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Markov interlacing property

Theorem 1. Let p := (·− t1) · · · (·− tn), q := (·− s1) · · · (·− sn) be two

polynomials, with t1 ≤ · · · ≤ tn and s1 ≤ · · · ≤ sn. Let η1 ≤ · · · ≤ ηn−1

be the zeros of p′ and ξ1 ≤ · · · ≤ ξn−1 the zeros of q′.



Markov interlacing property

Theorem 1. Let p := (·− t1) · · · (·− tn), q := (·− s1) · · · (·− sn) be two

polynomials, with t1 ≤ · · · ≤ tn and s1 ≤ · · · ≤ sn. Let η1 ≤ · · · ≤ ηn−1

be the zeros of p′ and ξ1 ≤ · · · ≤ ξn−1 the zeros of q′.
If t1 < · · · < tn, and

t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ tn−1 ≤ sn−1 ≤ tn ≤ sn

then:

η1 < ξ1 < η2 < ξ2 < · · · < ξn−2 < ηn−1 < ξn−1

unless f = g.�
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Bojanov-Rahman theorem

For P a polynomial of degree n, with n distinct zeros in (−1,1), we

denote by hi(P ), i ∈ {0, . . . , n} the values of the local extrema of P ,

including the values at −1 and 1.



Bojanov-Rahman theorem

For P a polynomial of degree n, with n distinct zeros in (−1,1), we

denote by hi(P ), i ∈ {0, . . . , n} the values of the local extrema of P ,

including the values at −1 and 1.

Theorem 2. Let p and q be two polynomials of degree n, having n

distinct zeros in (−1,1).[
∀i ∈ {0, . . . , n}, |hi(p)| ≤ |hi(q)|

]
⇒
[
∀i ∈ {0, . . . , n−1}, |hi(p

′)| ≤ |hi(q
′)|
]

�
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1. Defining them
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Let g1, . . . , gk be functions defined on I. The collocation determinant
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Let g1, . . . , gk be functions defined on I. The collocation determinant

of:

• t1 < · · · < tk ∈ I is D

(
g1 . . . gk
t1 . . . tk

)
:=

∣∣∣∣∣∣∣
g1(t1) · · · gk(t1)

... . . . ...
g1(tk) · · · gk(tk)

∣∣∣∣∣∣∣

• t1 ≤ · · · ≤ tk ∈ I is D

(
g1 . . . gk
t1 . . . tk

)
:=

∣∣∣∣∣∣∣∣
g
(d1)
1 (t1) · · · g

(d1)
k (t1)

... . . . ...

g
(dk)
1 (tk) · · · g

(dk)
k (tk)

∣∣∣∣∣∣∣∣
with, ∀i ∈ {1, . . . , k}, di := max{j : ti−j = · · · = ti}, assuming

that the gj’s are di times differentiable at ti.
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Definition 3. Let g1, . . . , gk be continuous (at least) functions on I.

(g1, . . . , gk) is a:

• weak Chebyshev (WT) system on I if:

∀t1 < · · · < tk ∈ I, D

(
g1 . . . gk
t1 . . . tk

)
≥ 0
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Definition 3. Let g1, . . . , gk be continuous (at least) functions on I.

(g1, . . . , gk) is a:

• weak Chebyshev (WT) system on I if:

∀t1 < · · · < tk ∈ I, D

(
g1 . . . gk
t1 . . . tk

)
≥ 0

• Chebyshev (T) system on I if:

∀t1 < · · · < tk ∈ I, D

(
g1 . . . gk
t1 . . . tk

)
> 0
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• extended Chebyshev (ET) system on I if:

∀t1 ≤ · · · ≤ tk ∈ I, D

(
g1 . . . gk
t1 . . . tk

)
> 0

• extended complete Chebyshev (ECT) system on I if, for any l ∈
{1, . . . , k}, (g1, . . . , gl) is an extended Chebyshev system on I

• extended order complete Chebyshev (EOCT) system on I if, for
any i1 < . . . < il ∈ {1, . . . , k}, (gi1, . . . , gil) is an extended Chebyshev
system on I

Let now Gk be a k-dimensional subspace of C(I) (resp. of Ck−1(I)).
We say that Gk is a ? space on I, where ?=WT, T (resp. ET, ECT,
EOCT) if it admits a basis which is a ? system on I
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Let f be a function defined on I. We write:

• S+(f) := sup

{
r ∈ N : ∃t0 < · · · < tr ∈ I, ∃ε ∈ {−1,1},

∀i ∈ {0, . . . , r}, ε(−1)if(ti) ≥ 0

}
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• S−(f) := sup

{
r ∈ N : ∃t0 < · · · < tr ∈ I, ∃ε ∈ {−1,1},

∀i ∈ {0, . . . , r}, ε(−1)if(ti) > 0
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the number of strong sign changes of f

• Z(f) the set of zeros of f

8



• DZ(f) the set of double zeros of f (which are zeros where f keeps

the same sign), when f is continuous



• DZ(f) the set of double zeros of f (which are zeros where f keeps
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• DZ(f) the set of double zeros of f (which are zeros where f keeps

the same sign), when f is continuous

• Z(f) := #Z(f) + #DZ(f) = number of zeros, counting double

zeros twice

• z(f) :=
∑

t∈Z(f) ζf(t), where:

ζg(t) := max
{
r ∈ N ∪ {+∞} : g(t) = 0, . . . , g(r−1)(t) = 0

}
z(f) is the number of zeros of f , counting multiplicity, when f is

sufficiently differentiable



Remark. The following inequalities are easy to obtain:

z(f) ≥︸︷︷︸
f suff. diff.

Z(f) ≥︸︷︷︸
f cont.

S+(f) ≥ #Z(f) ≥︸︷︷︸
f cont.

S−(f)
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Theorem 4. Let g = (g1, . . . , gk) be a linearly independent system of

functions defined on I (with a sufficient degree of smoothness).

g is a

WT
T
T
ET

EOCT

sytem ⇐⇒ ∀~a 6= ~0,

S−(g) ≤ k − 1
#Z(g) ≤ k − 1
Z(g) ≤ k − 1
z(g) ≤ k − 1

z(g) ≤ S−(a1, . . . , ak)

where g :=
k∑

i=1

aigi
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Interpolation

The Chebyshev spaces are exactly the ones in which the Lagrange

interpolation is always possible and unique.

Remark. They are also the ones from which any continuous function

has exactly one best approximation.

The extended Chebyshev spaces are exactly the ones in which the

Lagrange-Hermite interpolation is always possible and unique.
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ECC spaces
Theorem 5. Gk k-dimensional subspace of Ck−1(I), t ∈ I. Gk is an
extended complete Chebyshev on I if and only if there exists w0 ∈
Ck−1(I), . . . , wk−1 ∈ C(I), w0 > 0, . . . , wk−1 > 0 on I, such that the
following ECT system is a basis of Gk:

u0(·, t) := w0I0(·, t) = w0

u1(·, t) := w0I1(·, t, w1) = w0

∫ ·
t

w1(x1)dx1

...

uk−1(·, t) := w0Ik−1(·, t, w1, . . . , wk−1)

= w0

∫ ·
t

w1(x1) · · ·
∫ xk−2

t
wk−1(xk−1)dxk−1 . . . dx1
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ECC spaces
Theorem 5. Gk k-dimensional subspace of Ck−1(I), t ∈ I. Gk is an
extended complete Chebyshev on I if and only if there exists w0 ∈
Ck−1(I), . . . , wk−1 ∈ C(I), w0 > 0, . . . , wk−1 > 0 on I, such that the
following ECT system is a basis of Gk:

u0(·, t) := w0I0(·, t) = w0

u1(·, t) := w0I1(·, t, w1) = w0

∫ ·
t

w1(x1)dx1

...

uk−1(·, t) := w0Ik−1(·, t, w1, . . . , wk−1)

= w0

∫ ·
t

w1(x1) · · ·
∫ xk−2

t
wk−1(xk−1)dxk−1 . . . dx1

Remark. We write Gk = ECTt(w0, . . . , wk−1) = ECT (w0, . . . , wk−1).
This representation is not necessarily unique.
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Extended complete Chebyshev spaces are the natural generalization of
the spaces of polynomials (w0 = 1, w1 = 1, . . . , wk−1 = k−1).�Indeed,
we can prove:

• a binomial theorem

• a Taylor formula

where, in this context, the natural i-th differentiation, i ∈ {1, . . . , k},
is Lwi−1,...,w0 := D

(
·

wi−1

)
◦ · · · ◦D

(
·

w0

)
.

B-splines can be constructed for such spaces; we then talk about
Chebyshevian B-splines.Only the recurrence relation is lost, because
it uses the factorization property of polynomials.
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Interpolation, again

Gk+1 =: ECT (w0, . . . , wk) an extended complete Chebyshev space on

[a, b], ∆k := {t1 ≤ · · · ≤ tk ∈ [a, b]}.
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Interpolation, again

Gk+1 =: ECT (w0, . . . , wk) an extended complete Chebyshev space on

[a, b], ∆k := {t1 ≤ · · · ≤ tk ∈ [a, b]}.For (t1, . . . , tk) ∈ ∆k, (d1, . . . , dk)

denoting its occurrence sequence, we can define ω(·; t1, . . . , tk) to be

the unique element of Gk+1 which satisfies:

∀i ∈ {1, . . . , k}, ω(di)(ti; t1, . . . , tk) = 0

and
1

wk
Lwk−1,...,w0(ω(·; t1, . . . , tk)) = 1�

Proposition 6.

Ω : (t1, . . . , tk) ∈ ∆k 7→ ω(·; t1, . . . , tk) ∈ Gk+1

is a homeomorphism from ∆k onto its image.
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Markov interlacing property

1. Easy proof for polynomials

2. A general result

3. The case of extended complete Chebyshev spaces (2 proofs)

4. The case of splines

5. An application: Nt0,...,tk ≥ 0
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Easy proof for polynomials
Let f and g be two functions having t1 ≤ · · · ≤ tn and s1 ≤ · · · ≤ sn,
respectively, as zeros.We write:

f ≺ g if : t1 < s1 < t2 < s2 < · · · < tn−1 < sn−1 < tn < sn

f � g if : t1 ≤ s1 ≤ t2 ≤ s2 ≤ · · · ≤ tn−1 ≤ sn−1 ≤ tn ≤ sn

Theorem 7. Let p := (· − t1) · · · (· − tn) and q := (· − s1) · · · (· − sn).

(i) if p ≺ q, then p′ ≺ q′

(ii) if p � q, then p′ � q′

(iii) if t1 < · · · < tn, s1 < · · · < sn and p � q, then p′ ≺ q′, unless p = q
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Proof. Let p := (· − x1) · · · (· − xn) and let η a zero of p′:
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Proof. Let p := (· − x1) · · · (· − xn) and let η a zero of p′:

0 =
n∑

i=1

1

η − xi

Therefore, for all j ∈ {1, . . . , n}:

0 = −
∂η

∂xj

n∑
i=1

1

(η − xi)2
+

1

(η − xj)2

implying that ∂η
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Remark. Let w > 0 be C1,

(p/w)′

(p/w)
=

p′

p
−

w′

w
=

n∑
i=1

1

· − xi
−

w′

w



Proof. Let p := (· − x1) · · · (· − xn) and let η a zero of p′:

0 =
n∑

i=1

1

η − xi

Therefore, for all j ∈ {1, . . . , n}:

0 = −
∂η

∂xj

n∑
i=1

1

(η − xi)2
+

1

(η − xj)2

implying that ∂η
∂xj

> 0.�

Remark. Let w > 0 be C1,

(p/w)′

(p/w)
=

p′

p
−

w′

w
=

n∑
i=1

1

· − xi
−

w′

w

and, if η is a zero of (p/w)′, we obtain as well ∂η
∂xj

> 0.
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A general result
Let f, g ∈ C1(I) having exactly n zeros, t1 < · · · < tn and s1 < · · · < sn,
say. Let, for (λ, µ) 6= (0,0), qλ,µ := λf + µg. Let us assume that one
of the following conditions is fulfilled:

C1 For all (λ, µ) 6= (0,0), Z(q′λ,µ) ≤ n− 1

C2 f, g ∈ W2
∞(I), and, for all (λ, µ) 6= (0,0), S−(q′′λ,µ) ≤ n − 2, while

qλ,µ is not constant on any subinterval of I

Claim: For all (λ, µ) 6= (0,0), #Z(q′λ,µ) ≤ n− 1 and #Z(qλ,µ) ≤ n. If
qλ,µ has exactly n zeros, it changes its sign there, and, q′λ,µ has exactly
n− 1 zeros, strictly inside the zeros of qλ,µ, where it changes its sign.
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Lemma 8. If f ≺ g, then, for any (λ, µ) 6= (0,0), with qλ,µ := λf +µg,
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(i) if f ≺ g, then f ′ ≺ g′

(ii) if f � g, then f ′ � g′

(iii) if t1 < · · · < tn (zeros of f), s1 < · · · < sn (zeros of g) and f � g,

then f ′ ≺ g′, unless f = g
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Proof 1: valid for w0 = 1. Since C1 holds, (i) follows.By a continuity

argument (without loss of generality, we can work on [a, b]), we deduce

(ii).Then, if f 6= g, we show that there is no t ∈ [a, b] such that

f ′(t) = 0 and g′(t) = 0, implying (iii).

Proof 2. �
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Working on [a, b], we consider a sequence of n distinct breakpoints
t := a < t1 < · · · < tn < b. We let t0 := a and tn+1 := b.
Notations 11.

Sk(t) : splines of degree ≤ k with breakpoints t1 < · · · < tn

:
{
f ∈ Ck−1([a, b]) : ∀i ∈ {0, . . . , n}, f(k)
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Pk(t) : perfect splines of degree k with breakpoints t1 < · · · < tn

:
{
f ∈ Ck−1([a, b]) : ∀i ∈ {0, . . . , n}, f(k)

|[ti,ti+1)
= const(−1)i

}
: vector space of dimension k + 1, not a WT space

Ωk(t) : Pk(t) + Sk−1(t)�
: WT space of dimension n + k + 1
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Fixed breakpoints

Proposition 12. Let k ≥ 2 (resp k ≥ 3). If the n + k zeros of some

f ∈ Sk(t) (resp Ωk(t)) interlace strictly with the n + k zeros of some

g ∈ Sk(t) (resp Ωk(t)), then the n + k− 1 zeros of f ′ interlace strictly

with the n + k − 1 zeros of g′.

Proof. We first show that, for any (λ, µ) 6= (0,0), S−(λf(k)+µg(k)) ≤
n (resp S−(λf(k−1)+µg(k−1)) ≤ n+1)�, implying, by Rolle’s theorem,

the first part of C2.Then, we prove that λf + µg cannot be constant

on any subinterval of I, to get C2 entirely.�

Remark. A s ∈ Sk(t) (resp s ∈ Ωk(t)) having exactly n+k given zeros

is unique, up to a multiplicative constant.Existence?
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Free breakpoints

Proposition 13. Let k ≥ 2. If the n + k zeros of some f ∈ Pk,n :=⋃
t1<···<tn Pk(t) interlace strictly with the n+k zeros of some g ∈ Pk,n,

then the n+k−1 zeros of f ′ interlace strictly with the n+k−1 zeros

of g′.

Proof. We start by showing that, for any (λ, µ) 6= (0,0), S−(λf(k) +

µg(k)) ≤ n.�Then, we prove that λf + µg cannot be constant on any

subinterval of I.�

Remark. It is well known that, given x1 < · · · < xn+k, there exists a

unique (up to multiplicative constant) non-trivial perfect spline p ∈
Pk,≤n vanishing at the xi’s. Moreover, p has no other zeros, and

p ∈ Pk,n.
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⋃

t1<···<tn Sk(t)

whose zeros interlace do not necessarily interlace.�



Free breakpoints, continued

The zeros of the derivatives of two functions in Sk,n :=
⋃

t1<···<tn Sk(t)

whose zeros interlace do not necessarily interlace.�
Nevertheless, there is hope to prove such a result with the additional

hypothesis of interlacing breakpoints.



Free breakpoints, continued

The zeros of the derivatives of two functions in Sk,n :=
⋃

t1<···<tn Sk(t)

whose zeros interlace do not necessarily interlace.�
Nevertheless, there is hope to prove such a result with the additional

hypothesis of interlacing breakpoints.

However, this is not an immediate consequence of the previous con-

siderations. �
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An application: Nt0,...,tk ≥ 0

We can use the Markov interlacing property for splines to show this

classical result.�



An application: Nt0,...,tk ≥ 0

We can use the Markov interlacing property for splines to show this

classical result.�The interest of it is that it (certainly) works for

Chebyshevian splines, for which we do not have the usual recurrence

relation.
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Interpolation at extremal points

Notations 14. Consider Gk+1 =: ECT (1, w1, . . . , wk) an extended

complete Chebyshev space on [−1,1], and f ∈ Gk+1 having k dis-

tinct zeros in (−1,1). Define the k + 1 extremal values of f by:

∀i ∈ {0, . . . , k}, hi(f) = f(ti)

where t1 < · · · < tk−1 are the zeros of f ′ and t0 := −1, tk := 1



Interpolation at extremal points

Notations 14. Consider Gk+1 =: ECT (1, w1, . . . , wk) an extended

complete Chebyshev space on [−1,1], and f ∈ Gk+1 having k dis-

tinct zeros in (−1,1). Define the k + 1 extremal values of f by:

∀i ∈ {0, . . . , k}, hi(f) = f(ti)

where t1 < · · · < tk−1 are the zeros of f ′ and t0 := −1, tk := 1

Theorem 15.

∀α0, . . . , αk > 0, ∃f ∈ Gk+1 : ∀i ∈ {0, . . . , k}, hi(f) = (−1)k+iαi

Such a f is unique.�
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Remark. Let α0, . . . , αk > 0, and let gα ∈ Gk+1 := ECT (1, w1, . . . , wk)

be defined by: ∀i ∈ {0, . . . , k}, hi(gα) = (−1)k+1αi.Let −1 =: t0 <

t1 < · · · < tk−1 < tk := 1 be the extremal points of gα.On Gk+1, let us

consider the following norm:

‖ · ‖α,t := max
i∈{0,...,k}

(
| · (ti)|

αi

)
gα is extremal for the linear functional:

g ∈
(
Gk+1, ‖ · ‖α,t

)
7→

1

wk
Lwk−1,...,w1,1(g) ∈ R

�
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Connections to Markov’s inequality

Theorem 16. Let p and q be two polynomials of degree n, having n

distinct zeros in (−1,1).[
∀i ∈ {0, . . . , n}, |hi(p)| ≤ |hi(q)|

]
⇒
[
∀i ∈ {0, . . . , n−1}, |hi(p

′)| ≤ |hi(q
′)|
]
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Connections to Markov’s inequality

Theorem 16. Let p and q be two polynomials of degree n, having n

distinct zeros in (−1,1).[
∀i ∈ {0, . . . , n}, |hi(p)| ≤ |hi(q)|

]
⇒
[
∀i ∈ {0, . . . , n−1}, |hi(p

′)| ≤ |hi(q
′)|
]

Remark. This implies Markov’s inequality for oscillating polynomials.

Indeed, let p be a polynomial of degree n, with n distinct zeros

in (−1,1), and whose uniform norm on [−1,1] does not exceed 1.

We have, for all i ∈ {0, . . . , n}, |hi(p)| ≤ 1 = |hi(Tn)|, thus, for all

k ∈ {1, . . . , n}, and for all i ∈ {0, . . . , n − k},
∣∣∣hi(p

(k))
∣∣∣ ≤ ∣∣∣∣hi(T

(k)
n )

∣∣∣∣, ie

‖p(k)‖∞ ≤ ‖T (k)
n ‖∞.
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Remark.We have used the fact that ‖p(k)‖∞ is an increasing function

of the |hi(p)|’s. But so are ‖p(k)‖q, for 1 ≤ q < +∞, and l(p), the arc

length of the p.



Remark.We have used the fact that ‖p(k)‖∞ is an increasing function

of the |hi(p)|’s. But so are ‖p(k)‖q, for 1 ≤ q < +∞, and l(p), the arc

length of the p.This implies that, among all oscillating polynomials of

uniform norm on [−1,1] not greater than 1, the Chebyshev polynomial

is the only one (up to a sign) maximizing:

• the arc length

• the Lq-norm of any k-th derivative, k ∈ {1, . . . , n}, 1 ≤ q ≤ +∞
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Generalizations

Bojanov and Naidenov have shown that such an inheritance prop-
erty holds for perfect splines (free breakpoints) and for splines (fixed
breakpoints).
My interest here is different, it consists in the generalization of the
result for extended complete Chebyshev spaces, namely:

Problem 17. Consider Gk+1 =: ECT (1, w1, . . . , wk) an extended com-
plete Chebyshev space on [−1,1], and f, g ∈ Gk+1 having k distinct
zeros in (−1,1):[
∀i ∈ {0, . . . , k}, |hi(f)| ≤ |hi(g)|

]
=⇒

[
∀i ∈ {0, . . . , k − 1},

∣∣∣∣∣hi

(
f ′

w1

)∣∣∣∣∣ ≤
∣∣∣∣∣hi

(
g′

w1

)∣∣∣∣∣
]
�
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Markov’s inequality for ECT spaces

Let Gk+1 =: ECT (w0, w1, . . . , wk) be an extended complete Chebyshev

space on [−1,1].

Definition 18 (The snake). There is a unique pair (T, S) satisfying:

T ∈ Gk+1, |T | ≤ w0, S = (−1 ≤ s0 < s1 < · · · < sk ≤ 1),
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Problem 19. For m ∈ {1, . . . , k}, T is maximizing
∥∥∥ 1
wm

Lwm−1,...,w0
(g)

∥∥∥
∞

over the set of g ∈ Gk+1 having k distinct zeros in (−1,1) and satis-

fying |g| ≤ w0.
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