
MATHEMATICAL TRIPOS PART IB

ELECTROMAGNETISM: Examples 3

1. It is given, as a consequence of the Maxwell equation ∇∧E = −∂B/∂t, that

∮

C(t)

(E + v∧B) . dr = −
d

dt

∫

S(t)

B . dS,

where C(t) is a simple closed curve deforming in time, v is the velocity of a point on
C moving with the curve, and S(t) is a surface spanning C.

Verify this by evaluating the two integrals in the particular case in which E and B are
given in cylindrical polar coordinates (r, θ, z) by

E = (0, 1, 0)e−t and B = (0, 0, 1)r−1e−t

and C(t) is the circle in the plane z = 0 with centre at 0 and radius 1 + t.

2. A wire of resistance R per unit length is bent so as to form three sides AB, BC, CD
of a rectangle ABCD which is held stationary in a horizontal plane. Another wire EF,
of mass m, has length equal to BC, and resistance R per unit length; its ends E and F
are constrained to lie on the wires AB and CD respectively, and slide without friction
along them. A uniform vertical magnetic field B is applied to the system; for time
t > 0, |B| varies as α/t where α is constant. Denoting by x the perpendicular distance
between BC and EF, deduce the differential equation satisfied by x for t > 0, 0 < x <
AB, and write down one solution.

[You may assume that the effect of the magnetic field due to any current flow in the
wires is negligible compared to the effect of the applied field B.]

3. Find the magnetic field described by the vector potential A = (0, 1
2B0rz, 0) in

cylindrical coordinates (r, θ, z) with B0 constant

Use Stokes’s theorem to evaluate the flux of the magnetic field through a conducting
loop of radius a and resistance R which lies in the plane z = h(t) with its centre on
the axis. Hence find the induced current in the loop as h varies in time, neglecting self
inductance.

Suppose now that the loop has negligible mass, so that the external force F causing the
movement of the loop exactly balances the force exerted on the loop by the magnetic
field. By calculating this magnetic force show that the rate of working of F is equal to
the rate of dissipation of energy due to the resistance of the loop.

4. Starting from Maxwell’s equations and Ohm’s Law, show that any charge distribu-
tion within a stationary conductor of uniform conductivity σ will decay exponentially
in time with a decay constant σ/ǫ0 independently of any magnetic field that may be
present. Can Ohm’s law be trusted in this context.

A uniform conducting sphere of radius R is set up with a uniform volume charge density
ρ0 throughout its interior. Obtain the distributions of charge density ρ, current density
j and electric field E within the sphere as functions of time. What is the electric field
outside the sphere?
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Show that the rate of ohmic heat generation in the sphere equals the rate of dissipation
of electrostatic field energy.

5. A steady current I flows along a cylindrical conductor of constant circular cross-
section and uniform conductivity σ. Show, using the relevant equations for E and J,
that the current is distributed uniformly across the cross-section of the cylinder, and
calculate the electric and magnetic fields just outside the surface of the cylinder.

Verify that the integral of the Poynting vector over unit length of the surface is equal
to the rate per unit length of dissipation of electrical energy as heat.

6. A monochromatic wave with fields

Einc = (E0, 0, 0) exp i(kz − ωt), Binc = (1/c)(0, E0, 0) exp i(kz − ωt),

is incident from empty space in z < 0 on perfectly conducting material in z > 0 with
surface z = 0. Show that, if the reflected fields are

Eref = (−E0, 0, 0) exp i(−kz − ωt), Bef = (1/c)(0, E0, 0) exp i(−kz − ωt),

then the total fields, Einc + Eref and Binc + Bref , satisfy Maxwell’s equations and all
the relevant boundary conditions at z = 0. What surface current flows in the plane
z = 0? Given that the physical fields (and the physical surface current) are the real
parts of the expressions just considered, calculate the Poynting vector in z < 0 and
show that its time average (over one period of the wave motion) is zero. Show also that
the normal force F per unit area exerted on the surface z = 0 has time average given
by 〈F 〉 = ǫ0E
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7. Perfectly conducting planes are positioned at z = 0 and z = a. Show that
a monochromatic field, consisting of plane waves independent of x and y, can ex-
ist between the planes if and only if the angular frequency takes one of the values
nπc/a, n = 1, 2, 3, . . ..

8. Write down Maxwell’s equations for the electric and magnetic fields in a vacuum,
and show that each cartesian component of E and B satisfies the wave equation

∇2f =
1

c2

∂2f

∂t2
.

State the boundary conditions that must be satisfied by E and B just outside the surface
of a perfect conductor. Verify that a wave may propagate in the direction 0z between
two perfectly conducting planes y = 0 and y = b, if the wave has field components

Ex = ωA sin
[nπy

b

]

sin(kz − ωt),

By = kA sin
[nπy

b

]

sin(kz − ωt), Bz =
nπA

b
cos

[nπy

b

]

cos(kz − ωt),

where n is an integer and A is constant. If λ is the wavelength of such waves, and λ∞

is that of waves of the same frequency in the absence of the conducting plates, show
that

1

λ2
=

1

λ2
∞

−
n2

4b2 .
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