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Abstract

In the paper by U. Ascher, [1], there is an empirical obséowadf high frequency oscillations, which start to appear
in the long-term, when solving the one dimensional cubic-toear Schrodinger equation with Strang splitting and
when the space variable is discretized with the midpointiabt suggesting that choosing the time dtdye smaller
thanh?, the space step squared, prevented oscillations from émgertn this work we provide theoretical support
for this evidence and derive it by using wave train analysifie non-linear Schrodinger equation has infinitely
many conservation laws, but the numerical method used hmrsecves only thé?-norm, and is symplectic. The
Hamiltonian is not preserved by the method and the numegiaahples show that the Hamiltonian can be used as an
indicator when the high frequency oscillations start to eyae
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1. Introduction
The non-linear cubic one-dimensional Schrodinger equdtiLS) is
Uy = iUy + iqlUl?u,

whereu is a complex valued function amds a real parameter. The equation is called focusing+ifO and defocusing
if q < 0. The NLS appears in fiber optics, Bose-Einstein condetisatey and water wave analysis [5, 8].

The NLS is interesting from an analytical point of view, fohas an infinite number of conservation laws. In one
dimension, ifg > 0, it also admits soliton solutions. Commonly used condarmdaws are the first twd,,-norm and

the Hamiltonian,
d / d q
2 — 2 _ M4 —
Tt f|u| dx=0 and —dtf(lux| 2|u| )dx 0
respectively [11].

There are numerous numerical methods that are used to ap@tesolutions, for example, see the listin [6, 7, 9].
In this paper, we apply Strang splitting method with the midpmethod to solve the linear space part iuxx and
our interest lies in the long-term behavior of the approsxiora The method is symplectic and preserves|th@orm
and therefore sounds as an ideal candidate for the long fim@=imation.

However, this Strang splitting method resulted in high éreocy oscillations in the long run, unless the time
step of the approximation was chosen tolBethe space step squared. This was one of the examples in firfewh
“marginally stable methods used on a marginally stable lprob produce unexpected results”. Here we derive the
following estimatek < h?, for the time and step discretization, using the wave traaysis as in [10, 2].

For a small initial value function Gauckler and Lubich haveyed in [3] that, among other methods, the numerical
method considered here nearly preserved4herm and the Hamiltonian for a long time. In addition, thbugr
different solver for the linear part, split-step Fourier methih@ choicek = O(h) was stficient to produce good
numerical results. The numerical method with the exampdesl tnere does not satisfy this criterion of smallness and
the Hamiltonian is not preserved.

Instead, the Hamiltonian can be used as an indicator whesdhsion is deteriorating from high frequency
oscillations. Checking the value of Hamiltonian or othenserved quantities was done commonly in earlier numerical
analysis of the Schrodinger equation, [6, 7], but seemtiblyotten lately when geometrical integration has taken
precedence. In our case the high frequency oscillationsase the derivative pati|? of the Hamiltonian. However,
thel,-norm incorporated in the numerical method stays smalk éine solution is devoured by the high frequency
oscillations, and thus, provides no useful informationaaning the solution.

The paper is organized as follows: In Section 2 we presemingerical method and the results from the wave
train analysis, see [10] for additional details. In Secfiothe behavior of the Hamiltonian is analyzed and numerical
results from two dierent initial value functions are given. Section 4 contaliresconclusions.

2. Conditionsfor instabilities
The NLS admits wave train solutions,
O(x, t) = a expi(kx— wt), (1)
if w =k? - glal>. Let the wave train solution i$ perturbed to,
u(x, t) = U(x, (1 + e(x, 1)),

wherele]? < 1, and assume periodic boundary conditions on an interdehgthL. Then then™ mode of the Fourier
expansion of the perturbatienwill grow exponentially, if

2
0< (?) < 2qla,

see for example [10]. This analytical instability can onégor if g > 0 and it concerns only the low frequency modes.
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2.1. The numerical method
We write the non-linear Schrédinger equation

iUt + Uxx + qlu?u =0 (2)

as a sum of the linear and non-linear parts,
u =iLu+iNu,

where
Lu:=uUy and AN(u) :=qu

The right hand side of the formula
u(x t+ k) = exp ik(L + N(u)) - u(x 1),
is Strang split as,
exp k(L + N(U)) -u(x,t) ~ expi g.[j -expik N(u) - expi g L-u(xt),

wherek denotes the time step. The splitting is second order aceurat
If the approximation ofi(x, t) is denoted byJ(x,t) we can write the steps of the numerical method with help of
guantitiesv™ andwW™;

V™= expi IE(L' um
W™ = expik N(VT) V™,
and
um™l = expi I%L-Wm,

whereU™ is the approximation at the tinmak
From the numerical point of view the second step is computed a

W] = exp (gkIV]'?) - V", (3)
wherej refers to the approximation at the space pdgimtFor the first and third step we use the midpoint method rule:
vm—um
——— == [Af V" + A UT 4
5 = 5 [An V™ + A U, (4)
and e _ gy
U — _ i m+1 m
72 _E[Ahu +AhW]. (5)
These can be written in matrix form as . .
I —i=S)V™=(l +i=S)u™
( |28) ( +|28)U , (6)
and r r
(1- iES)Um” =(I + iES)Wm, 7)
where
Lk
- 2h?
Herel is theN x N identity matrix andS is N x N matrix of the form,
-2 1 - . 1
1 -2 1 .
1 -2 1
1 -2 1
1 1 -2



This method conserves thg-norm in the discrete sense:
DUUmPh = 3T U,
i i

2.2. Analysis of the numerical method

Instability of the wave train solution is investigated fnlling ideas presented in [10]. Due to three stap3 &
V™ - WM — U™1) in the numerical method the analysis is a lot more comm@it@bmpared to the analysis of the
two step sequential splittig in [10].
We use the test subject:
U™:= a exp(alal’mK, (8)
which is perturbed to

um=0ma+ e, Q)
Where|grj”|2 < 1.

The first step (6) of the iteration will simply multiply tHag™ by a constant: i/™ denotes the result of the equation
(6) after substituting (9) into it, then

DAY DVAREAVAN

T N T

= |§U|21+(1—|r)u{(”+|§u,21
[ o o I o

= izUm+@-in)Um™+izum
|2 +(1-ir) +|2

= 0m

This can be summarized in matrix notation,
r o o
(- |§S)Vm =uUm

To solve the equation .
VM= (I - iES)‘lLoJm

we notice that the sum of the row elements of the inverse r@tr i%S)*l is one and the componentslafn are all
the same so the resultis

vm=gm
Thus we can write,

v = 0M(L+ o), (10)

for the result of the equation (6).
Substituting (9) and (10) into the equation (6), we see tiat¢lation between the variatios$ anda’jn is

k k
aj' - IZLha/E" =& + IZthE”, (12)
where M _pem g
M —2eM+ &
m_ i+l i j-1
Lhej = h2

Inserting the result (10) into the second step (3) of thaiten and discarding all second order term&?ﬂfgives
the following,

W = U™4(1 + (1+ ikglal)a + ikalal?e ™). (12)
If this is abbreviated to,
1 qm+l
W = 0™4(1 + M),
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where
2 m*

=(1+ |kq|a| )a + ikglal“a’",

then the relation between the variati(ﬁ’fSands?”1 is

.k .k
m+l |Z-£h8rjn+l — IB’J“ + IZLhﬂrjn (13)
Changing the time fronnf + 1)k to mkin (13) and summing the equations (11) and (13) ghij%m terms ofa’j“ and
By

2¢" =o' + BT + il—(.ﬁh(ﬂmfl -af). (14)

SubstitutingJ{™* = Um1(1 + &™) and (12) into the third step (7) results in

gt —i- 1: et =1 +i Lh)a +ikgal®(l+i- Lh)(a +af™). (15)
Substituting (14) and all recurrirﬂg‘-terms into (15) we finally obtain and equation which relat&s'-terms with
a™-terms:

m+1 _Lha,m+1

j j+1

kr kr .k
H+1 m+1 H
arjn - E.Eha’j_l + (Z - IE)Lha

. k . .
= (1+ikga®)(1+ i5Ln) o + ikgla®(1 + |§Lh) o

Zr 2
Y B L v (16)
2
v S ikga?) Lo} + q"""z m
k2 2
- —(1+|k|a|2)£h @jiq — %ﬁhaﬁl.

Suppose that the perturbatiaﬁ‘? to be periodic on the intervaJr[%, %] andh=L/N, j=-N/2,...,N/2,x; = jh.
Then we can expregél“ as a discrete Fourier series,

N/2-1

al'= > apexpliunx), (17)
n=-N/2
with frequencies,
_2m
Hn = L

Substituting (17) into (16) yields

A1 HM
(0‘“ ): Bn(“l ) n=-N/2...N/2-1,n#0

am am

where the matrixBy, is quite similar as thé,, in [10], page 492,

g _[ @ @+isga?) diisqa?
"\ —d;2ikgla? d2(1—|q|a|2)

where 14 K
+irsy
S SEEEmre . = -, = h - 1
O 1—irs, M= om 5 =C0%n



Figure 1: The graph of functiofi(x, y) = (1 - 6x% + x* — 2yx(x® — 1))/(1 + x?)? is on the left hand side. On the right hand side are the areasewh
[fxyl>1.

The eigenvalues, of B, are of the same form as éf;:
An=yn+ (Yﬁ -1t
except that
_ 1-6r2sh + rs — 2kqal’rsy(r?sh — 1)
" 1+ 29 ‘

The intermediate solutio™ becomes unstable jfiy| > 1. This is equivalent tdy,| > 1 which is easier to
examine. The function

1-6x° + x* — 2yx(x® - 1)
(1+x%)2
is plotted to the left hand side of the Figure 1. On the rightchside are the areas wheféx,y)| > 1.

The variablexwas a replacement fos, with dependence ok h, andn, and values ok that interest us, are on the
interval [-2r, 0] = [-k/h?, 0]. The variabley was a replacement fdagjal?, so the analysis is not that straightforward.
However, the sigy corresponds to the sign gf and values nearaxis correspond to the smallewalues. In addition,
the linex = —1 is an important threshold: ifk/h? lies on the left hand side of it, there is no way to avoid thescas
lynl > 1, unlesskis made very small. This gives a qualitative explanatiotodbservation in [1], that & is chosen
smaller tharh?, then the numerical method does not exhibit high frequescillations.

Thus, the Figure 1 suggests that for the negative valueg tbfe low frequency modes are unstable. The other
area for instabilities lies on the left hand side of the line —1. Thus choosing < h? guarantees that no high
frequency oscillations should take place. Kas O there is two areas for instabilities, one on the right hadd ef
the linex = —1 and one further the negatixeaxis. For positivey, it should be possible to prevent the high frequency
oscillations to emerge, Kandh are chosen so that all possible valuessjflie on the right hand side of the instability
area neax = —-1.

The results of the following, more thorough, analysis atéected to the Table 1.

f(x) =



—20F
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Figure 2: The graph of functioh(x) = 4x/(x? — 1) with cases-kgal? > 0, and—kgal? < 0.

2.2.1. Thecasg, > 1
The inequalityy, > 1 is equivalent to,

—kga}(r’s2 - 1) < 4rs,. (18)
If rs, < —1, which can only happen K> h?, and if|n| is large enough, then (18) is equivalent to

4rs

—kglal? n
q|a|<rzsﬁ_1

From Figure 2 we see that ¥ in place ofrs,, is less that-1 then instabilities are possible only-ikqgal®> < 0 and
thus ifq is positive. Then for the modes witls,, < —1, the appearance of instabilities can be prevented if

4rsN/2
2 9
r %/2 -1

k < hy/4/qa? + h2. (19)

If k < h?, ornis small enough in the case> h?, then-1 < rs, < 0 andr?s? — 1 < 0. In this case (18) is
equivalent to,

—kgal® >

or equivalently

4rs,
r2gg -1’
If g > 0 then—kgal® < 0, so all the modes are stable according to (18). drer O there are low frequency
instabilities unless

—kqal® >

(20)

If N is large, say greater than 100, we can approxireate cos(2rh/L) — 1 by —272h?/L2. Then the inequality (20)
is equivalent to
L2
4 2 212
> 74q|a127r4 (47r + glal“L )

The right hand size of this inequality is negative-ijjal® < 47?/L2.



Figure 3: The graph of functiofi(x) = x — 1/x with caseskqal? > 0, andkgjal? < 0.

2.2.2. The casgn < -1
The inequalityy, < —1 is equivalent to

(1-r?8)(1 +kqal’rs, - r’s?) < 0. (21)

If rs, < —1 then the inequality (21) is equivalent to

1
kqal® < rs, - —,
gal® < rsy rs,

and from the Figure 3 we can see that there can be high fregumstabilities only ifg < O under the assumption
X = rsp, < —1. The instabilities are prevented if

1
2 _——
kga® > rs, = (22)

for all n such thatrs, < —1. Letm be the smallest such If rs;, = -1 — & then equation (22) is equivalent to
k < 2¢/(—qla?). If |m is nearN/4 we can approximate by the largest possible step, approximatetimes the size
of the angle step, - 2zh/L = 7k/hL = 7k/h®N. This gives only a restriction to the space step:

2n
hs ——.
—qlal’L

If -1 <rs, <0,then 1-r?s2 > 0 and (21) is equivalent to

1
kglal® > rsp — —.
gal® > rsy rs,

Thus the inequality (21) implies that there are no instaediif g < 0. If g > 0, we must have

1
kglal® < rsyj, — ——
/ I'Sn/2

to prevent the instabilities to occur. This condition is iglent to,

h2
k< ———— < W (23)

1+ glal’h?

Thus choosinds according to the inequality (23), i.e. namely tH&mguarantees that no instabilitiesgf> 0.
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No instabilities if
q>0, -1<rs,<0: k<h?//1+qaph?
rs,<—-1: k<h+/4/qa?+h?
<0, -1<rs,<0: (approx.)-gla®< 4n?/L? (only low freq.)
rsn < -1: (approx.)h < 2r/(-qlal’L)

Table 1: Summary of all cases.

2.2.3. Conclusions

Forqg > 0 we require a stricter condition
h2

V1+ qlajzh?
to keep the any oscillations from appearing.

Forq < 0, the analysis gives only constant, and approximate jcgefrs,

k <

2

_q|a12 < 41

for low frequency oscillations and
< —27r2
—qlaj“L

for high frequency oscillations in the cake- h?. Thus, the choic& < h? is sufficient to avoid the high frequency
oscillations in the long-term.

2.3. Splitting the non-linear part first
The Strang splitting could also be done with the non-lineat first:

exp ik(L+ N(U)) - u(xt)y = expi gN(u) -expikL-expi IE(N(u) - u(x, t).

Two consecutive non-linear half steps combine into one wistép. Thus the analysis and results are similar to the
sequential splitting in [10].

3. Numerical results

3.1. The role of the Hamiltonian

The numerical method preserves only the one discrete veo$ithem, thet?>-norm. The relative dierence of the
£?-norm, i.e. the dference between the norm at timminus the norm in the beginning &t 0, stayed below 1G°
in all our examples, even if the solution was beyond recagmifThe discrete version of the Hamiltonian,

N— l|u —U N
|+l il _ gz Ui |4 (24)

i=1

instead, indicated nicely some of the errors of the numkmethod made.
For example, when using the soliton initial value functiomthe casej = 1, see Figure 4,

u(0, X) = €2 sechi/ V2) + 2920 gech(k — 25)/ V2), (25)
9
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Figure 4: The initial value functiom(0, X) = €*/2 sechg/ V2) + d*-2/20sech(k — 25)/ V2) consists of two solitons moving right atfidirent
speeds.

with periodic boundary conditions on the intervaP[D, 80] from [4, 1], the solution should present two solitonshwi
their form preserved at all times, moving to the right witffelient speeds and coalescing almost periodically.

Usingh = 0.1 andk = 0.025, (which equal&/4), the discrete Hamiltonian (24) is calculated for eachrayip
mation and dference of the value of the Hamiltonian at the titrendt = O plotted in Figure 6 for the time interval
[0,300]. From this we can see that numerical method cannot keepth the fast interaction of the solitons. This
shows as a small fierence in the position of the solitons, as can be seen frofettteand side of Figure 5 and small
increase in the relative fierence of the Hamiltonian after the interaction as can be sem Figure 9. However, the
phase olu has much greater filerence between the solutions as can be seen on the rightleigtine 5. The size of
the space stepused is 01 and the values fdt areh, h/2, h/4 andh?. Here the solution fok = h is already showing
some high frequency oscillation.

Returning to the caske = 0.1 andk = 0.025, att = 900 small oscillations start to show, see Figure 7. By this
time the diference in the Hamiltonian has grown t®4. By the timet = 1200 the oscillations overtake the solution
completely as can be seen from Figure 8. By then tfferince in the Hamiltonian is 2170.

The Figure 9 depicts the usual behavior of the Hamiltoniathéoscillatory case. The inability of the numerical
method to approximate the soliton interactions correcttyeases the error in the Hamiltonian a little by little unti
the high frequency oscillations start to grow and finallyetaier the solitons. If the length of the interval and thus,
the frequency of the interactions were approximately hlitd¢ook approximately twice the time for the solution to
deteriorate.

3.2. Numerical examples

Our analysis of the numerical method concerned only a siingtpiency. The meaning efin the condition (23)
is vague in the case of a more general initial value functimply because there are multitude of modes, and even
the unstable modes do not grow in an unlimited way due to #iglsting and non-linear features of the Scrodinger
equation. However, in the following examples, the choic& td be a little smaller thah? results high frequency
oscillation free numerical runs.

3.2.1. The soliton example from [4] and [1]

The initial value function (25) depicts two solitons withi¢ilet 1 and with speeds of 1 and1D. The absolute
value ofu(0, X) is plotted in Figure 4.

In the discrete Fourier transform af0, x), the maximum size of a frequency componghis 4.44 if h = 0.1.
Thus if we setialh equal to 0444 (this is true for other values @fas well) in the (23) then the condition gives
k < 0.914- h? = 0.00914. Compared to the numerical results, this scenariodstrict, see Table 2, or else the
instability does not occur unlesss larger than the values tested here.
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—h=0.1, k=0.01
h=0.1, k=0.00999

121 —h=0.05, k=0.0025

—h=0.05, k=0.002499
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Figure 5: The approximation far{100Q x) for four different pairs oh andk is plotted in the upper image. The pairs were chosen fromdkes
where there were no high frequency oscillations visibléattimet = 1000. Below, the phase information is also shown for the bas®.1 and
four different values fok at the timet = 500. Here the biggest choige= h results visible oscillations already tat 500.
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Figure 6: The value of the discrete Hamiltonian at the tinteriral [Q 300]. The interaction of the coalescing solitons happenfaso for the
numerical approximation to keep up and this shows as smalsds size-7 x 1073 in the graph of the Hamiltonian.
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Figure 7: The approximation at the tinhe- 900 starts to show small oscillation as can be seen at |easttfre close-up at the right hand side. The
difference in the Hamiltonian at time= 900 andt = 0 has grown to greater than 4.

t=1200
T

% “’ |

Figure 8: The approximation at the tinhe- 1200 has deteriorated. Thef@rence in the Hamiltonian has grown grater than 2000.
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20

Figure 9: The Hamiltonian of the cage= 10 in the NLS andk = h = 0.1. The time interval is [(800]. For the soliton interaction causes the
spikes.
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Spacestep h=0.1 Space step h = 0.05 Space step h = 0.01

k Stop k Stop k Stop
0.1 (=h) 418 Q05 (= h) 538 Q01 =h) 610
0.05 (= h/2) 505 0025 (= h/2) 1344 0005 (= h/2) 486
0.025 (= h/4) 808 00125 & h/4) 675 00025 & h/4) > 5000
0.01 (= h?) 2133 00025 & ?) 2011

0.009999 1652 02499 > 10000

0.00999 4356 024 > 12000

0.0099 > 40000

Table 2: The constarg is 1 in NLS. The two soliton initial value function with andage step$ = 0.1, 0.05 and 001 and various values for
the time stegk and corresponding stopping times. The numerical calauiatopped when relative Hamiltonian errer lamiltonian at time -
Hamiltonian at time = 0) was greater than 0.05 for at least 1 time usitWice the time for the soliton interaction).

Spacestep h=0.1 Space step h = 0.05 Space step h = 0.01
k Stop k Stop k Stop
0.1(=h) 1547 005 (= h) 3766 001 (= h)
0.05 (= h/2) 3503 0025 (= h/2) 4132 0005 = h/2)
0.025 (= h/4) 5971 00125 & h/4) 14086 00025 & h/4)
0.01 (= h?) 610 Q0025 & h?) 609
0.009999 632 02499 > 30000
0.00999 7332 024
0.0099 > 30000

Table 3: The constarg is —1 in NLS. The two soliton initial value function with and spgastepsh = 0.1, 0.05 and 001 and various values for
the time stegk and corresponding stopping times. The numerical calauniatopped when relative Hamiltonian errer lamiltonian at time -
Hamiltonian at time = 0) was greater than 0.05 for at least 1 time usityice the time for the soliton interaction).

For each valud andkin Table 2, the numerical calculation ran until the relatveor of the Hamiltonian remained
above 0.05 for at least 1 time unit, approximately twice theetof the soliton interaction, which causes spikes in the
Hamiltonian graph, see Figure 6, or until a given maximunetiffherefore the stopping time is not an exact measure
of the deterioration, but a guarantee that the solution lasemed enough and is not stopped because of the spikes
caused by the soliton interaction.

For positiveq in the NLS, choosinds to beh? or smaller, resulted a high frequency oscillation free emililt, as
can be seen from the Table 2. However, this is no guarantée afrrectness of the numerical approximation, as can
be seen from the fferences in the Figure 5.

For negativey, the same stopping criteria was used, even though the salitape is not preserved in this case.
Instead a multitude of solitons are formed. Choodingmaller thanh? kept the high frequency oscillations from
emerging, as can be seen from the Table 3. By the timel000 the low frequency instability has ndtected the
numerical runs in the cade= 0.1, as can be seen from the Figure 10. However, the constanaation between

solitons is bound to causeftiirences in the phase information ariiéeting the shape of the absolute value, as Figure
5 suggests.

3.2.2. Example from Weideman and Herbst [10]
As an non-soliton example we have the following initial v@function for the NLS withg = 2:

ma@=%u+dx®)

14



Figure 10: Three numerical runs with= —1 and two soliton initial value function (25). The space dtep0.1.

where
[ 01(l-2xL) ,if0<x<L/2
&(x 0)= { 01(1+2x/L) ,if-L/2<x<0

and wherd. = 16 and the interval is{8, 8] with periodic boundary conditions. This choicesofjives energy into all
modes. The numerical results in Table 4 confirm the necessguirement thak has to be somewhat less thiath
The Hamiltonian behaves similarly to the soliton case, sgere 11.

4. Conclusions

The wave train analysis gave the restriction that the tirap lsshould be a little smaller thal, the space step
squared. The numerical experiments here also confirm thenadxs disappearance of high frequency oscillation with
this choice. For the casp< 0 the calculation gave the limkt < h? and some limiting constant to the time and space
steps. In both cases, our analysis explains the numergaltseeceived in [1].

The numerical method conserved the incorporafeniorm even if the solution had worsened beyond recognition.
However, the growing oscillations increased tiag? part of the discrete Hamiltonian which proved be an excellen
indicator of a deteriorating simulation.
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300

Figure 11: The approximation (271, X) with h = 0.2 andk = 0.0399 is on the left hand side. On the right hand side is tfierdnce between
the discrete Hamiltonian at the timliand timet = 0.
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Table 4: The results of numerical calculations in which thigal value function is the same as the C variation in [10fvthe constant function

u(0, x) = 1/2. The calculation stopped when the relative Hamiltoniaorge Hamiltonian at timet - Hamiltonian at timd = 0) was greater than
0.05 for at least 1 time unit.
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