On the value of the max-norm of the orthogonal spline projection

Simon Foucart

University of Cambridge, UK

Let $S_{k,m}(\Delta)$ be the space of splines of order k satisfying m smoothness conditions at the knots of $\Delta = (-1 = t_0 < t_1 < \cdots < t_{N-1} < t_N = 1)$,

 $\mathcal{S}_{k,m}(\Delta) := \left\{ s \in \mathcal{C}^{m-1}[-1,1] : s_{|(t_{i-1},t_i)} \text{ is a polynomial of order } k \right\}.$

Let $S_{k,m}(\Delta)$ be the space of splines of order k satisfying m smoothness conditions at the knots of $\Delta = (-1 = t_0 < t_1 < \cdots < t_{N-1} < t_N = 1)$,

$$\mathcal{S}_{k,m}(\Delta) := \left\{ s \in \mathcal{C}^{m-1}[-1,1] : s_{|(t_{i-1},t_i)} \text{ is a polynomial of order } k \right\}.$$

Consider the orthogonal projection from $L_2[-1,1]$ onto $S_{k,m}(\Delta)$: is it bounded independently of Δ in the max-norm?

Let $S_{k,m}(\Delta)$ be the space of splines of order k satisfying m smoothness conditions at the knots of $\Delta = (-1 = t_0 < t_1 < \cdots < t_{N-1} < t_N = 1)$,

$$\mathcal{S}_{k,m}(\Delta) := \left\{ s \in \mathcal{C}^{m-1}[-1,1] : s_{|(t_{i-1},t_i)} \text{ is a polynomial of order } k \right\}.$$

Consider the orthogonal projection from $L_2[-1,1]$ onto $S_{k,m}(\Delta)$: is it bounded independently of Δ in the max-norm?

Theorem 1 (Shadrin,01).

$$\left|P_{\mathcal{S}_{k,m}(\Delta)}\right\|_{\infty} = \sup_{\|f\|_{\infty} \leq 1} \left\|P_{\mathcal{S}_{k,m}(\Delta)}(f)\right\|_{\infty} \leq c_k.$$

Let $S_{k,m}(\Delta)$ be the space of splines of order k satisfying m smoothness conditions at the knots of $\Delta = (-1 = t_0 < t_1 < \cdots < t_{N-1} < t_N = 1)$,

$$\mathcal{S}_{k,m}(\Delta) := \left\{ s \in \mathcal{C}^{m-1}[-1,1] : s_{|(t_{i-1},t_i)} \text{ is a polynomial of order } k \right\}.$$

Consider the orthogonal projection from $L_2[-1,1]$ onto $S_{k,m}(\Delta)$: is it bounded independently of Δ in the max-norm?

Theorem 1 (Shadrin,01).

$$\left|P_{\mathcal{S}_{k,m}(\Delta)}\right\|_{\infty} = \sup_{\|f\|_{\infty} \leq 1} \left\|P_{\mathcal{S}_{k,m}(\Delta)}(f)\right\|_{\infty} \leq c_k.$$

Problem. Estimation of the quantity $\Lambda_{k,m} := \sup_{\Delta} \|P_{\mathcal{S}_{k,m}(\Delta)}\|_{\infty}$.

Shadrin's proof is based on the bound

$$\|P_{\mathcal{S}_{k,k-1}(\Delta)}\|_{\infty} \leq \|G_{\Delta}^{-1}\|_{\infty}, \qquad G_{\Delta} := \left[\langle M_i, N_j \rangle\right].$$

Shadrin's proof is based on the bound

$$\|P_{\mathcal{S}_{k,k-1}(\Delta)}\|_{\infty} \leq \|G_{\Delta}^{-1}\|_{\infty}, \qquad G_{\Delta} := \left[\langle M_i, N_j \rangle\right].$$

But $||G_{\delta}^{-1}||_{\infty} \simeq 4^k/\sqrt{k}$ for the Bernstein knot sequence δ . It results in a certainly overestimated bound for $\Lambda_{k,m}$.

Shadrin's proof is based on the bound

$$\|P_{\mathcal{S}_{k,k-1}(\Delta)}\|_{\infty} \leq \|G_{\Delta}^{-1}\|_{\infty}, \qquad G_{\Delta} := \left[\langle M_i, N_j \rangle\right].$$

But $||G_{\delta}^{-1}||_{\infty} \simeq 4^k/\sqrt{k}$ for the Bernstein knot sequence δ . It results in a certainly overestimated bound for $\Lambda_{k,m}$. Shadrin conjectured that

 $\Lambda_{k,k-1} \stackrel{?}{=} 2k - 1.$

Shadrin's proof is based on the bound

$$\|P_{\mathcal{S}_{k,k-1}(\Delta)}\|_{\infty} \leq \|G_{\Delta}^{-1}\|_{\infty}, \qquad G_{\Delta} := \left[\langle M_i, N_j \rangle\right].$$

But $||G_{\delta}^{-1}||_{\infty} \simeq 4^k/\sqrt{k}$ for the Bernstein knot sequence δ . It results in a certainly overestimated bound for $\Lambda_{k,m}$. Shadrin conjectured that

 $\Lambda_{k,k-1} \stackrel{?}{=} 2k - 1.$ Note also that $\Lambda_{k,0}$

Shadrin's proof is based on the bound

$$\|P_{\mathcal{S}_{k,k-1}(\Delta)}\|_{\infty} \leq \|G_{\Delta}^{-1}\|_{\infty}, \qquad G_{\Delta} := \left[\langle M_i, N_j \rangle\right].$$

But $||G_{\delta}^{-1}||_{\infty} \simeq 4^k/\sqrt{k}$ for the Bernstein knot sequence δ . It results in a certainly overestimated bound for $\Lambda_{k,m}$. Shadrin conjectured that

$$\Lambda_{k,k-1} \stackrel{?}{=} 2k - 1.$$
 Note also that $\Lambda_{k,0} \sim 2\sqrt{2/\pi} \sqrt{k}.$

Shadrin's proof is based on the bound

$$\|P_{\mathcal{S}_{k,k-1}(\Delta)}\|_{\infty} \leq \|G_{\Delta}^{-1}\|_{\infty}, \qquad G_{\Delta} := \left[\langle M_i, N_j \rangle\right].$$

But $||G_{\delta}^{-1}||_{\infty} \simeq 4^k/\sqrt{k}$ for the Bernstein knot sequence δ . It results in a certainly overestimated bound for $\Lambda_{k,m}$. Shadrin conjectured that

$$\Lambda_{k,k-1} \stackrel{?}{=} 2k - 1.$$
 Note also that $\Lambda_{k,0} \sim 2\sqrt{2/\pi} \sqrt{k}.$

We are making the guess

$$\Lambda_{k,m} \stackrel{?}{\asymp} \frac{k}{\sqrt{k-m}}.$$

2

We introduce the space of incomplete polynomials on [-1, 1]

$$\mathcal{P}_{k,m} := \operatorname{span}\left\{ (1+x)^m, \dots, (1+x)^{k-1} \right\}.$$

We introduce the space of incomplete polynomials on [-1, 1]

$$\mathcal{P}_{k,m} := \operatorname{span} \left\{ (1+x)^m, \dots, (1+x)^{k-1} \right\}.$$

Theorem 2.

$$\Lambda_{k,m} \geq \sigma_{k,m}, \quad \sigma_{k,m} := \frac{k}{k-m} \rho_{k,m}, \quad \rho_{k,m} := \sup_{\|f\|_{\infty} \leq 1} |P_{\mathcal{P}_{k,m}}(f)(1)|.$$

We introduce the space of incomplete polynomials on [-1, 1]

$$\mathcal{P}_{k,m} := \operatorname{span}\left\{ (1+x)^m, \dots, (1+x)^{k-1} \right\}.$$

Theorem 2.

$$\Lambda_{k,m} \geq \sigma_{k,m}, \quad \sigma_{k,m} := \frac{k}{k-m} \rho_{k,m}, \quad \rho_{k,m} := \sup_{\|f\|_{\infty} \leq 1} |P_{\mathcal{P}_{k,m}}(f)(1)|.$$

For a fixed $m,~\sigma_{k,m}\sim 2\sqrt{2/\pi}\,\sqrt{k}.$

We introduce the space of incomplete polynomials on [-1, 1]

$$\mathcal{P}_{k,m} := \operatorname{span}\left\{ (1+x)^m, \dots, (1+x)^{k-1} \right\}.$$

Theorem 2.

$$\Lambda_{k,m} \geq \sigma_{k,m}, \quad \sigma_{k,m} := \frac{k}{k-m} \rho_{k,m}, \quad \rho_{k,m} := \sup_{\|f\|_{\infty} \leq 1} |P_{\mathcal{P}_{k,m}}(f)(1)|.$$

For a fixed m, $\sigma_{k,m} \sim 2\sqrt{2/\pi}\sqrt{k}$. For a "large" m, $\sigma_{k,m} \sim c_m k$.

We introduce the space of incomplete polynomials on [-1, 1]

$$\mathcal{P}_{k,m} := \operatorname{span}\left\{ (1+x)^m, \dots, (1+x)^{k-1} \right\}.$$

Theorem 2.

$$\Lambda_{k,m} \geq \sigma_{k,m}, \quad \sigma_{k,m} := \frac{k}{k-m} \rho_{k,m}, \quad \rho_{k,m} := \sup_{\|f\|_{\infty} \leq 1} |P_{\mathcal{P}_{k,m}}(f)(1)|.$$

For a fixed $m,~\sigma_{k,m}\sim 2\sqrt{2/\pi}\,\sqrt{k}.~$ For a "large" $m,~\sigma_{k,m}\sim c_mk.$ The quantity $\rho_{k,m}$ seems to increase with k,

We introduce the space of incomplete polynomials on [-1, 1]

$$\mathcal{P}_{k,m} := \operatorname{span}\left\{ (1+x)^m, \dots, (1+x)^{k-1} \right\}.$$

Theorem 2.

$$\Lambda_{k,m} \geq \sigma_{k,m}, \quad \sigma_{k,m} := \frac{k}{k-m} \rho_{k,m}, \quad \rho_{k,m} := \sup_{\|f\|_{\infty} \leq 1} |P_{\mathcal{P}_{k,m}}(f)(1)|.$$

For a fixed m, $\sigma_{k,m} \sim 2\sqrt{2/\pi}\sqrt{k}$. For a "large" m, $\sigma_{k,m} \sim c_m k$. The quantity $\rho_{k,m}$ seems to increase with k, whereas the quantity $\sigma_{k,m}$ is not a monotonic function of k. It also looks as though $\rho_{k,m}$ decreases with m and $\sigma_{k,m}$ increases with m.

We introduce the space of incomplete polynomials on [-1, 1]

$$\mathcal{P}_{k,m} := \operatorname{span}\left\{ (1+x)^m, \dots, (1+x)^{k-1} \right\}.$$

Theorem 2.

$$\Lambda_{k,m} \geq \sigma_{k,m}, \quad \sigma_{k,m} := \frac{k}{k-m} \rho_{k,m}, \quad \rho_{k,m} := \sup_{\|f\|_{\infty} \leq 1} |P_{\mathcal{P}_{k,m}}(f)(1)|.$$

For a fixed m, $\sigma_{k,m} \sim 2\sqrt{2/\pi}\sqrt{k}$. For a "large" m, $\sigma_{k,m} \sim c_m k$. The quantity $\rho_{k,m}$ seems to increase with k, whereas the quantity $\sigma_{k,m}$ is not a monotonic function of k. It also looks as though $\rho_{k,m}$ decreases with m and $\sigma_{k,m}$ increases with m.

$$\rho_{k,m+1} \stackrel{?}{\leq} \rho_{k,m} \stackrel{?}{\leq} \frac{k-m-1/2}{k-m-1} \rho_{k,m+1}.$$

3

Let
$$K_N := \sup_{\Delta = (-1 = t_0 < \dots < t_N = 1)} \sup_{\|f\|_{\infty} \le 1} |P_{\mathcal{S}_{k,m}(\Delta)}(f)(1)|.$$

Let
$$K_N := \sup_{\Delta = (-1=t_0 < \cdots < t_N = 1)} \sup_{\|f\|_{\infty} \le 1} |P_{\mathcal{S}_{k,m}(\Delta)}(f)(1)|.$$

Prove that $K_{N+1} \ge \frac{m}{k} K_N + \rho_{k,m},$

Let
$$K_N := \sup_{\Delta = (-1 = t_0 < \dots < t_N = 1)} \sup_{\|f\|_{\infty} \le 1} |P_{\mathcal{S}_{k,m}(\Delta)}(f)(1)|.$$

Prove that $K_{N+1} \ge \frac{m}{k} K_N + \rho_{k,m}$, implying $\sup_N K_N \ge \frac{k}{k-m} \rho_{k,m}.$

Let
$$K_N := \sup_{\Delta = (-1 = t_0 < \dots < t_N = 1)} \sup_{\|f\|_{\infty} \le 1} |P_{\mathcal{S}_{k,m}(\Delta)}(f)(1)|.$$

Prove that $K_{N+1} \ge \frac{m}{k} K_N + \rho_{k,m}$, implying $\sup_N K_N \ge \frac{k}{k-m} \rho_{k,m}.$
1/ Fix Δ and consider the spaces and orthogonal projections
 $\mathcal{S}_{k,m}(\Delta \cup \{t\}) = \mathcal{S}_{k,m}(\Delta) \oplus \operatorname{span}\left\{(\bullet - t)^m_+, \dots, (\bullet - t)^{k-1}_+\right\}.$

As $t \to 1$, we have $PQ_t \to 0$

As $t \to 1$, we have $PQ_t \to 0$ and $Q_tP - P(\bullet)(1)Q_t(1) \to 0$,

As
$$t \to 1$$
, we have $PQ_t \to 0$ and $Q_tP - P(\bullet)(1)Q_t(1) \to 0$, hence

$$\sup_{\|f\|_{\infty} \leq 1} \|P_t(f) - P(f) - Q_t(f) + P(f)(1)Q_t(1)\|_{\infty} \xrightarrow{t \to 1} 0.$$

As
$$t \to 1$$
, we have $PQ_t \to 0$ and $Q_tP - P(\bullet)(1)Q_t(1) \to 0$, hence

$$\sup_{\|f\|_{\infty} \leq 1} \|P_t(f) - P(f) - Q_t(f) + P(f)(1)Q_t(1)\|_{\infty} \xrightarrow{t \to 1} 0.$$
One deduces that

 $\sup_{\|f\|_{\infty} \leq 1} |P_t(f)(1)| \geq \sup_{\|f\|_{\infty} \leq 1} |[1 - Q_t(1)(1)] P(f)(1) + Q_t(f)(1)| - o(t).$

As
$$t \to 1$$
, we have $PQ_t \to 0$ and $Q_tP - P(\bullet)(1)Q_t(1) \to 0$, hence

$$\sup_{\|f\|_{\infty} \leq 1} \|P_t(f) - P(f) - Q_t(f) + P(f)(1)Q_t(1)\|_{\infty} \xrightarrow{t \to 1} 0.$$
One deduces that

$$\sup_{\|f\|_{\infty} \leq 1} |P_t(f)(1)| \geq \sup_{\|f\|_{\infty} \leq 1} |[1 - Q_t(1)(1)] P(f)(1) + Q_t(f)(1)| - o(t).$$

It follows

 K_{N+1}

As
$$t \to 1$$
, we have $PQ_t \to 0$ and $Q_tP - P(\bullet)(1)Q_t(1) \to 0$, hence

$$\sup_{\|f\|_{\infty} \leq 1} \|P_t(f) - P(f) - Q_t(f) + P(f)(1)Q_t(1)\|_{\infty} \xrightarrow{t \to 1} 0.$$
One deduces that

$$\begin{split} \sup_{\|f\|_{\infty} \leq 1} |P_t(f)(1)| &\geq \sup_{\|f\|_{\infty} \leq 1} |[1 - Q_t(1)(1)] P(f)(1) + Q_t(f)(1)| - o(t). \\ \end{split}$$
 It follows

 $K_{N+1} \ge |[1 - Q_t(1)(1)]| \sup_{\|f\|_{\infty} \le 1} |P(f)(1)| + \sup_{\|f\|_{\infty} \le 1} |Q_t(f)(1)| - o(t)$

As
$$t \to 1$$
, we have $PQ_t \to 0$ and $Q_tP - P(\bullet)(1)Q_t(1) \to 0$, hence

$$\sup_{\|f\|_{\infty} \leq 1} \|P_t(f) - P(f) - Q_t(f) + P(f)(1)Q_t(1)\|_{\infty} \xrightarrow{t \to 1} 0.$$
One deduces that

$$\sup_{\|f\|_{\infty} \leq 1} |P_t(f)(1)| \geq \sup_{\|f\|_{\infty} \leq 1} |[1 - Q_t(1)(1)] P(f)(1) + Q_t(f)(1)| - o(t).$$

It follows

$$K_{N+1} \ge |[1 - Q_t(1)(1)]| \sup_{\|f\|_{\infty} \le 1} |P(f)(1)| + \sup_{\|f\|_{\infty} \le 1} |Q_t(f)(1)| - o(t)$$

= $\frac{m}{k} \sup_{\|f\|_{\infty} \le 1} |P(f)(1)| + \rho_{k,m} - o(t)$

As
$$t \to 1$$
, we have $PQ_t \to 0$ and $Q_tP - P(\bullet)(1)Q_t(1) \to 0$, hence

$$\sup_{\|f\|_{\infty} \leq 1} \|P_t(f) - P(f) - Q_t(f) + P(f)(1)Q_t(1)\|_{\infty} \xrightarrow{t \to 1} 0.$$
One deduces that

$$\begin{split} \sup_{\|f\|_{\infty} \leq 1} |P_t(f)(1)| &\geq \sup_{\|f\|_{\infty} \leq 1} |[1 - Q_t(1)(1)] \, P(f)(1) + Q_t(f)(1)| - o(t). \end{split}$$
 It follows

$$\begin{split} K_{N+1} &\geq |[1 - Q_t(1)(1)]| \sup_{\|f\|_{\infty} \leq 1} |P(f)(1)| + \sup_{\|f\|_{\infty} \leq 1} |Q_t(f)(1)| - o(t) \\ &= \frac{m}{k} \sup_{\|f\|_{\infty} \leq 1} |P(f)(1)| + \rho_{k,m} - o(t) \rightsquigarrow \frac{m}{k} K_N + \rho_{k,m}. \end{split}$$

5

Bound from above: the method

The space $\mathcal{S}_{k,m}(\Delta)$ is a subspace of the space $\mathcal{S}_{k,0}(\Delta)$.

The space $S_{k,m}(\Delta)$ is a subspace of the space $S_{k,0}(\Delta)$. We can consider the orthogonal splitting

$$\mathcal{S}_{k,0}(\Delta) =: \mathcal{S}_{k,m}(\Delta) \stackrel{\perp}{\oplus} \mathcal{R}_{k,m}(\Delta), \qquad \dim \mathcal{R}_{k,m}(\Delta) = m(N-1).$$

The space $S_{k,m}(\Delta)$ is a subspace of the space $S_{k,0}(\Delta)$. We can consider the orthogonal splitting

 $\mathcal{S}_{k,0}(\Delta) \coloneqq \mathcal{S}_{k,m}(\Delta) \stackrel{\perp}{\oplus} \mathcal{R}_{k,m}(\Delta), \quad \dim \mathcal{R}_{k,m}(\Delta) = m(N-1).$ Hence $\|P_{\mathcal{S}_{k,m}(\Delta)}\|_{\infty} \leq \|P_{\mathcal{S}_{k,0}(\Delta)}\|_{\infty} + \|P_{\mathcal{R}_{k,m}(\Delta)}\|_{\infty}.$

The space $S_{k,m}(\Delta)$ is a subspace of the space $S_{k,0}(\Delta)$. We can consider the orthogonal splitting

$$S_{k,0}(\Delta) \coloneqq S_{k,m}(\Delta) \stackrel{\perp}{\oplus} \mathcal{R}_{k,m}(\Delta), \quad \dim \mathcal{R}_{k,m}(\Delta) = m(N-1).$$

Hence $\|P_{\mathcal{S}_{k,m}(\Delta)}\|_{\infty} \leq \|P_{\mathcal{S}_{k,0}(\Delta)}\|_{\infty} + \|P_{\mathcal{R}_{k,m}(\Delta)}\|_{\infty}.$ We have
$$F \equiv 0 \ k \text{-fold at } t_0,$$
$$\mathcal{R}_{k,m}(\Delta) = \left\{ F^{(k)}, F \in \mathcal{S}_{2k,k}(\Delta), F \equiv 0 \ (k-m) \text{-fold at } t_1, ..., t_{N-1}, F \equiv 0 \ k \text{-fold at } t_N. \right\}$$

The space $S_{k,m}(\Delta)$ is a subspace of the space $S_{k,0}(\Delta)$. We can consider the orthogonal splitting

$$\begin{split} \mathcal{S}_{k,0}(\Delta) &=: \mathcal{S}_{k,m}(\Delta) \stackrel{\perp}{\oplus} \mathcal{R}_{k,m}(\Delta), \qquad \dim \mathcal{R}_{k,m}(\Delta) = m(N-1). \\ \text{Hence } \|P_{\mathcal{S}_{k,m}(\Delta)}\|_{\infty} \leq \|P_{\mathcal{S}_{k,0}(\Delta)}\|_{\infty} + \|P_{\mathcal{R}_{k,m}(\Delta)}\|_{\infty}. \text{ We have} \\ \mathcal{R}_{k,m}(\Delta) &= \begin{cases} F^{(k)}, F \in \mathcal{S}_{2k,k}(\Delta), F \equiv 0 \quad (k-m)\text{-fold at } t_1, ..., t_{N-1}, \\ F \equiv 0 \quad k\text{-fold at } t_N. \end{cases} \\ &=: \mathcal{R}_{k,m}^1(\Delta) \oplus \mathcal{R}_{k,m}^2(\Delta) \oplus \cdots \oplus \mathcal{R}_{k,m}^{N-1}(\Delta), \end{split}$$

each space $\mathcal{R}_{k,m}^{i}(\Delta)$ supported on $[t_{i-1}, t_{i+1}]$ and of dimension m.

Lemma 3. Consider bases $(\varphi_i)_{i=1}^{m(N-1)}$ and $(\widehat{\varphi}_j)_{j=1}^{m(N-1)}$ of $\mathcal{R}_{k,m}(\Delta)$ and introduce the Gramian matrix $M := \left[\langle \varphi_i, \widehat{\varphi}_j \rangle\right]_{i,j=1}^{m(N-1)}$. If (i) $\|M^{-1}\|_{\infty} \leq \kappa$, (ii) $\|\varphi_i\|_1 \leq \gamma_1$, (iii) $\|\sum a_j \widehat{\varphi}_j\|_{\infty} \leq \gamma_{\infty} \|a\|_{\infty}$, then for the max-norm of the orthogonal projection onto $\mathcal{R}_{k,m}(\Delta)$

$$\|P_{\mathcal{R}_{k,m}(\Delta)}\|_{\infty} \leq \kappa \cdot \gamma_1 \cdot \gamma_{\infty}.$$

Lemma 3. Consider bases $(\varphi_i)_{i=1}^{m(N-1)}$ and $(\widehat{\varphi}_j)_{j=1}^{m(N-1)}$ of $\mathcal{R}_{k,m}(\Delta)$ and introduce the Gramian matrix $M := \left[\langle \varphi_i, \widehat{\varphi}_j \rangle \right]_{i,j=1}^{m(N-1)}$. If (i) $\|M^{-1}\|_{\infty} \leq \kappa$, (ii) $\|\varphi_i\|_1 \leq \gamma_1$, (iii) $\left\|\sum a_j \widehat{\varphi}_j\right\|_{\infty} \leq \gamma_{\infty} \|a\|_{\infty}$, then for the max-norm of the orthogonal projection onto $\mathcal{R}_{k,m}(\Delta)$ $\|P_{\mathcal{R}_{k,m}}(\Delta)\|_{\infty} \leq \kappa \cdot \gamma_1 \cdot \gamma_{\infty}.$

The matrix M is block-tridiagonal.

Lemma 3. Consider bases $(\varphi_i)_{i=1}^{m(N-1)}$ and $(\widehat{\varphi}_j)_{j=1}^{m(N-1)}$ of $\mathcal{R}_{k,m}(\Delta)$ and introduce the Gramian matrix $M := \left[\langle \varphi_i, \widehat{\varphi}_j \rangle \right]_{i,j=1}^{m(N-1)}$. If (i) $\|M^{-1}\|_{\infty} \leq \kappa$, (ii) $\|\varphi_i\|_1 \leq \gamma_1$, (iii) $\left\|\sum a_j \widehat{\varphi}_j\right\|_{\infty} \leq \gamma_{\infty} \|a\|_{\infty}$, then for the max-norm of the orthogonal projection onto $\mathcal{R}_{k,m}(\Delta)$ $\|P_{\mathcal{R}_{k,m}}(\Delta)\|_{\infty} \leq \kappa \cdot \gamma_1 \cdot \gamma_{\infty}.$

The matrix
$$M$$
 is block-tridiagonal. Typically, it will be diagonally dominant with respect to the columns (of the type $M = I - N$, $||N||_1 \le c < 1$),

Lemma 3. Consider bases $(\varphi_i)_{i=1}^{m(N-1)}$ and $(\widehat{\varphi}_j)_{j=1}^{m(N-1)}$ of $\mathcal{R}_{k,m}(\Delta)$ and introduce the Gramian matrix $M := \left[\langle \varphi_i, \widehat{\varphi}_j \rangle\right]_{i,j=1}^{m(N-1)}$. If (i) $\|M^{-1}\|_{\infty} \leq \kappa$, (ii) $\|\varphi_i\|_1 \leq \gamma_1$, (iii) $\|\sum a_j \widehat{\varphi}_j\|_{\infty} \leq \gamma_{\infty} \|a\|_{\infty}$, then for the max-norm of the orthogonal projection onto $\mathcal{R}_{k,m}(\Delta)$

$$\|P_{\mathcal{R}_{k,m}(\Delta)}\|_{\infty} \leq \kappa \cdot \gamma_1 \cdot \gamma_{\infty}.$$

The matrix M is block-tridiagonal. Typically, it will be diagonally dominant with respect to the columns (of the type M = I - N, $||N||_1 \le c < 1$), so it is not straightforward to bound $||M^{-1}||_{\infty}$.

Theorem 4.

$$||P_{\mathcal{R}_{k,1}(\Delta)}||_{\infty} \leq \frac{2k(k+1)}{(k-1)^2} \sigma_{k,0},$$

Theorem 4.

$$\|P_{\mathcal{R}_{k,1}(\Delta)}\|_{\infty} \leq \frac{2k(k+1)}{(k-1)^2} \, \sigma_{k,0}, \qquad \|P_{\mathcal{S}_{k,1}(\Delta)}\|_{\infty} \leq \frac{3k^2+1}{(k-1)^2} \, \sigma_{k,0}.$$

Theorem 4.

$$\|P_{\mathcal{R}_{k,1}(\Delta)}\|_{\infty} \leq \frac{2k(k+1)}{(k-1)^2} \,\sigma_{k,0}, \qquad \|P_{\mathcal{S}_{k,1}(\Delta)}\|_{\infty} \leq \frac{3k^2+1}{(k-1)^2} \,\sigma_{k,0}.$$

The space $\mathcal{R}^i_{k,1}(\Delta)$ is spanned by the function

$$f_{i}(x) := \begin{cases} 2\delta_{i} F^{(k)} \left(\frac{2x - t_{i-1} - t_{i}}{h_{i}} \right), \ x \in (t_{i-1}, t_{i}), & h_{i} := t_{i} - t_{i-1}, \\ -2\delta_{i+1} F^{(k)} \left(\frac{t_{i} + t_{i+1} - 2x}{h_{i+1}} \right), \ x \in (t_{i}, t_{i+1}), & \delta_{i} := \frac{1}{h_{i}}, \end{cases}$$

$$F^{(k)}(x) = \frac{(-1)^{k-1}}{2^{k-1}k!} \frac{d^k}{dx^k} \left[(1-x)^{k-1} (1+x)^k \right] = P_{k-1}^{(1,0)}(x).$$

The case of continuous splines, ctd

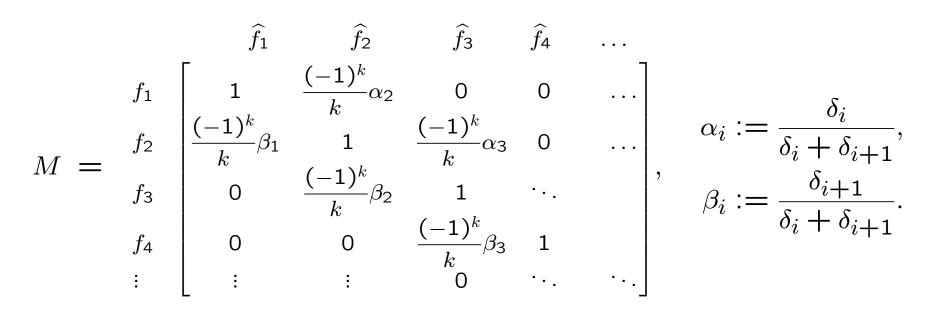
We obtain
$$\|f_i\|_1 = \frac{4}{k}\sigma_{k,0}$$
.

The case of continuous splines, ctd

We obtain
$$||f_i||_1 = \frac{4}{k} \sigma_{k,0}$$
. With the renormalization $\hat{f}_i := \frac{1}{4(\delta_i + \delta_{i+1})} f_i$, we get $||\sum a_j \hat{f}_j||_{\infty} \le \frac{k+1}{2} ||a||_{\infty}$.

The case of continuous splines, ctd

We obtain
$$||f_i||_1 = \frac{4}{k}\sigma_{k,0}$$
. With the renormalization $\hat{f}_i := \frac{1}{4(\delta_i + \delta_{i+1})}f_i$, we get $||\sum a_j \hat{f}_j||_{\infty} \leq \frac{k+1}{2} ||a||_{\infty}$. Finally, we derive $||M^{-1}||_{\infty} \leq \frac{k^2}{(k-1)^2}$ from the expression



Proposition 5.

$$\|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \lesssim rac{36\sqrt{2}}{\sqrt{\pi}}\sqrt{k},$$

Proposition 5.

$$\|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{36\sqrt{2}}{\sqrt{\pi}}\sqrt{k}, \qquad \qquad \|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{38\sqrt{2}}{\sqrt{\pi}}\sqrt{k}.$$

Proposition 5.

$$\|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{36\sqrt{2}}{\sqrt{\pi}}\sqrt{k}, \qquad \qquad \|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{38\sqrt{2}}{\sqrt{\pi}}\sqrt{k}.$$

Our bound for $||M^{-1}||_{\infty}$ was only valid for k > 4.

Proposition 5.

$$\|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \lesssim rac{36\sqrt{2}}{\sqrt{\pi}}\sqrt{k}, \qquad \qquad \|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty} \lesssim rac{38\sqrt{2}}{\sqrt{\pi}}\sqrt{k}.$$

Our bound for $||M^{-1}||_{\infty}$ was only valid for k > 4. Another choice of bases of $\mathcal{R}_{k,2}(\Delta)$ might give better results.

Proposition 5.

$$\|P_{\mathcal{R}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{36\sqrt{2}}{\sqrt{\pi}}\sqrt{k}, \qquad \qquad \|P_{\mathcal{S}_{k,2}(\Delta)}\|_{\infty} \lesssim \frac{38\sqrt{2}}{\sqrt{\pi}}\sqrt{k}.$$

Our bound for $||M^{-1}||_{\infty}$ was only valid for k > 4. Another choice of bases of $\mathcal{R}_{k,2}(\Delta)$ might give better results. The basis of $\mathcal{R}_{k,2}^{i}(\Delta)$ we used consists of the previous function f_{i} and its orthogonal function.