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= sup
‖f‖∞≤1
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Problem. Estimation of the quantity Λk,m := sup∆ ‖PSk,m(∆)‖∞.
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The need for a new method

Shadrin’s proof is based on the bound

‖PSk,k−1(∆)‖∞ ≤ ‖G−1
∆ ‖∞, G∆ :=

[
〈Mi, Nj〉

]
.

But ‖G−1
δ ‖∞ � 4k/

√
k for the Bernstein knot sequence δ. It results in

a certainly overestimated bound for Λk,m. Shadrin conjectured that

Λk,k−1
?
= 2k − 1. Note also that Λk,0 ∼ 2

√
2/π

√
k.

We are making the guess

Λk,m
?�

k√
k −m

.
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Λk,m ≥ σk,m, σk,m :=
k

k −m
ρk,m, ρk,m := sup

‖f‖∞≤1
|PPk,m

(f)(1)|.

For a fixed m, σk,m ∼ 2
√

2/π
√

k. For a “large” m, σk,m ∼ cmk.The
quantity ρk,m seems to increase with k, whereas the quantity σk,m is
not a monotonic function of k. It also looks as though ρk,m decreases
with m and σk,m increases with m.

ρk,m+1
?
≤ ρk,m

?
≤

k −m− 1/2

k −m− 1
ρk,m+1.
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{
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↓ ↓ ↓
Pt P Qt

I Pt = (I − PQt)
−1P (I −Qt) + (I −QtP )−1Qt(I − P ).
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Sk,0(∆) =: Sk,m(∆)
⊥
⊕Rk,m(∆), dimRk,m(∆) = m(N − 1).

Hence ‖PSk,m(∆)‖∞ ≤ ‖PSk,0(∆)‖∞ + ‖PRk,m(∆)‖∞. We have

Rk,m(∆) =

F (k), F ∈ S2k,k(∆),

F ≡ 0 k-fold at t0,

F ≡ 0 (k −m)-fold at t1, ..., tN−1,

F ≡ 0 k-fold at tN .


=: R1

k,m(∆)⊕R2
k,m(∆)⊕ · · · ⊕ RN−1
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each space Ri
k,m(∆) supported on [ti−1, ti+1] and of dimension m.
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i,j=1
. If

(i) ‖M−1‖∞ ≤ κ, (ii) ‖ϕi‖1 ≤ γ1, (iii)
∥∥∥∑ ajϕ̂j

∥∥∥
∞
≤ γ∞ ‖a‖∞ ,

then for the max-norm of the orthogonal projection onto Rk,m(∆)

‖PRk,m(∆)‖∞ ≤ κ · γ1 · γ∞.

The matrix M is block-tridiagonal. Typically, it will be diagonally

dominant with respect to the columns (of the type M = I−N , ‖N‖1 ≤
c < 1), so it is not straightforward to bound ‖M−1‖∞.
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Theorem 4.

‖PRk,1(∆)‖∞ ≤
2k(k + 1)

(k − 1)2
σk,0, ‖PSk,1(∆)‖∞ ≤

3k2 + 1

(k − 1)2
σk,0.

The space Ri
k,1(∆) is spanned by the function

fi(x) :=


2δi F (k)

(
2x− ti−1 − ti

hi

)
, x ∈ (ti−1, ti),

−2δi+1F (k)
(

ti + ti+1 − 2x

hi+1

)
, x ∈ (ti, ti+1),

hi := ti − ti−1,

δi :=
1

hi
,

F (k)(x) =
(−1)k−1

2k−1 k!

dk

dxk

[
(1− x)k−1(1 + x)k

]
= P

(1,0)
k−1 (x).
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The case of continuous splines, ctd

We obtain ‖fi‖1 =
4

k
σk,0. With the renormalization f̂i := 1

4(δi+δi+1)
fi,

we get ‖
∑

ajf̂j‖∞ ≤
k + 1

2
‖a‖∞. Finally, we derive ‖M−1‖∞ ≤ k2

(k−1)2

from the expression

M =

f̂1 f̂2 f̂3 f̂4 . . .

f1

f2

f3

f4

...



1
(−1)k

k
α2 0 0 . . .

(−1)k

k
β1 1

(−1)k

k
α3 0 . . .

0
(−1)k

k
β2 1 .. .

0 0
(−1)k

k
β3 1

... ... 0 . . . . . .


,

αi :=
δi

δi + δi+1
,

βi :=
δi+1

δi + δi+1
.
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Our bound for ‖M−1‖∞ was only valid for k > 4. Another choice of

bases of Rk,2(∆) might give better results.



The case of differentiable splines (m=2)

Proposition 5.

‖PRk,2(∆)‖∞ .
36
√

2
√

π

√
k, ‖PSk,2(∆)‖∞ .

38
√

2
√

π

√
k.

Our bound for ‖M−1‖∞ was only valid for k > 4. Another choice of

bases of Rk,2(∆) might give better results. The basis of Ri
k,2(∆) we

used consists of the previous function fi and its orthogonal function.
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