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The need for a new method

Shadrin’s proof is based on the bound
—1 .
IPs, . 1(aylle < NGA oo, Ga = [(My, Nj)|.

But ||C}5_1||OO = 4% /\/k for the Bernstein knot sequence §. It results in
a certainly overestimated bound for A ,,. Shadrin conjectured that

?
N g1 =2k —1. Note also that Ay g~ 2\/2/7 Vk.
We are making the guess
7k
/\k,m =

k—m
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? ? k—m—1/2
Plem—+1 = Pkm = o Pemtls
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m , , k
Prove that K41 > ?KN + Pr.m, IMplying supy Ky > . Pk .1,
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1/ Fix A and consider the spaces and orthogonal projections

Sem(AU{t}) = Sppm(A) @ span{(e—1T,..., (e - 1) 1.

l l !
Py P Q¢

Po=(—-PQ) 1P(I-Qy+ (I-QP)1Q:(I - P).
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As t — 1, we have PQ+ — 0 and Q:P — P(e)(1)Q:(1) — O, hence
sup  [[P(f) — P(f) — Q:(f) + P(f)(1)Q:(1)] o, — O.
[ flloo<1 t—1
One deduces that
sup |[P(f)(1)] > sup [[1—-Q«(1)(D]P(f)(1)+ Q:(f)(1)] - o(2).
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( F =0 k-fold at tp, )
Riem(D) = FE) F e Spp 1 (A), F =0 (k—m)-fold at t1,....tx_1,
\ F =0 k-fold at ty. )

=R (D) BRE (D)@ Ry HA),

each space R’,‘;m(A) supported on [t;_1,t,4-1] and of dimension m.
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Lemma 3. Consider bases ( Z)m(N D and ( ])m(N D of Ricm(D)

N-1
and introduce the Gramian matrix M = [(¢i,@j>}?;(_1 ). If
D) IM oo <m, (D) lally <7 G |D 4585 < voo llalloo

then for the max-norm of the orthogonal projection onto Ry ,,,(A)
IPR,, . (a)lloo < K =71+ Yoo
The matrix M is block-tridiagonal. Typically, it will be diagonally

dominant with respect to the columns (of the type M = I—N, ||[N||1 <
c < 1), so it is not straightforward to bound ||M 1.
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T heorem 4.

2k(k + 1) 3k +1
1PRe1a)lloe = <5735 or0 P50l < 93 oko

The space R: ;(A) is spanned by the function

i

2x —t;_1 — t;
20; F(k) ( ;Lz Z)a r € (ti—1,t), h, =t;—t;_1,

fiz) = 1 I
—28; 1 FF) <t7’ tlit: 2x>, € (L tit1), 0= l,
\ hit1 hi
1 k—1 dk B
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4
We obtain [|f;|l1 = k.0 With the renormalization f; :=

we get || a;jfjlloo <
from the expression

AN

J1
J1 1
1)k
f2 1) 51
M = k
f3 0
Ja 0

kE+1

f2
(=1)*

1
(—=1)*
k

0

B2

a2

f3

la|lco. Finally, we derive ||M~™1|, <

0% =

Gl

k2
(k—1)?
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Proposition 5.

36v/2 382
IPry p(a)llee S =2 VE, 1Ps a(allee S =7V

Our bound for ||[M~1|| was only valid for k > 4. Another choice of
bases of Ry >(A) might give better results. The basis of R’;;Q(A) we
used consists of the previous function f; and its orthogonal function.

10



