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Summary of Vector Calculus

The following results apply to any (suitably differentiable) scalar field φ(x) and vector
fields E(x) and B(x). They all have important applications in electromagnetism.
Derivatives of a vector field:

div E ≡ ∇·E =
∂Ei

∂xi

has one component and is a scalar

curl E ≡ (∇× E)i = ǫijk

∂Ek

∂xj

has three components and is a vector

gradE ≡ (∇E)ij =
∂Ei

∂xj

has nine components and is a 2nd-rank tensor

Two identities:

curl grad φ = ∇×∇φ ≡ 0 . div curl E = ∇·∇× E ≡ 0 .

Three vector triple products:

∇× (∇× E) = ∇(∇ · E) −∇2E

E× (∇×E) = 1
2∇E2 − (E·∇)E

∇× (E ×B) = (B·∇)E− (E·∇)B + E(∇·B) −B(∇·E)

Position vector: let r or ri denote the position vector, and r = |r|. Then r̂ = r/r defines
a unit vector in the direction or r.

∂irj = δij , ∂ir =
ri
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3rirj − r2δij

r5
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= 0.

Divergence Theorem (Gauss): If V is a simply connected domain with surface S and
outward normal n then

∫

V

(∇ · E) dV =

∫

S

E · ndS.

Stokes’ Theorem: If C is a closed curve spanned by the surface S then
∮

C

E · dl =

∫

S

(∇×E)·dS

Gradient Theorem:
∫ b

a

(∇φ) · dl = φ(b) − φ(a).
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Curl in curvilinear coordinates (ξ1, ξ2, ξ3):

∇× E =
1
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where: h1 = 1, h2 = r, h3 = 1 in cylindrical polars (r, θ, z); and
h1 = 1,h2 = r, h3 = r sin θ in spherical polars (r, θ, ϕ).

Cylindrical coordinates (r, θ, z)

Grad, div and Laplacian:

∇φ =

(

∂φ

∂r
,
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r

∂φ

∂θ
,
∂φ

∂z

)

∇·E =
1

r

∂(rEr)
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+
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∂Eθ
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∇2φ =
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Volume and line elements, and normal to cylinder:

dV = r dr dθ dz dl = (dr, r dθ, dz)

n = (cos θ, sin θ, 0)

Spherical coordinates (r, θ, ϕ)

Note that r and θ denote different quantities in cylindrical and spherical polars.

Grad, div and Laplacian:

∇φ =
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r sin θ

∂φ

∂ϕ

)
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Volume and line elements, and normal to sphere:

dV = r2 sin θ dr dθ dϕ dl = (dr, r dθ, r sin θ dϕ)

n = (cos θ, sin θ cos ϕ, sin θ sin ϕ)

Please email corrections/comments to N.G.Berloff@damtp.cam.ac.uk2


