity in f? In particular, what happens if we replace f by the discontinuous function fd?
This does have an effect on the truncated Fourier series (as documented in Figure 3) fd,m = SmS

∗
mfd, but

not near the striking impact it has on

f̃d,n,m = W̃n(W̃ ∗nSmS
∗
mW̃n)†W̃ ∗nSmS

∗
mfd,

which uses the Legendre basis in the same way as for f̃n,m. The quite dramatic effect of the discontinuity
is visualized in Figure 3. The question is then: what to do? One idea that comes to mind is that one could
try to mix two bases, one that would favor smoothness, and one that would favor discontinuities. This is
exactly what the frame {wk}k∈N (defined in (3.11)) would do. By introducing

fd,k,m = Wk(W ∗kSmS
∗
mWk)†W ∗kSmS

∗
mfd,

we can again dramatically reduce the error. This is documented in Figure 3. Note that fd,m, f̃d,n,m and
fd,k,m use exactly the same samples.
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Figure 4: The left figure shows Ψ(n, 1) for n = 1, . . . , 100 together with the mapping t 7→ 2.45t2. The
right figure shows Ψ(n, 2) for n = 1, . . . , 100 together with the mapping t 7→ 1.3t2

Example 3.5. In this example we consider numerical estimates of the function Φ defined in (3.8). However,
as pointed out above, the function Ψ defined in (3.10) is much simpler to compute and we have

Φ(S,W, n, θ) ≤ Ψ(S,W, n, θ), ∀ (n, θ) ∈ N× R+.

Sections of the graphs of Ψ(·, 1) and Ψ(·, 2) are displayed in Figure 4. Note that it is not a big surprise that

Ψ(S,W, n, θ) = O(n2), θ = 1, 2.

In fact, it is not hard to use the fact that

Φ(S, W̃ , n, ) = O(n2), ∀ θ ∈ R+,

(see [4]) in order to prove that

Φ(S,W, n, ) = O(n2), ∀ θ ∈ R+.

4 Generalized Sampling and Inverse Problems
Suppose now that we are given Hilbert spaces X and Y and a linear and bounded operator A that maps
between X and Y . Moreover, we restrict the following discussion to compact operators, i.e. to operators
A that are equipped with a singular system {σk, vk, uk}, where the orthonormal system {vk}k∈N spans
V = N (A)⊥ and where the orthonormal system {uk}k∈N spans U = N (A∗)⊥. We aim to solve

Af = g,

where we are typically faced with noisy data gδ = g + z with ‖z‖ ≤ δ. We assume that we have a
sampling system {sk}k∈N that spans S = span{sk}k∈N = N (A∗)⊥ ⊂ Y and a reconstruction system
{wk}k∈N spanningW = span{wk}k∈N = N (A)⊥ ⊂ X at our disposal. With {sk}k∈N we are able to take
samples of g,

η = S∗g = {〈g, sk〉}k∈N ,

and with {wk}k∈N we expand f ,
f = Wβ =

∑
k∈N

βkwk .

As we cannot deal with infinitely many samples of g and infinite series expansions for f , the goal is to
reconstruct the best possible approximation of the form f̃ = Wnβ̃ =

∑n
k=1 β̃kwk based on the finite

subset {〈g, sk〉}rk=1 = S∗r g of the full sampling information η. We shall do this by exploiting the ideas of
generalized sampling. As we now allow the problem to be ill-posed and the data noisy, we rephrase the
problem as follows: given n, is there some r (determine if possible) such that

‖S∗r gδ − S∗rAWnβ̃‖2 → min
β̃

11



has a unique solution? The corresponding normal equation is given by

(W ∗nA
∗SrS

∗
rAWn)

 β̃1

...
β̃n

 = W ∗nA
∗Sr

 〈g
δ, s1〉

...
〈gδ, sr〉

 (4.1)

and therefore
fδn,r = Wnβ̃ = Wn(W ∗nA

∗SrS
∗
rAWn)†W ∗nA

∗SrS
∗
r g . (4.2)

As already mentioned, the problem can be ill-posed and therefore the generalized inverse in (4.2) need
not exist. Hence we are first faced with regularization issues. The second task is to analyze (4.2) by both
establishing existence of approximations of the form fδn,r and providing error bounds for ‖f − fδn,r‖.

In what follows we discuss two different treatments of (4.2). Both proposed techniques heavily rely
on the singular value decomposition of the operator A. This allows a splitting into a sampling and recov-
ery step (which is quite natural). The sampling step in both algorithms is almost the same, whereas the
recovery steps are rather different. In the first approach the recovery step relies on (classical) regulari-
zation principles, whereas in the second approach we seek to stabilize the ill-posed problem by adequate
discretizations (which, of course, is also a regularization technique).

4.1 Regularized Reconstruction
Let us consider the normal equation A∗Af = A∗g and let A† denote the generalized inverse of A. If
g ∈ D(A†), we can define f† := A†g. If A is injective it makes sense to define A† := (A∗A)−1A∗. A
stabilized version of f† can be constructed through fα = Rαg with Rα = Fα(A∗A)A∗ with properly
chosen Fα (for an extensive discussion on the choice of Fα see [15] or [23] and references therein).

Therefore, we can write

fα = Wβα =
∑
k

βαkwk = Fα(A∗A)A∗g =
∑
l

Fα(σ2
l )σl〈g, ul〉vl .

For the singular system we associate the corresponding synthesis and analysis operators which we denote
by V , U and V ∗, U∗ as well as its finite versions Vm, Um and V ∗m, U∗m. Therefore, for all j ∈ N we have

(V ∗fα)j =
∑
k

βαk 〈wk, vj〉 =
∑
l

Fα(σ2
l )σl〈g, ul〉〈vl, vj〉 ,

which is nothing other than

V ∗Wβα = ΘαΣγ or equivalently, Θ−1
α V ∗Wβα = Σγ ,

where

V ∗W =

〈w1, v1〉 〈w1, v2〉 . . .
〈w2, v1〉 〈w2, v2〉 . . .

...
...

. . .

 , Θα =

Fα(σ2
1) 0 . . .

0 Fα(σ2
2) . . .

...
...

. . .

 , Σ =

σ1 0 . . .
0 σ2 . . .
...

...
. . .

 .

The vector γ = U∗g = {〈g, ul〉}l∈N is not accessible in practice and must be related to the samples of g
with respect to our sampling frame {sk}k∈N,

η = S∗g = S∗UU∗g = S∗Uγ , where S∗U =

〈u1, s1〉 〈u1, s2〉 . . .
〈u2, s1〉 〈u2, s2〉 . . .

...
...

. . .

 .

Consequently, in order to compute fα = Wβα we are faced with two infinite dimensional linear equations
that need to be solved,

S∗Uγ = η (4.3)
Θ−1
α V ∗Wβα = Σγ . (4.4)
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We proceed in two steps. To find an approximation to the solution of (4.4) we assume in a first step that a
finite length approximation γm = U∗mg to the solution of (4.3) is at our disposal (with m specified below).
Then, in a second step, we derive an approximation γδm,r to γm where we also allow the data g to be noisy.

Suppose now that we have the samples U∗mg at our disposal. Based on this information we construct
an approximation fαn,m = Wnβ

α
n,m ∈ Wn as follows:

fαn,m = Wn(W ∗nVmΘ−1
α,mΘ−1

α,mV
∗
mWn)†W ∗nVmΘ−1

α,mΣmU∗mg , (4.5)

where Θα,m = PmΘα|Pml2(N). As the following theorem indicates, fαn,m is uniquely defined for suffi-
ciently large m:

Theorem 4.1. Let X , Y be separable Hilbert spaces and A : X → Y be a linear and bounded operator
with singular system {σk, vk, uk}. Moreover, let W = N (A)⊥ ⊂ X and S = N (A∗)⊥ ⊂ Y . Suppose
{sk}k∈N and {wk}k∈N are frames for S andW respectively. Then, for the generalized solution f† ∈ W ⊂
X and n ∈ N and α > 0, there is an M ∈ N such that, for all m ≥M the approximation fαn,m exists and
is unique. Moreover,

‖f† − fαn,m‖X ≤ (2 +Kn,m,α)‖f† − fα‖X + (1 +Kn,m,α)‖P⊥Wn
f†‖X ,

where
Kn,m,α := ‖Wn(W ∗nVmΘ−1

α,mΘ−1
α,mV

∗
mWn)†W ∗nVmΘ−1

α,mΘ−1
α,mV

∗
mP
⊥
Wn
‖ .

In particular, for m large enough,

Kn,m,α ≤
λmax(Θ−2

α,m)

λmin(Θ−2
α,m)

,

where λmax(Θ−2
α,m) and λmin(Θ−2

α,m) denote the largest and smallest eigenvalue of Θ−2
α,m respectively.

Proof. Solving the optimization problem

‖ΣmU∗mg −Θ−1
α,mV

∗
mWnβ

α
n,m‖2 → min

βαn,m
(4.6)

results in

βαn,m = (W ∗nVmΘ−2
α,mV

∗
mWn)†W ∗nVmΘ−1

α,mΣmU∗mg

= (W ∗nVmΘ−2
α,mV

∗
mWn)†W ∗nVmΘ−2

α,mV
∗
m(PWn

fα + P⊥Wn
fα)

and therefore, as argued in the proof of Theorem 3.1, for m ≥M and M large enough,

fαn,m = Wn(W ∗nVmΘ−2
α,mV

∗
mWn)†W ∗nVmΘ−2

α,mV
∗
m(PWnf

α + P⊥Wn
fα)

= PWn
fα +Wn(W ∗nVmΘ−2

α,mV
∗
mWn)†W ∗nVmΘ−2

α,mV
∗
mP
⊥
Wn

fα ,

and fαn,m is unique. Consequently,

‖f† − fαn,m‖X ≤ ‖f† − fα‖X + ‖fα − fαn,m‖X
≤ ‖f† − fα‖X + ‖P⊥Wn

fα −Wn(W ∗nVmΘ−2
α,mV

∗
mWn)†W ∗nVmΘ−2

α,mV
∗
mP
⊥
Wn

fα‖X
≤ ‖f† − fα‖X + (1 +Kn,m,α)‖P⊥Wn

fα‖X
≤ (2 +Kn,m,α)‖f† − fα‖X + (1 +Kn,m,α)‖P⊥Wn

f†‖X .

To prove that, for fixed n and α > 0 and m large enough, the constant Kn,m,α can be bounded by
λmax(Θ−2

α,m)λ−1
min(Θ−2

α,m), we first define ṽk := Fα(σ2
k)−1vk. This results in

Kn,m,α = ‖Wn(W ∗n ṼmṼ
∗
mWn)†W ∗n ṼmṼ

∗
mP
⊥
Wn
‖ .

As {vk}k∈N is an orthonormal basis, the system {ṽk}k∈N is a Riesz basis and therefore we obtain

Kn,m,α ≤ ‖(ṼmṼ ∗m)−1‖Vm→Vm‖ṼmṼ ∗m‖Vm→Vm .
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For f ∈ Vm, it follows that

min
j=1,...,m

Fα(σ2
j )−2‖f‖2 ≤ 〈ṼmṼ ∗mf, f〉 =

m∑
j=1

Fα(σ2
j )−2|〈f, vj〉|2 ≤ max

j=1,...,m
Fα(σ2

j )−2‖f‖2

resulting in

Kn,m,α ≤
maxj=1,...,m Fα(σ2

j )−2

minj=1,...,m Fα(σ2
j )−2

,

as required

As already mentioned, the samples to which we have access in practice are given by ηδ = S∗gδ . Based
on this (possible noisy) information we construct an approximation γδm,r to the solution of (4.3) as follows:

γδm,r = (U∗mSrS
∗
rUm)†U∗mSrS

∗
r g
δ and hence, gδm,r = Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
r g
δ . (4.7)

Consequently, combining (4.5) and (4.7), we obtain an approximation to the solution of (4.4) that can
indeed be realized in practice,

fα,δn,m,r = Wn(W ∗nVmΘ−1
α,mΘ−1

α,mV
∗
mWn)†W ∗nVmΘ−1

α,mΣmU∗mg
δ
m,r . (4.8)

As a simple consequence of the Theorems 3.1 and 4.1 we have the following:

Theorem 4.2. If the assumptions made in Theorems 3.1 and 4.1 hold true, then

‖f† − fα,δn,m,r‖ ≤ ‖f† − fαn,m‖+K1
n,m,α

(
σm+1(1 +K2

m,r)‖P⊥Vmf‖+K3
m,rδ

)
with constants defined by

K1
n,m,α := ‖Wn(W ∗n ṼmṼ

∗
mWn)†W ∗n ṼmV

∗
mA
∗‖ , K2

m,r := ‖Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
rUP

⊥
m‖

K3
m,r := ‖Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
r‖ ,

where K1
n,m,α ≤

λmax(Θ−1
α,m)

λmin(Θ−2
α,m)
‖A‖, and, for sufficiently large r, K2

m,r,K
3
m,r ≤ 2DC . Moreover, if {sk}k∈N

is an orthonormal basis, then, for fixed m, K2
m,r → 0, K3

m,r → 1 as r →∞.

Proof. First, with ΣmU∗m = V ∗mA
∗, we observe that

fα,δn,m,r = Wn(W ∗nVmΘ−1
α,mΘ−1

α,mV
∗
mWn)†W ∗nVmΘ−1

α,mΣmU∗m(g − g + gδm,r)

= fαn,m +Wn(W ∗nVmΘ−1
α,mΘ−1

α,mV
∗
mWn)†W ∗nVmΘ−1

α,mV
∗
mA
∗(gδm,r − g) .

Moreover, with the help of Theorem 3.1,

g − gδm,r = P⊥Umg + Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
rP
⊥
Umg + Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
r (gδ − g) ,

and since
P⊥Umg = (I − UPmU∗)g = U(I − Pm)U∗g = UP⊥mγ = UP⊥mΣV ∗Wβ

it follows that

‖g − gδm,r‖ ≤ σm+1

(
1 + ‖Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
rUP

⊥
m‖
)
‖P⊥Vmf‖

+‖Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
r‖δ ,

This implies, with Ṽm = VmΘ−1
α,m, that

‖f† − fα,δn,m,r‖ ≤ ‖f† − fαn,m‖+ ‖Wn(W ∗n ṼmṼ
∗
mWn)†W ∗n ṼmV

∗
mA
∗‖‖gδm,r − g‖

≤ ‖f† − fαn,m‖+K1
n,m,α

(
σm+1(1 +K2

m,r)‖P⊥Vmf‖+K3
m,rδ

)
.
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Now, for m sufficiently large,

K1
n,m,α = ‖Wn(W ∗n ṼmṼ

∗
mWn)†W ∗n ṼmV

∗
mA
∗‖

= ‖(ṼmṼ ∗m)−1ṼmṼ
∗
mWn(W ∗n ṼmṼ

∗
mWn)†W ∗n ṼmV

∗
mA
∗‖

≤ ‖(ṼmṼ ∗m)−1‖‖Ṽm‖‖V ∗m‖‖A∗‖ ≤
maxj=1,...,m Fα(σ2

j )−1

minj=1,...,m Fα(σ2
j )−2

‖A‖ .

Moreover, if r is also sufficiently large we obtain

K2
m,r ≤ ‖Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
r‖ ≤ 2‖(SS∗)−1‖‖SS∗‖ , K3

m,r ≤ 2‖(SS∗)−1‖‖SS∗‖ .

To see that K2
m,r → 0 as r → ∞ we observe that, since {sk}k∈N and {uk}k∈N span the same space, we

have that PSU = U , where PS = SS∗. Thus,

Um(U∗mSS
∗Um)†U∗mSS

∗UP⊥m = Um(U∗mSS
∗Um)†PmU∗UP⊥m = 0.

Also,
Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
rUP

⊥
m −→ Um(U∗mSS

∗Um)†U∗mSS
∗UP⊥m , r →∞

by the strong convergence of SrS∗r to SS∗ and compactness of Um. The assertion aboutK2
m,r follows.

4.2 Non-Regularized Reconstruction
The approach in the previous section was essentially based on the normal equation A∗Af = A∗g. As an
alternative, we now propose an approach based on directly utilizing the singular value decomposition of
A. In other words, since A = UΣV ∗, we have

η = S∗g = S∗UΣV ∗Wβ = S∗Uγ

and, as in the previous section, this results in two linear equations

S∗Uγ = η (4.9)
V ∗Wβ = Σ−1γ . (4.10)

Based on equation (4.9) we construct an approximation to g,

gδm,r = Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
r g
δ, (4.11)

and with the help of equation (4.10) we construct

fn,m = Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mg . (4.12)

Combining (4.11) and (4.12) suggests the following approximation to f :

fδn,m,r = Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mg
δ
m,r . (4.13)

Theorem 4.3. Let X , Y be separable Hilbert spaces and A : X → Y be a linear and bounded operator
with singular system {σk, vk, uk} (such that {vk}k∈N is an orthonormal system for N (A)⊥ and {uk}k∈N
is an orthonormal system for N (A∗)⊥). Moreover, let W = N (A)⊥ ⊂ X and S = N (A∗)⊥ ⊂ Y .
Suppose {sk}k∈N and {wk}k∈N are frames for S andW respectively. Then, for the solution f ∈ W ⊂ X
and n ∈ N, there exist M,R ∈ N such that, for all m ≥ M and r ≥ R the approximation fδn,m,r exists
and is unique. Moreover,

‖f − fδn,m,r‖X ≤ (1 +K1
n,m)‖P⊥Wn

f‖+K2
m,r‖P⊥Vmf‖+K3

m,r

δ

σm
, (4.14)

with

K1
n,m = ‖Wn(W ∗nVmV

∗
mWn)†W ∗nVmV

∗
mP
⊥
Wn
‖, K2

m,r = ‖Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
rUP

⊥
m‖,

K3
m,r = ‖Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
r‖

In particular, K1
n,m → 0 as m → ∞, and, for sufficiently large r, K2

m,r,K
3
m,r ≤ 2DC . Moreover, if

{sk}k∈N forms an orthonormal system, then K2
m,r → 0 as r →∞ and K3

m,r → 1 as r →∞.
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Proof. Following the same lines of the proof of Theorem 3.1, we obtain for (4.11),

gδm,r = Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
r (g + z)

= PUmg + Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
rP
⊥
Umg + Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
r z .

Therefore, we have for (4.13) with Σ−1
m U∗mPUmg = V ∗mf ,

fδn,m,r = Wn(W ∗nVmV
∗
mWn)†W ∗nVmV

∗
m(PWn

f + P⊥Wn
f)

+Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mUm(U∗mSrS
∗
rUm)†U∗mSrS

∗
rP
⊥
Umg

+Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mUm(U∗mSrS
∗
rUm)†U∗mSrS

∗
r z.

Note that we may argue exactly as in the proof of Theorem 3.1, by using the fact that {vk}k∈N is an
orthonormal system for N (A)⊥ =W and deduce that there is an M ∈ N such that

Wn(W ∗nVmV
∗
mWn)†W ∗nVmV

∗
mPWnf = PWnf, m ≥M. (4.15)

Thus, by simply plugging in the expression for fδn,m,r, it follows that

‖f−fδn,m,r‖
≤ ‖(I −Wn(W ∗nVmV

∗
mWn)†W ∗nVmV

∗
m)P⊥Wn

f)‖

+ ‖Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mUm(U∗mSrS
∗
rUm)†U∗mSrS

∗
rP
⊥
Umg‖

+ ‖Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mUm(U∗mSrS
∗
rUm)†U∗mSrS

∗
r z‖ m ≥M.

(4.16)

To get the asserted bounds we shall bound separately the three terms on the right-hand side of (4.16). The
first term is obvious, so we focus on the second and third. To bound the second term observe that

‖Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m ‖ = ‖(VmV ∗m)−1VmPRan(V ∗mWn)Σ−1
m ‖ ≤

1
σm

,

and that
P⊥Umg = (I − UPmU∗)g = U(I − Pm)U∗g = UP⊥mγ = UP⊥mΣV ∗Wβ.

In particular, since σj ≥ σj+1 for all j ∈ N, it follows that

‖Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mUm(U∗mSrS
∗
rUm)†U∗mSrS

∗
rP
⊥
Umg‖

≤ ‖Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m ‖‖Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
rUP

⊥
m‖‖P⊥mΣV ∗Wβ‖

≤ σm+1

σm
‖Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
rUP

⊥
m‖‖P⊥mV ∗Wβ‖

≤ ‖Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
rUP

⊥
m‖‖P⊥Vmf‖.

(4.17)

As for the third term we use (4.15) and the assumption on z and get that

‖Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m U∗mUm(U∗mSrS
∗
rUm)†U∗mSrS

∗
r z‖

≤ 1
σm
‖Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
r‖ δ.

(4.18)

Hence, by (4.16), (4.17) and (4.18) we obtain

‖f − fδn,m,r‖ ≤ (1 + ‖Wn(W ∗nVmV
∗
mWn)†W ∗nVmV

∗
m)P⊥Wn

)‖‖P⊥Wn
f‖

+ ‖Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
rUP

⊥
m‖‖P⊥Vmf‖

+ ‖Um(U∗mSrS
∗
rUm)†U∗mSrS

∗
r‖

δ

σm
,

which yields (4.14).
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To see that K1
n,m → 0 as m→∞ we can simply use Theorem 3.1 since, by assumption, {vk}k∈N and

{wk}k∈N span the same space and {vk}k∈N is an orthonormal basis. Similarly, the statement about K3
m,r

when {sk}k∈N is orthonormal follows from Theorem 3.1. To see that K2
m,r → 0 as r → ∞ we observe

that, since {sk}k∈N and {uk}k∈N span the same space, we have PSU = U . Thus,

Um(U∗mSS
∗Um)†U∗mSS

∗UP⊥m = Um(U∗mSS
∗Um)†PmU∗UP⊥m = 0.

Also,
Um(U∗mSrS

∗
rUm)†U∗mSrS

∗
rUP

⊥
m −→ Um(U∗mSS

∗Um)†U∗mSS
∗UP⊥m , r →∞

by the strong convergence of SrS∗r to SS∗ and compactness of Um. The assertion aboutK2
m,r follows.

4.3 Numerical Examples
In this section we will test the frameworks proposed in the previous subsections. First, we discuss a one-
dimensional example for which we analyze the suggested regularized and non-regularized reconstruction
methods. Thereafter, we consider a two-dimensional experiment. The goal is to verify that we can achieve,
even in the presence of noise, a reasonable reconstruction by the proposed sampling-recovery technique.

Example 4.4. In order illustrate the proposed sampling theorems (Theorem 4.1, 4.2, and 4.3), we consider
the linear operator A : L2([0, 1])→ L2([0, 1]) defined by

g(t) = Af(t) =
∫ t

0

f(s) ds ,

with singular system {σk, vk, uk} given by

σk =
1

(k + 1/2)π
, vk =

√
2 cos(k + 1/2)πt , uk =

√
2 sin(k + 1/2)πt .

Note that {vk}k∈N and {uk}k∈N form orthonormal systems for L2([0, 1]). To keep technicalities at a
reasonable level, we choose the Fourier basis as both the recovery system {wk}k∈Z and sampling system
{sk}k∈Z, i.e.

wk(t) = e2πikt and sk(t) = e2πikt .

Let the signal f to be reconstructed be defined by f(t) = cos 2πt. Consequently, f can be expanded as
follows,

f(t) = Wβ =
∑
k∈Z

βke
2πikt =

1
2
e2πi(−1)t +

1
2
e2πi(+1)t .

Consequently, β−1 = 1/2, β1 = 1/2, and βk = 0 for k ∈ Z \ {−1,+1}. Moreover, the data g are given
through g(t) = Af(t) = 1/(2π) sin 2πt. In this particular example we also have explicit expression for
all further required quantities,

γ = U∗g = {γl}l∈N =

{
4
√

2 cos(lπ)
π2(4l2 + 4l − 15)

}
l∈N

η = S∗g = {ηk}k∈Z with η−1 =
−i
4π

, η+1 =
i

4π
and ηk = 0, k 6= ±1

V ∗W =

(√
2((lπ + π/2) cos(lπ)− 2πik)

(2πik)2 + (lπ + π/2)2

)
l∈N,k∈Z

S∗U =

(
(−1)l+1

√
2((lπ + π/2) cos(lπ) + 2πik)

(2πik)2 + (lπ + π/2)2

)
k∈Z,l∈N

.

The approximations to f from the r samples S∗r g
δ may now be derived by

fα,δn,m,r = Wn(W ∗nVmΘ−1
α,mΘ−1

α,mV
∗
mWn)†W ∗nVmΘ−1

α,mΣm(U∗mSrS
∗
rUm)†U∗mSrS

∗
r g
δ and

fδn,m,r = Wn(W ∗nVmV
∗
mWn)†W ∗nVmΣ−1

m (U∗mSrS
∗
rUm)†U∗mSrS

∗
r g
δ ,
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Figure 5: Recovery results for εrel = 0%. Top (from left to right): ηδ = S∗r (g + z) (·) and S∗rUmγ (◦),
βδ20,30,40 (·) and β (◦), fδ20,30,40 = Wnβ

δ
20,30,40 (–) and f (- -). Bottom (from left to right): β0,δ

20,30,40 (·) and

β (◦), f0,δ
20,30,40 = Wnβ

0,δ
20,30,40 (–) and f (- -), βαopt,δ20,30,40 (·) and β (◦), fαopt,δ20,30,40 = Wnβ

αopt,δ
20,30,40 (–) and f (-

-).

where we focus here on Tikhonov regularization, i.e. the entries in Θα,m are given by Fα(σ2
k) = 1/(α +

σ2
k). We discuss now several different recovery scenarios.

In the first case we choose a fixed (and reasonable) setting for n, m and r and vary the noise level δ and
compare the recovery quality of fα,δn,m,r and fδn,m,r while experimentally tuning the regularization parameter
α towards optimal recovery. This experiment shall show that for a fixed number of data samples and
coefficients in the series expansion of the solution an optimal choice of regularization parameter induces a
substantially improved recovery.

In the second case we fix the number n of coefficients in series expansion of the solution and try to
find for different noise levels δ reasonable integers m and r to derive fδn,m,r. For the same numbers m and
r we then experimentally determine an optimal α to compute fα,δn,m,r. This experiment shall show that a
reasonable choice ofm and r may feasibly stabilize the recovery and providing approximations that cannot
be significantly improved by a fine tuning of α.

First case: vary z = g − gδ such the relative error εrel = 100 · ‖z‖/‖g‖ is 0%, 5% and 10% and let
n = 20, m = 30 and r = 40. The numerical results are illustrated in the following table and visualized in
Figures 5,6, and 7.

εrel, δ ‖f − fδ20,30,40‖ ‖f − f0,δ
20,30,40‖ ‖f − fαopt,δ20,30,40‖ αopt Fig.

0%, 0 0.6262 0.4995 0.0071 0.00017 5
5%, 0.0056 1.1738 0.9728 0.1536 0.00037 6
10%, 0.0113 1.7593 1.5268 0.2265 0.00061 7

Second case: we first fix n = 10 and ask then, for different relative errors εrel ∈ {0%, 5%, 10%}, for an
adequate choice (numerically determined) of m and r in order to derive an optimal approximation fδn,m,r.
Then, we try by fine tuning α to obtain with fα,δn,m,r a comparable or possibly better approximation. The
results are documented in the following table. The illustrations of this experiment are given in Figure 8
(the illustrations for εrel = 0% are not provided since there is no visual difference).

εrel, δ m r ‖f − fδ10,m,r‖ ‖f − f0,δ
10,m,r‖ ‖f − fαopt,δ10,m,r‖ αopt Fig.

0%, 0.0 10 1000 0.002114839173 0.002114839160 0.000112 0.0000035 -
5%, 0.0042 40 100 0.0303 0.0433 0.0371 0.000025 8
10%, 0.0075 40 80 0.1044 0.2990 0.2732 0.0001 8

Example 4.5. In the second example we discuss the Radon transform,

R(τ, ω) =
∫ +

√
1−τ2

−
√

1−τ2
f(τω + tω⊥)dt , (4.19)
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Figure 6: Recovery results for εrel = 5%. Top (from left to right): ηδ = S∗r (g + z) (·) and S∗rUmγ (◦),
βδ20,30,40 (·) and β (◦), fδ20,30,40 = Wnβ

δ
20,30,40 (–) and f (- -). Bottom (from left to right): β0,δ

20,30,40 (·) and

β (◦), f0,δ
20,30,40 = Wnβ

0,δ
20,30,40 (–) and f (- -), βαopt,δ20,30,40 (·) and β (◦), fαopt,δ20,30,40 = Wnβ

αopt,δ
20,30,40 (–) and f (-

-).
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Figure 7: Recovery results for εrel = 10%. Top (from left to right): ηδ = S∗r (g + z) (·) and S∗rUmγ (◦),
βδ20,30,40 (·) and β (◦), fδ20,30,40 = Wnβ

δ
20,30,40 (–) and f (- -). Bottom (from left to right): β0,δ

20,30,40 (·) and

β (◦), f0,δ
20,30,40 = Wnβ

0,δ
20,30,40 (–) and f (- -), βαopt,δ20,30,40 (·) and β (◦), fαopt,δ20,30,40 = Wnβ

αopt,δ
20,30,40 (–) and f (-

-).

where we have assumed that supp(f) ⊂ D = {x ∈ R2 : ‖x‖ ≤ 1}, and ω ∈ S1, τ ∈ [−1, 1], see [23].
The mapR is linear and continuous (with norm

√
4π) between L2(D) and L2([−1, 1]× [0, 2π], g−1), with

weight function g(τ) =
√

1− τ2. As a map between these spaces, the Radon transform has the following
singular system (for details see again [23]),

{(vml, uml, σml) : m ≥ 0, l ∈ Z : |l| ≤ m,m+ l even } ,
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Figure 8: Experimental results for εrel = 5%: fδ10,40,100 (t.l.), f0,δ
10,40,100 (t.m.), f0.000025,δ

10,40,100 (t.r.), and for
εrel = 10%: fδ10,40,100 (b.l.), f0,δ

10,40,100 (b.m.), f0.0001,δ
10,40,100 (b.r.). In all subfigures the dashed line (- -)

represents the true solution f .

vm,l(x) =

{ √
m+1
π ‖x‖

|l|P
(0,|l|)
(m−|l|)/2(2‖x‖2 − 1)Yl(x/‖x‖) ‖x‖ ≤ 1

0 ‖x‖ > 1

um,l(τ, ω) =
{

1
π g(τ)Um(τ)Yl(ω) |τ | ≤ 1
0 |τ | > 1

σm,l = 2
√

π

m+ 1

where

P (α,β)
n (x) =

Γ(α+ n+ 1)
n!Γ(α+ β + n+ 1)

n∑
m=0

(
n
m

)
Γ(α+ β + n+m+ 1)

Γ(α+m+ 1)

(
x− 1

2

)m
,

Um(τ) =
sin((m+ 1) arccos(τ))

sin(arccos(τ))
.

Hence, for each f ∈ L2(D), we have Rf =
∑
m,l = σml〈f, vml〉L2(D)uml. We choose as recovery

system for L2(D) = L2(rdrdθ, [0, 1]× [0, 2π]) the separable Haar basis on [0, 1]× [0, 2π],

wλ(r, θ) = ψλ1(r)ψλ2(θ) , λi = (qi, j, ki) ,

where qi prescribes the species of the wavelet (qi = 0 - generator, qi = 1 - corresponding wavelets,
i = 1, 2), j ∈ Z the scales, and (k1, k2) ∈ I the translations. Then, we obtain

〈f, vml〉L2(D) =
∫
D

f(x)vml(x)dx =
∫ 2π

0

∫ 1

0

f(r cos θ, r sin θ)v̄ml(r cos θ, r sin θ)rdrdθ

=
∫ 2π

0

∫ 1

0

f(r cos θ, r sin θ)

√
m+ 1
π

r|l|P
(0,|l|)
(m−|l|)/2(2r2 − 1)e−ilθrdrdθ

=
∑
λ

βλ

∫ 2π

0

ψλ2(θ)e−ilθdθ

√
m+ 1
π

∫ 1

0

ψλ1(r)r|l|+1P
(0,|l|)
(m−|l|)/2(2r2 − 1)dr

=
∑
λ

βλ(V ∗W )λ,ml .

As sampling system, we choose an orthonormal Fourier-Mellin-type basis, {wn,k}(n,k)∈N×Z, to span
L2([−1, 1]× [0, 2π], g−1), which we define by

sn,k(τ, θ) =
1
4

√
τ + 1
αnπ

Qn((τ + 1)/2)eiθkg1/2(τ) , (4.20)
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Figure 9: Left: phantom function f on D, middle: Radon transform Rf for m ≤ 30 (resulting in 496
singular functions), right: matrix W ∗256V496Θ−2

α,496W256V
∗
496W256, where for the wavelet system the scale

is limited to 2 ≤ j ≤ 3 (resulting in 256 basis functions).

where

αn =
1

2(n+ 1)
, Qn(τ) =

n∑
p=0

αn,pτ
p , αn,p = (−1)n+1 (n+ p+ 1)!

(n− p)!p!(p+ 1)!
.

Therefore,

(S∗U)nk,ml = δlk ·
1
2

∫ 1

−1

Um(τ)
√
τ + 1
αnπ

Qn((τ + 1)/2)g1/2(τ)dτ .

The phantom function f to be recovered is now simulated on D by placing N ellipses,

Ek =
{
x ∈ R2 :

∥∥∥∥( ak 0
0 bk

)(
cos νk sin νk

− sin νk cos νk

)(
x− xk

)∥∥∥∥ ≤ rk} , k = 1, . . . , N ,

through,

f0(x) = 0 , fn+1(x) = fn(x)χD\En+1(x)+ξn+1 χEn+1(x) , n = 0, . . . , N−1 and f(x) := fN (x) .

The k-th ellipse is specified by a set of parameters Πk = (xk, rk, νk, ak, bk, ξk), where xk determines the
localization, rk the radius, νk the orientation, ak, bk the semi-axes, and ξk the plateau height.

In our particular example we selected three ellipses,

E1 : Π1 = (0.5, 0.0, 0.3,−π/12, 1, 0.5, 2)
E2 : Π2 = (−0.5, 0.0, 0.3, π/12, 1, 0.5, 2)
E3 : Π3 = (0,−0.4, 0.3, π/2, 2, 0.6, 3) ,

resulting in a phantom function f(x) = f3(x) which visualized in figure 9. The resolutions (which can
be made as fine as desired) to represent f (on a cartesian and/or polar grid) as well as Rf are restricted
in our computational experiments to equispaced grids of size 256× 256 and 512× 512. This is of course
not fine enough when significantly increasing the number of recovery, singular and sampling functions.
In particular, the singular and sampling functions contain oscillatory components that indeed require a
much finer resolution. But as we focus here on exemplarily documenting the applicability of the proposed
approach, we restrict ourselves to problem dimensions that cause no extra sophistication when dealing with
very large systems. By (4.8) an approximation to f is now obtained through

fα,δn,m,r = Wn(W ∗nVmΘ−1
α,mΘ−1

α,mV
∗
mWn)†W ∗nVmΘ−1

α,mΣm(U∗mSrS
∗
rUm)†U∗mSrS

∗
r g
δ .

We have derived fα,δn,m,r within the following scenarios, for visual inspection see figure 10,

n m r E(f, fα,δn,m,r), rel.
(wavelet functions) (singular functions) (sampling functions) recovery error

scenario 1 1024 (2 ≤ j ≤ 4) 1326 1681 22,03 %
scenario 2 4096 (2 ≤ j ≤ 5) 4186 4225 15,62 %
scenario 3 16384 (2 ≤ j ≤ 6) 16471 16641 11,40 %
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Figure 10: Top row (from left to right): recoveries of f by fα,δ1024,1326,1681 (scenario 1), fα,δ4096,4186,4225

(scenario 2), fα,δ16384,16471,16641 (scenario 3), where the relative error is εrel = 5% and the corresponding
Tikhonov stabilization is fine tuned byα = 0.00001. Bottom row (from left to right): modulus of difference
between f and fα,δ1024,1326,1681, fα,δ4096,4186,4225, and fα,δ16384,16471,16641.

In our particular example the relative data error is εrel = 5% and the corresponding Tikhonov stabilization
is fine tuned by α = 0.00001. The relative recovery error is defined in this experiment by

E(f, fα,δn,m,r) =
‖f − fα,δn,m,r‖L2(D)

‖f‖L2(D)
.

5 Conclusions and challenges
The purpose of this paper was to extend generalized sampling to sampling and reconstructions in frames,
and to inverse and ill-posed problems. The key component is to allow the various parameters (number
of samples etc) to vary independently. When done appropriately, it is then possible to prove sampling
theorems which give guaranteed error bounds for the reconstruction in terms of constants that can be
estimated numerically.

An important theme of this work, as discussed earlier in the paper, is that finite-dimensional tools are
not always well suited for formally infinite-dimensional problems. As such, this paper marks only one step
in a much larger project on how to reconstruct in infinite dimensions, with many directions for future work.
Several of these directions are now described.

All the key theorems in this paper rely on the existence of quantities (e.g. Kn,m orK1
n,m, K2

m,r, K
3
m,r)

which can be made small by an appropriate choice of parameters. In Section 3.4 an insight was given as
to how to numerically estimate the quantity Kn,m in the case of generalized sampling with frames, and
thus how to compute the so-called stable sampling rate. It is a topic of ongoing investigation to extend this
notion to the GS framework for inverse problems of Section 4. Note that the setting here is substantially
more complicated – we have to deal with additional parameters, including possibly the regularization α.
However, the aim of future work is to introduce explicitly computable sampling rates for such problems,
which allow one to determine precisely how to balance such parameters. Much of this will be based on the
more recent developments of [6] for GS with bases.
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An important ill-posed problem is that of X-Ray tomography, which involves inverting the Radon
transform. Although the GS framework introduced in Section 4, based on regularization of a compact
operator, can be applied to this problem, this is not the only possible approach. Indeed, the Radon transform
has a number of key features than one may hope to incorporate into the GS framework in order to get a
better reconstruction for this particular problem. This is also a topic of future investigations.

As mentioned at the beginning of this paper, GS can be combined with convex optimization tools to
give new techniques, and a completely new theory, for compressed sensing in infinite dimensions [1, 5].
One may therefore ask, is it possible to incorporate the developments in this paper to allow for sparse
recovery for inverse and ill-posed problems? In the near future we intend to investigate this question, with
one aim being to extend the previous work of [19] on this topic.
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[8] A. Böttcher. Infinite matrices and projection methods. In Lectures on operator theory and its applications
(Waterloo, ON, 1994), volume 3 of Fields Inst. Monogr., pages 1–72. Amer. Math. Soc., Providence, RI, 1996.

[9] O. Christensen. Frames and the projection method. Appl. Comput. Harmon. Anal., 1(1):50–53, 1993.

[10] T. Dvorkind and Y. C. Eldar. Robust and consistent sampling. IEEE Signal Process. Letters, 16(9):739–742,
2009.

[11] Y. C. Eldar. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. Journal
of Fourier Analysis and Applications, 9(1):77–96, 2003.

[12] Y. C. Eldar. Sampling without input constraints: Consistent reconstruction in arbitrary spaces. In A. I. Zayed and
J. J. Benedetto, editors, Sampling, Wavelets and Tomography, pages 33–60. Boston, MA: Birkhäuser, 2004.
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[20] T. Hrycak and K. Gröchenig. Pseudospectral Fourier reconstruction with the modified inverse polynomial recon-
struction method. J. Comput. Phys., 229(3):933–946, 2010.

[21] A. J. Jerri. The Shannon sampling theorem – its various extensions and applications: A tutorial review. Proc.
IEEE, 65(1565–1596), 1977.

23



[22] H. J. Landau. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math.,
117:37–52, 1967.

[23] A. K. Louis. Inverse und schlecht gestellte Probleme. Teubner, Stuttgart, 1989.

[24] M. Unser. Sampling–50 years after Shannon. Proc. IEEE, 88(4):569–587, 2000.

[25] M. Unser and A. Aldroubi. A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal
Process., 42(11):2915–2925, 1994.

[26] M. Unser and J. Zerubia. A generalized sampling theory without band-limiting constraints. IEEE Trans. Circuits
Syst. II., 45(8):959–969, 1998.

24


