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Preliminaries

where the concepts are introduced and the problems raised.
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A projection P from a normed space X onto one of its subspaces V is a continu-
ous linear map from X onto V such that P|V = idV.

The (relative) projection constant of V in X is

p(V,X) := inf{‖P‖, P : X� V projection}.

The (absolute) projection constant of V is

p(V) := sup {p(i(V),X), X Banach, i : V ↪→ X isometric embedding}.

A minimal projection from X onto V is a projection P : X� V such that

‖P‖ = p(V,X).
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The `p-condition number of a basis v = (v1, . . . , vn) of a normed space (V, ‖•‖) is

κp(v) := supa∈`np\{0}

∥∥∥∑n
i=1 aivi

∥∥∥
‖a‖p

× supa∈`np\{0}
‖a‖p∥∥∥∑n
i=1 aivi

∥∥∥
= ‖T‖ × ‖T−1

‖ , where T : e 7→ v

The `p-condition number of a space V is

κp(V) := inf{κp(v), v basis of V},

and a best `p-conditioned basis v of V is a basis such that κp(v) = κp(V).

In the terminology of Banach space geometry, the Banach-Mazur distance be-
tween X and Y is defined by

d(X,Y) := inf{‖T‖ × ‖T−1
‖, T : X→ Y isomorphism}.
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Therefore, κ∞(vN) ≤ κ∞(v).
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Do we have p(V,X) < κ∞(V)?

Proposition. If X∗ is strictly convex, then any finite-dimensional subspace V of
X satisfies

p(V,X) < κ∞(V).

Let us note that any normed space is isometrically embedded in a C(K), where
K is a compact Hausdorff space.

Thus, to get p(V,X) < κ∞(V), under certain conditions on V, it is in fact enough
to prove that p(V,C(K)) < κ∞(V), under certain conditions on V.

Proposition. Let V be a subspace of a normed space X, and consider an em-
bedding i : X ↪→ C(K), where K is a compact Hausdorff space, then

p(V,X) ≤ p(i(V),C(K)).
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Interlude

where our liking for extreme points is revealed.
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[a ∈ Ex(A)] ⇐⇒
[
(x, y ∈ A, t ∈ (0, 1) : a = (1 − t)x + ty) =⇒ (x = y = a)

]
.

Theorem (Krein-Milman). If K is a non-empty compact subset of locally convex
space, then co(K) = co(Ex(K)).
Theorem (Arens-Kelley). If K is a compact Hausdorff space, then

Ex(BC(K)∗) = {±•(x), x ∈ K}.

Lemma. For V subspace of X, any λ ∈ Ex(BV∗) can be extended to λ̃ ∈ Ex(BX∗),

Ex(BV∗) ⊆ Ex(BX∗)|V := {λ|V, λ ∈ Ex(BX∗)}.
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Fundamentals 2

For any x ∈ X, there exists λ ∈ Ex(BX∗) such that λ(x) = ‖x‖, that is to say that
Ex(BX∗) is a boundary for X.

Theorem. cl(Ex(BX∗)) is the smallest σ(X∗,X)-compact boundary for X.

Lemma (Auerbach). V be a n-dimensional space, there exist (v1, . . . , vn) basis
of V and (λ1, . . . , λn) basis of V∗ such that

∀ i, j ∈ {1, . . . ,n} , ‖vi‖ = 1, λi ∈ cl(Ex(BV∗)) (hence ‖λi‖ = 1) and λi(v j) = δi, j.
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Transition

where we return to our original aim.
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For V n-dimensional subspace of C(K), there exist t1, . . . , tn ∈ K (the Fekete
points) and a basis (v1, . . . , vn) of V such that

∀ i, j ∈ {1, . . . ,n} , ‖vi‖ = 1, and v j(ti) = δi, j.

If V = Pn−1([−1, 1]), we have
∑n

i=1 v2
i ≤ 1, which implies that P2n−2 contains an

isometric copy of `n∞.

For any n, there exists a space Vn such that p(Vn,C([−1, 1])) = κ∞(Vn) (= 1).

Proposition (Wulbert). If V is a n-dimensional WS-subspace of C(K) such that
p(V,C(K)) = 1, then κ∞(V) = 1 (and also pint(V,C(K)) = 1).

It is possible to find projections of norm 1 onto WS-subspaces, and those must
be unique.

11



minimal projection best `∞-conditioned basis
V and X p(V,X) κ∞(V)

uniqueness uniqueness
orthogonal orthonormal

`n2 and `2 1
√

n
yes yes

Fourier projection ?
Tn and Lp(T) 1

π

∫
T
|Dn| ?

yes ?
Fourier projection equidistant Lagrange

T1 and C(T) 1.435991... 5
3

yes yes
... (x 7→ 1

2, x 7→ x)
P1 and L1([−1, 1]) 1.220404... 5

4
yes yes
... ...

P2 and C([−1, 1]) 1.220173... 1.248394...?
? yes?
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The heart of the matter

where the problems of existence, uniqueness and characterization are approached.
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Existence and Uniqueness

A best-conditioned basis of a finite-dimensional space always exists.

A minimal projection onto a dual space (in particular onto a finite-dimensional
space) always exists.

Proposition (K ürsten). Let P : X � V be a minimal projection with norm > 1.
With X̃ := [X ⊕R]∞ and Ṽ := [V ⊕R]∞, we have p(Ṽ, X̃) = p(V,X) and there are
infinitely many minimal projections X̃� Ṽ.

Theorem (Odyniec). If V is a 2-dimensional subspace of a 3-dimensional sub-
space X with p(V,X) > 1, then there is a unique minimal projection X� V.

No contradiction: if V is a 1-dimensional subspace of X, then p(X,V) = 1.
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Proposition (Cheney). Let P be a projection from X onto V, we have

[P is minimal] ⇐⇒[
∀Q : X� V projection ,∃λ ∈ Ex(BV∗) : ‖Q∗(λ)‖ ≥ ‖P∗(λ)‖ = ‖P‖

]
.

More generally, we have[
x∗ = argmin max

λ∈K
f (x, λ)

]
⇐⇒[

∀ x ∈ C,∃λ ∈ Ex(K) : f (x, λ) ≥ f (x∗, λ) = max
µ∈K

f (x∗, µ)
]
,

when C and K are convex, K compact, the function f : C × K→ R is convex with
respect to both variables, f (x, •) is continuous for any x ∈ C and ( f (•, λ))λ∈D is
equicontinuous at x∗.
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Applications

Proposition (Cheney). If V is a Haar subspace of X, and if P : X � V is a
minimal projection with ‖P‖ > 1, then there exists λ1, . . . , λn+1 ∈ Ex(BX∗) (λi ,

±λ j, for i , j) such that ‖P∗(λi)‖ = ‖P‖.

If V is a Haar subspace of C([−1, 1]) containing the constants, with dim V ≥ 3,
then p(V,C([−1, 1])) > 1. Let us note that the λi’s are in fact independent on P.

By the invariance of Pn under dilatation and translation, we can assume that
for P =

∑n
i=0 •(ti)`t,i, the minimal interpolating projection from C([−1, 1]) onto Pn,

one has t0 = −1 and tn = 1, and then the node sequence t is characterized by
the equality of the n local extrema of

∑n
i=0 |`t,i|, and we deduce that P is not a

minimal projection from C([−1, 1]) onto Pn.
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Generalized interpolating projections

For µ̃ ∈ C(K)∗, the carrier of µ̃ is the smallest closed subset of K such that
f|C = 0⇒ µ̃( f ) = 0. If a projection P =

∑n
i=1 µ̃i(•)vi from C(K) onto V is such that

• the carriers of the µ̃i’s are finite, we say that P is discrete, or finitely carried,

• the carriers of the µ̃i’s are disjoint, we say that P is a generalized interpolat-
ing projection.

Proposition (Cheney). If P =
∑n

i=1 µ̃i(•)vi is a generalized interpolating projec-
tion from C(K) onto V, then

‖P‖ =

∥∥∥∥∥∥∥
n∑

i=1

‖µ̃i‖ |vi|

∥∥∥∥∥∥∥ .
17



Generalized interpolating projection constant

The generalized interpolating projection constant of a subspace V of C(K) is

pg.int(V,C(K)) := inf {‖P‖,P : C(K)� V generalized interpolating projection} .



Generalized interpolating projection constant

The generalized interpolating projection constant of a subspace V of C(K) is

pg.int(V,C(K)) := inf {‖P‖,P : C(K)� V generalized interpolating projection} .

Proposition. For a finite-dimensional subspace V of C([−1, 1]), we have

κ∞(V) = pg.int(V,C([−1, 1])).



Generalized interpolating projection constant

The generalized interpolating projection constant of a subspace V of C(K) is

pg.int(V,C(K)) := inf {‖P‖,P : C(K)� V generalized interpolating projection} .

Proposition. For a finite-dimensional subspace V of C([−1, 1]), we have

κ∞(V) = pg.int(V,C([−1, 1])).

If p(V,C([−1, 1])) < κ∞(V), a generalized interpolating projection is not minimal.



Generalized interpolating projection constant

The generalized interpolating projection constant of a subspace V of C(K) is

pg.int(V,C(K)) := inf {‖P‖,P : C(K)� V generalized interpolating projection} .

Proposition. For a finite-dimensional subspace V of C([−1, 1]), we have

κ∞(V) = pg.int(V,C([−1, 1])).

If p(V,C([−1, 1])) < κ∞(V), a generalized interpolating projection is not minimal.

Proposition (Odyniec-Lewicki). P a discrete projection from C(K) onto V,

[P is minimal] ⇐⇒[
∀Q : C(K)� V projection ,∃ x ∈ SC(K),∃ t ∈ K : |Q(x)(t)| ≥ P(x)(t) = ‖P‖

]
.
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Tailpiece

where we briefly explain how to obtain κ∞(P2).
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Let p := p(b, c, d) be the following symmetric basis of P2, where b, c, d ∈ (0,+∞):

p1(x) :=
x(x + b)

2d
, p2(x) := c2

− x2, p3(x) :=
x(x − b)

2d
, x ∈ [−1, 1].

c -b b -c 

p1 p2 p3 
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Theorem. min
b,c,d>0

κ∞(p(b, c, d)) ≈ 1.248394563 < 5
4 = pint(P2,C([−1, 1])).

The dual basis of p has the expression, for f ∈ P2, with C := c2 and t∗ := C(1+b)
b+C ,

µ1( f ) =
d

bC(b + 2C + bC)

(
−C(C − b2) f (−1) + (b + C)2 f (t∗)

)
,

µ2( f ) =
1
C

f (0),

µ3( f ) =
d

bC(b + 2C + bC)

(
−C(C − b2) f (1) + (b + C)2 f (−t∗)

)
.

Obtaining κ∞(p) < 5
4 is only possible if b ≤ c ≤ 1. In this case, the optimal

normalization of p leads to the choice

d =
1
λ
=

(b + C)2
− C(C − b2)

(b + C)2 + C(C − b2)
.
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We then have to minimize max(F(b,C),G(b,C)), where

F(b,C) :=
λ + 1

C
− 1 and G(b,C) :=

b2λ2

4C
+ 1.

F( ,C) 

G( ,C) 

b*(C) 

5/4 

2/C-1 

to infinity

to C/4+1 

c 
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]
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Therefore, we have to minimize F(b∗(C),C) = G(b∗(C),C) =: H(C) for C ∈
[

8
9, 1
]
.

The optimal (b,C) must be solution of the following (polynomial) system:{
F(b,C) − G(b,C) = 0,[
∂F
∂b
∂G
∂C −

∂F
∂C
∂G
∂b

]
(b,C) = 0.

Using the Groebner package from Maple, this system is equivalent to

144C8+6498C7+25839C6
−25108C5+9827C4

−17192C3+2336C2+1088C−192 = 0,
60b8

− 906b7
− 1452b6 + 2261b5 + 6451b4 + 568b3

− 3704b2
− 1408b − 192 = 0.

In the prescribed domain, this has the unique solution

C ≈ 0.9402938300 and b ≈ 0.8675381234.
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THE END
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