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The detailed understanding of the intricate dynamics of quantum
fluids, in particular in the rapidly growing subfield of quantum
turbulence which elucidates the evolution of a vortex tangle in
a superfluid, requires an in-depth understanding of the role of finite
temperature in such systems. The Landau two-fluidmodel is themost
successful hydrodynamical theory of superfluid helium, but by the
nature of the scale separations it cannot give an adequate descrip-
tion of the processes involving vortex dynamics and interactions. In
our contribution we introduce a framework based on a nonlinear
classical-field equation that is mathematically identical to the Landau
model and provides a mechanism for severing and coalescence of
vortex lines, so that the questions related to the behavior of quan-
tized vortices can be addressed self-consistently. The correct equation
of state aswell as nonlocality of interactions that leads to the existence
of the roton minimum can also be introduced in such description. We
review and apply the ideas developed for finite-temperature de-
scription of weakly interacting Bose gases as possible extensions and
numerical refinements of the proposedmethod.We apply this method
to elucidate the behavior of the vortices during expansion and con-
traction following the change in applied pressure.We show that at low
temperatures, during the contractionof the vortex core as the negative
pressure grows back to positive values, the vortex line density grows
through a mechanism of vortex multiplication. This mechanism is sup-
pressed at high temperatures.

superfluidity | ZNG theory | (truncated) Gross–Pitaevskii equation |
stochastic Ginzburg–Landau equation | quantum Boltzmann equation

In this article we propose a framework for modeling the Landau
two-fluid dynamics in superfluids with the intention of laying

the groundwork for the study of the effects of interconnecting
mixture of superfluid and normal fluid components on vortices
and quantum turbulence in superfluid helium.
We are concerned here with systems that are described by an

order parameter ψ , a classical matter field characterizing the col-
lective behavior of the ensemble of particles. The quantum me-
chanical interpretation of the order parameter gives the
number density n and velocity v via the Madelung trans-
formation ψ =

ffiffiffi
n

p
  exp½iϕ�  ; v= Z=m∇ϕ. The single-valuedness of

ψ leads to a key aspect of a superfluid: quantization of circulation
Γ≡ ∮v · dl= jh=m, where h is Planck’s constant, m is atomic mass,
j is an integer, and the integral is taken for any closed contour
moving with the fluid. The presence of vortices can lead both to
organized arrays known as vortex lattices (1), and to random
arrays of tangles of vortices (2). Unlike classical systems, charac-
terized by continuous vorticity, quantum systems exhibit quantized
circulation; here turbulence can manifest itself in a number of
ways, summarized, e.g., in ref. 3.
Quantum turbulence studies are concerned with the relaxation

kinetics and dynamics of a vortex tangle, with some key issues in
this context relating to the universal features of steady-state
forced 3D superfluid turbulence (3–13), the emergence of an
inverse cascade in 2D systems (14–16), and the precise mecha-
nisms and dynamics of the decay of turbulence (17–19). Whereas
large-scale features of classical and quantum turbulence are

similar [e.g., Kolmogorov spectrum (9–13)], features sensitive to
the vortex core structure arising at lengthscales smaller than the
average intervortex spacing [e.g., velocity statistics (20–22) and
pressure (23)] show starkly different behavior––see, e.g., the
recent reviews (24, 25). In addition to liquid helium (2, 26), there
has been some recent interest in the observation of turbulence in
smaller inhomogeneous confined weakly interacting gases (27,
28); such systems offer unprecedented experimental control and
ab initio modeling (29), with their finite size, high compress-
ibility, and lower disparity between intervortex distances and
core sizes (compared with superfluid helium) leading to the
probing of a very different turbulent regime (30).
Despite the large body of research on superfluid turbulence,

numerous questions remain that can only be answered by proper
modeling of superfluid and normal fluid behavior and interactions
including processes associated with quantized vortices. The aim of
this article is to introduce a framework for achieving this task
while making use of existing methods for modeling the thermal
component and to apply one of these methods to an important
research question in liquid helium experiments (31, 32). We do
not thus attempt to give an overview of existing results in the
context of superfluid turbulence––discussed in detail in recent
reviews (3–5, 22, 33, 34)––but instead highlight the key predictions
of such methods in describing single-vortex dynamics, as a first
step toward a “bottom-up” approach to superfluid turbulence.

Brief Historical Overview
The first successful theory of superfluid helium was proposed by
Landau shortly after the discovery of superfluidity (35). Using
purely classical arguments and the principle of Galilean in-
variance, Landau modeled superfluid helium as an interpen-
etrating mixture of a superfluid and normal fluid components
(denoted, respectively, by subscripts s and n). Landau’s formu-
lation of the two-fluid model was in the form of conservation
laws for the total density ρ, the specific entropy s, the total
momentum ðρnvn + ρsvsÞ, and the superfluid velocity vs (see SI
Text for an explicit formulation and ref. 29 for discussions). In
this context, the normal fluid represents a sea of elementary
excitations that ride on the superfluid. Below the transition
temperature Tλ, a superfluid state emerges; with further decrease
in temperature the density of the normal component decreases
and the density of superfluid increases until at T = 0 the normal
component disappears. In the context of quantum turbulence,
the normal fluid determines the properties of the turbulent state
for relatively high temperatures, with superfluid vorticity fol-
lowing the normal fluid vorticity distribution. Close to zero
temperature the role of the components is reversed, with the
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turbulence in the superfluid determining the turbulence of the
normal component.
The Landau two-fluid model predated the discovery of quantized

vorticity. The tension between vortices and mutual friction
between vortices and normal fluid were added phenomenologi-
cally to the two-fluid model by Hall et al. (36) and Bekarevich
and Khalatnikov (37). The resulting Hall–Vinen–Bekarevich–
Khalatnikov (HVBK) theory scored some success in cases of
high density of superfluid vortex lines of known orientation, for
instance, in explaining the instability of Taylor–Couette flow (38).
HVBK cannot be applied when the dynamics and relaxation

of the vortex tangle are important, as it treats superfluid vorticity
as continuum and therefore excludes the processes leading to
vortex reconnections that drive the vortex tangle relaxation. To
model the evolution of the vortex tangle another classical ap-
proach was introduced (39–41), which is now the most widely
accepted method in studying quantum turbulence. In this ap-
proach superfluid vortices are modeled as classical Eulerian
vortices of zero cross-section with δ-function vorticity that move
according to the Biot–Savart law

vðxÞ= κ

4π

Z
s′× ðx− sÞ  dξ

jx− sj3 ; [1]

where sðξÞ is the vortex filament parameterized by arc length ξ,
and s′ðξÞ= ds=dξ is the unit tangent vector. The effect of the
normal fluid is included phenomenologically by adding mutual
friction coefficients α and α′ to the equation of filament motion

ds
dt

= vs + v+ αs′× ðvn − vs − vÞ− α′s′×
�
s′×

�
vn − vs − v

��
; [2]

where vn and vs are ambient velocities of the normal and super-
fluid components. Its effect on the vortex filament is well illus-
trated by considering a vortex ring of radius R. At T = 0, in the
absence of the normal fluid and ambient superfluid, Eq. 2 with v
given by Eq. 1 implies that the vortex moves maintaining its
shape with a constant velocity uðRÞ, which within logarithmic
accuracy is uðRÞ= Z=ð2mRÞlnðR=ξÞ, where ξ is the vortex core
size. In the presence of the normal fluid there is a drag on the
ring, forcing the radius of the ring to shrink at the rate given by
dR=dt= −αuðRÞ. Many aspects important to quantum turbulence
are omitted in this framework. The dynamics of vortices in com-
pressible fluids is quite different from that in incompressible fluids,
in particular the effect of sound generation during reconnections
and scattering sound waves is completely neglected. Also, the
reconnections of vortices and the cutoff to salvage the divergence
of the integral in Eq. 1 as x→ s0, where s0 is the point on the
vortex filament, have to be introduced phenomenologically.
In the next sections we introduce a framework for modeling the

Landau two-fluid model that includes the interaction of vortices,
consider various alternative frameworks to model nonequilibrium
processes in quantum fluids, discuss some of their key predictions
in the context of quantum vortex evolution, and finally apply one
of these techniques to study the behavior of the vortex rings in
a finite-temperature homogeneous system during expansion and
contraction following the change in applied pressure.

Landau Two-Fluid Model for a One-Component Fluid
We start by writing an equation for the time evolution of the
classical complex function ψ in the form of a generalized non-
linear Schrödinger equation (gNLSE)

iZ
∂ψ
∂t

=
�
Eði∇Þ+

Z ��ψ�x′���2 V���x− x′
���  dx′+ μ

	
jψ j2


�
ψ ; [3]

where V ð��x− x′
��Þ is a two-body interaction potential representing

nonlocality of interactions; the intrinsic dispersion of elementary
excitations is represented by EðkÞ, which for the quadratic

dispersion becomes EðkÞ= Z2k2=2m, where m is the particle
mass. The chemical potential μ is connected to pressure P via
dμðnÞ= ð1=nÞdPðnÞ and comes from the equation of state of the
system. The small perturbations of the uniform number density
n0 =N=V, where N is the number of particles occupying the
volume V, satisfy the dispersion law

ω2 =
Z2

4m2 k
4 + c20k

2 + ðn0=mÞ~V ðkÞk2; [4]

where ~V ðkÞ=R V ðrÞexp½−ik · r� dr, and the speed of sound c0 is set
by c20 = ð1=mÞ∂P=∂n0. The pressure relates to the energy per par-
ticle by P= n20∂ðE=NÞ=∂n0. Neglecting the nonlocality of interac-
tions leads to the cubic or higher-order nonlinear Schrödinger
equations (NLSEs). For the weakly interacting Bose gases the
equation of state is known to be E=N =V0n0=2, leading to the
cubic NLSE [in the context of dilute weakly interacting Bose
gases also commonly referred to as the Gross–Pitaevskii equa-
tion (GPE) (42)],

iZ
∂ψ
∂t

= −
Z2

2m
∇2ψ +V0jψ j2ψ : [5]

The higher-order NLSE results for denser fluids such as superfluid
4He for which the equation of state is well approximated by the
polynomial expansion

E
N
= −

V0

2
n0 −

V1

3
n20 +

V2

4
n30; [6]

where V0 = 719KÅ3kB; V1 = 3:63× 104KÅ6kB and V2 = 2:48×
106KÅ9kB, are fixed to reproduce the properties of superfluid
helium over a range of pressures (42). This leads to the higher-
order NLSE

iZ
∂ψ
∂t

=
�
−

Z2

2m
∇2 −V0jψ j2 −V1jψ j4 +V2jψ j6

�
ψ : [7]

This form of the equation has been used to study the instability
of the vortices and cavitation at negative pressures and T = 0 (43,
44) showing the quantitative agreement with experiments (32).
The dispersion 4 for the cubic NLSE reproduces the Bogoliubov
spectrum of the dilute weakly interacting gaseous atomic BECs
quite well. Superfluid helium has a roton minimum of the dis-
persion curve that can be modeled by keeping the nonlocal inter-
actions V ðrÞ. The quantitatively correct dispersion curve in this
case can be obtained for a range of potentials; for instance the
Lennard-Jones potential with attractive interactions at short dis-
tances can be modeled by

V
���x− x′

���=V ðrÞ= �
b1 + b2r2 + b3r4

�
exp

�
−B2r2

�
; [8]

with phenomenological parameters b1; b2; b3, and B chosen so
that the dispersion curve 4 gives a good fit to the phonon, maxon,
and roton parts of the superfluid helium spectrum (45, 46). Such
a nonlocal model has been used to elucidate the difference bet-
ween roton creation and vortex nucleation in superfluids (47),
while treating ψ as the wave function of the condensate. In this
context the gNLSE is at best only a phenomenological model of
superfluid helium because in helium there always exists a strong
coupling of highly occupied modes with modes of low occupation
due to strong interactions. In what follows we instead interpret the
gNLSE as a mathematical model that brings about the Landau
two-fluid model and treats vortices self-consistently, so the complex
function ψ is no longer directly associated with the condensate.
The Madelung transformation converts real and imaginary

parts of Eq. 3 into the hydrodynamic equations for the conser-
vation of mass
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∂n=∂t+∇ · ðnvÞ= 0; [9]

and the integrated form of the equation of motion (Newton’s law
for continuous fluid elements in Eulerian description)

m∂v=∂t+mðv ·∇Þv= −∇μ0ðnÞ; [10]

where the chemical potential μ0 includes the nonlocal term and the
density functional (quantum pressure) coming from the Laplacian

μ0ðnÞ= μðnÞ+
Z

n
�
x′
�
V
���x− x′

���  dx′− Z2

2m2

∇2 ffiffiffi
n

p
ffiffiffi
n

p : [11]

Putterman and Roberts (48) have shown that starting from
a general framework of Eqs. 9 and 10 and using a scale-separation
argument, it is possible to derive a set of kinetic equations that
describe the dynamics of thermal noncondensed excitations and
their interactions with the condensate. In the collision-dominated
regime they recovered the Landau two-fluid model that represents
the evolution of the normal fluid component and superfluid
components. This separation is possible as the solution of Eqs. 9
and 10 and therefore of Eq. 3 contains a long-wavelength slow
background associated with the superfluid component and short-
wavelength fast excitations associated with the normal component
(thermal cloud). These two types of motion should be coupled by
nonlinearities of Eq. 3, but in the reversible limit this coupling will
vanish and the system possesses conserved quantities leading to
extra velocity and density fields. Such separation is achieved by
expanding n (and similarly v) in terms of slowly varying back-
grounds, nc, and high-frequency waves, ni

nðx; tÞ= ncðδx; δtÞ+ e½n1ðδx; δtÞ+ δn2ðδx; δtÞ�expðiθÞ; [12]

where θ satisfies the differential form dθ= k · dx−ωdt and the
relationship between the small parameters δ and e determines
the distinction between collisionless ðe2 � δ � e � 1Þ and colli-
sion-dominating regimes ðδ � e4 � 1Þ. In the collisionless regime
the Vlasov wave equation emerges, describing the evolution of
Bogoliubov quasiparticles. The collision integrals and the kinetic
Boltzmann equations in the collision-dominated regime can be
derived in a rigorous way using the matched asymptotics (49).
The wave kinetics in this case describes three-wave and four-wave
interactions with the resonance conditions arising from momen-
tum and energy conservations of Eq. 3. They are analogous to the
Zaremba, Nikuni, and Griffin kinetic equations (see subsequent
section Coupled Kinetic Equations: The Zaremba, Nikuni, and Grif-
fin Model), but without spontaneous scattering present.
Because the Landau two-fluid dynamics can be derived from

a one-component classical nonlinear field described by a rather
general form of nonlinearity, the one-component model can be
used to model superfluids at finite temperature. The cubic NLSE
has been argued to give an accurate microscopic description of
the formation of a Bose–Einstein condensate (BEC) from the
strongly degenerate gas of weakly interacting bosons (50–53) and
the stages of that formation from a strongly nonequilibrium
initial condition were elucidated (54). It has also been used to
describe the equilibrium fluctuations of the condensate and
highly occupied noncondensate modes (55, 56). By now the
method of using a cubic NLSE to model finite-temperature or
quantum (49) effects in Bose gases has become relatively com-
mon, with slightly different viewpoints portrayed, e.g., in refs. 29,
57, 58; see also the section below Truncated Equations of Non-
linear Classical Fields.
In the context of modeling the finite-temperature superfluid

4He, the phenomenological model of Eq. 3 has not been used. For
the system to evolve as an ensemble of classical fields with cor-
responding classical-field action, the occupation numbers must be
large and somewhat uncertain (59), which is only possible in
a weakly interacting system. In a strongly interacting system, such

as superfluid helium, there are always small occupation numbers
that are coupled with high occupation numbers and the behavior
of the quantum system cannot be accurately described by the
classical-field approximation. The proposed framework of using
Eq. 3 thus arises not as an accurate description of a quantum sys-
tem, but as a mathematical analog of the Landau two-fluid model.
In homogeneous systems the separation of superfluid and nor-

mal fluid components is rather straightforward to implement nu-
merically. We consider the evolution of the field

ψðx; tÞ=
X
k

akexpðik · xÞ; [13]

where the complex Fourier amplitudes ak define the occupation
numbers nk via hak*ak′i= nkδkδk′. In equilibrium the superfluid
(condensate) corresponds to k= 0 node, with the normal fluid
(thermal cloud) being distributed according to the Rayleigh–
Jeans distribution

neqk =
kBT

Z2k2=2m− μ
; [14]

which is the classical approximation of the Bose–Einstein distri-
bution. With the tangle of vortices the long-wavelength part of
the Fourier spectrum corresponds to the superfluid (quasicon-
densate). The wavenumber that separates superfluid with the
tangle of vortices from the normal fluid can be found from the
integral distribution function Fk =

P
k′≤knk′, which exhibits a clear

“shoulder” in its shape separating two regions where Fk has dif-
ferent slopes (54). The position of this shoulder determines the
wavenumber span of the normal component. The temperature at
equilibrium is defined through n0=ðFkmax − n0Þ= 1− ðT=TλÞ3=2,
where kmax represents the maximum numerical wavenumber in
the system. This expression is valid for a uniform ideal Bose
gas and is an approximation for interacting superfluids.
As becomes evident from this discussion, there are at least three

issues that require some refinement: (i) the numerical truncation
of modes at the value kmax that makes the result dependent on the
numerical resolution; (ii) an approximate way used to identify
the temperature at equilibrium; and (iii) the classical distribution
of thermal modes. In the next two sections we discuss the concepts
and numerics that fix these problems. For simplicity of presentation
the methods are formulated for the cubic NLSE (GPE). Their
application to Eq. 3 then becomes straightforward.

Truncated Equations of Nonlinear Classical Fields
Microcanonical Description. Two variants of the numerical imple-
mentation of a projection (or truncation) on a finite number of
Fourier modes are commonly used in the literature, known as the
projected GPE (PGPE) (58) and the truncated GPE (TGPE). An
equation of this form is obtained from the GPE by simply trun-
cating the Fourier transform of the wavefunction for jkj> kmax,
such that only highly occupied modes are considered. The TGPE,
in the limit of cubic nonlinearity and local interaction (Eq. 5),
explicitly reads

iZ
∂ψ
∂t

=PG

�
−
Z2

2m
∇2ψ +V0PG

h
jψ j2

i
ψ

�
; [15]

where we have introduced the Galerkin projector PG via the
Fourier space definition PG½ψ̂k�= θðkmax − jkjÞψ̂k, where θð·Þ
is the Heaviside function. Eq. 15 exactly conserves the energy
H =

R
d3xððZ2=2mÞj∇ψ j2 + ðV0=2Þ½PGjψ j2�2Þ and the number of

particles N =
R
d3xjψ j2. Using Fourier pseudospectral methods,

the momentum P= iZ=2
R
d3xðψ∇ψ −ψ∇ψÞ is also conserved with

dealiasing performed by the two-thirds rule [kmax = 2=3×M=2
at resolution M (60)]. With this procedure, in each spatial direction
one-third of the available modes are not used. Instead of the
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nonlinear term PG½PG½jψ j2�ψ �, the conventional PGPE formula-
tion (55) uses the term PG½jψ j2ψ �, for which momentum conser-
vation requires dealiasing at kmax = 1=2×M=2 and one-half of
the available modes are lost to truncation. (Without proper
dealiasing, momentum is not conserved; see appendix B of ref.
61.). Microcanonical equilibrium states are well-known to re-
sult from long-time integration of 15 and involve a condensa-
tion mechanism (55, 62, 63).
Similar classical truncated systems have been studied since the

early 50s in the context of fluid mechanics. Indeed, the (conser-
vative) Euler equation, when spectrally truncated, admits absolute
equilibrium solutions with Gaussian statistics and equipartition of
kinetic energy among all Fourier modes (64–67). Furthermore, the
dynamics of convergence toward equilibrium involves a direct
energy cascade toward small scales and contains (long-lasting)
transients that mimic (irreversible) viscous effects that are pro-
duced by the “gas” of high-wavenumber partially thermalized
Fourier modes generating (pseudo-)dissipative effects (68–70). In
the TGPE (Eq. 15) case, thermodynamic equilibrium can also be
obtained by a direct energy cascade, in a way similar to that of the
truncated Euler case, but with final thermalization accompanied
by vortex annihilation. Furthermore, increasing the amount of
dispersion produces a slowdown of the energy transfer at small
scales, inducing a bottleneck and a partial thermalization that is
independent of the truncation wavenumber (71).

Grand-Canonical Description. Grand-canonical states, allowing a di-
rect control of the temperature (instead of the energy in the
microcanonical framework), are given (61) by the probability dis-
tribution Pst½ψ �=Z−1exp½−βðH − μN − vn ·PÞ�, where β= ðTkBÞ−1
and the Lagrange multipliers conjugated to the number of particles
and momentum are, by definition, the chemical potential μ and
some velocity, chosen as the normal velocity vn. [The reason for
this choice is that states with vn ≠ 0 cannot, generally, correspond
to a condensate moving at velocity vs = vn because vs is the gradient
of a phase and takes discrete values for finite-size systems. In such
cases the vn term generates a counterflow w= vn − vs (61)]. Due to
the quartic character of H, grand-canonical states described by
Pst½ψ � are non-Gaussian. They can be efficiently obtained by con-
structing a nonlinear diffusion equation with noise whose station-
ary probability is Pst½ψ � (70). This stochastic Ginzburg–Landau
equation (SGLE) is defined by the Langevin equation:

Z
∂ψ
∂t

=PG

�
Z2

2m
∇2ψ −V0PG

h
jψ j2

i
ψ

�

+PG½μψ − iZvn ·∇ψ �+
ffiffiffiffiffiffi
2Z
Vβ

r
PG½ζðx; tÞ�; [16]

where the white noise ζðx; tÞ satisfies hζðx; tÞζ*ðx′; t′Þi= δðt− t′Þ
δðx− x′Þ. The term iZ  vn ·∇ψ induces an asymmetry in the repar-
tition of sound waves and generates nonzero momentum states.
Equilibrium states with nonzero values of the counterflow w=
vn − vs can be generated in this way. The SGLE (16) is not a “phys-
ical” evolution equation but is, nevertheless, of great practical use
because its solutions relax to the Boltzmann probability Pst½ψ � and
therefore describe thermal equilibrium. The relaxation is much
faster than the TGPE microcanonical relaxation, and the direct
control of the temperature of the thermalized states is also a very
useful trick, for instance when dealing with phase transitions.
A somewhat similar equation, known as the stochastic (pro-

jected) Gross–Pitaevskii equation, or S(P)GPE (72–74), has
been used to study properties of weakly interacting trapped
atomic gases. Although dynamical equilibration with the S(P)
GPE generates the correct thermal state (58, 75), the S(P)GPE
can additionally describe nonequilibrium dynamics (73, 76–81).
Its two closely related formulations, with or without an explicit
projector (see also ref. 82 for additional “scattering” terms), and
their relation to the SGLE are briefly discussed in SI Text.

The microcanonical and grand-canonical ensembles are known
to be equivalent and thus the condensation transition reported in
refs. 55, 62 is simply the standard second-order λ-transition (61)
(visualized, e.g., by looking at the statistical weight of distribution
Pst½ψ � with vn = 0).

Coupled Kinetic Equations: The Zaremba, Nikuni, and Griffin
Model
An alternative microscopic formulation to such classical field
methods is based on the concept of symmetry breaking, following
directly from Beliaev’s prescription (83), of separating the field
operator Ψ̂ ðr; tÞ=ψ cðr; tÞ+ ψ̂ ′ðr; tÞ, into a condensate wavefunction
(ensemble average ψ cðr; tÞ= hΨ̂ ðr; tÞi) and a residual fluctuating
part ψ ′. This explicit distinction into condensate and noncondensate
components enables the derivation of two coupled equations for
each subcomponent.
In the sufficiently dilute limit (no simultaneous three-body

collisions), Kirkpatrick and Dorfman (84–86) formulated a cou-
pled two-component kinetic theory by separating out the k= 0
mode from the excited modes of the system; this approach
accounted for the Bogoliubov excitation spectrum and included
a collision-based source term associated with particle transfer
into or out of the condensate, and leading to damping. Moti-
vated by recent controlled nonequilibrium studies of weakly
interacting ultracold dilute atomic condensates, this approach
was revisited for inhomogeneous condensates by Zaremba,
Nikuni, and Griffin (87, 88), often termed the “ZNG” theory.
Dynamical equations for the condensate and noncondensate

components (in direct analogy to the normal and superfluid com-
ponents of the two-fluid model) are obtained from the Heisenberg
equations of motion for ψ c and ψ ′ treated perturbatively at the
Hartree–Fock level, combined with a semiclassical description for
the noncondensate via the single-particle Wigner distribution
function f ðp; r; tÞ= R

dr′eip·r′=Zhψ̂ ′†ðr+ r′=2; tÞψ̂ ′ðr− r′=2; tÞi: In
the limit of a local pseudopotential of strength V0––compare
with Eq. 5––one obtains the following set of coupled equations
(87, 88):

iZ
∂ψ cðr; tÞ

∂t
=
�
−
Z2∇2

2m
+V0

�
ncðr; tÞ+ 2n′ðr; tÞ�


ψ cðr; tÞ

−iRðr; tÞψ cðr; tÞ;
[17]

∂f
∂t
+
p
m
·∇r f − ð∇rUÞ · �∇p f

�
=C12½ f ;ψ c�+C22½ f �: [18]

Eq. 17 takes the form of a generalized GPE for the condensate
wave function ψ c, with nc = jψ cj2; this is similar to Eq. 5, but
additionally includes: (i) a mean-field potential 2V0n′ of the non-
condensate atoms through which the condensate atoms propa-
gate, where n′ðr; tÞ= R ðd3p=h3Þf ðp; r; tÞ, and (ii) a dissipative
term −iRψ c which allows the transfer of particles into and out
of the condensate via energy- and momentum-conserving binary
collisions. Self-consistency implies that the thermal atoms also
propagate through an effective potential, U = 2V0ðnc + n′Þ. Eq.
18 is a quantum Boltzmann equation for the distribution func-
tion f of thermal particles; this includes both free evolution and
collisional processes, and is modified from the usual Boltzmann
equation form by collisional processes that allow for particles to
be transferred between the condensate and the thermal cloud.
Although Eq. 17 looks similar in form to Eq. 5, apart from the

additional terms, care is needed when relating the quantity ψ c of
Eq. 17 to ψ of Eq. 5. Whereas the latter refers to the condensate
as a classical field (a multimode field in the presence of inter-
actions), the former equation only describes the lowest-lying
(self-consistent) mode directly identified as the condensate, with
(thermal) excitations treated separately by the quantum Boltz-
mann equation (Eq. 18). However, the explicit ZNG separation
into a condensate mode and thermal excitations implies that the
collisional integrals appearing in the evolution of the distribution
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function f contain both stimulated ðfiÞ and spontaneous [⋯       + 1
in ð fi + 1Þ] terms; this should be contrasted with the corresponding
classical-field equation which does not (implicitly) include
spontaneous terms.
An appealing feature of ZNG is its applicability to two distinct

regimes of quantum fluid evolution: (i) in the hydrodynamic
regime applicable to strongly interacting liquid 4He, the arising
hydrodynamic equations are more general than Eqs. 9 and 10,
attaining the same structure as the Landau–Khalatnikov two-
fluid equations which account for dissipation due to transport in
4He (88); (ii) in the mean-field–dominated regime, mostly rele-
vant for dilute trapped quantum gases, ZNG describes both
collisional processes (Monte Carlo sampling) and vortex cores
(no arbitrary cutoff) and reconnections fairly accurately, in-
cluding the full Bose–Einstein distribution function (compare to
Eq. 14). Nonetheless, its underlying assumption of a coherent
(single-mode) condensate coupled to single-particle excitations,
and the absence of a stochastic kick, restricts its validity far from
the critical fluctuation regime. More details about ZNG and its
collision integrals C12 and C22 are given in SI Text.
Numerous other approaches exist for the nonequilibrium fi-

nite-temperature modeling of quantum gases, as reviewed in ref.
29: we highlight here two methods (see also SI Text). Firstly, we
note that symmetry breaking, relied upon in ZNG, is not a re-
quirement for a consistent coupled condensate–thermal cloud
kinetic formulation, and an alternative number-conserving ap-
proach which explicitly maintains the operator part of the con-
densate has been constructed (see ref. 89 and references therein),
relevant mainly for rather small systems of trapped atomic gases.
Moreover, a convenient simplification of both the ZNG and the S
(P)GPE methods leads to a dissipative GPE for the condensate,
which nonetheless is capable of qualitatively reproducing non-
equilibrium features and has been broadly used in the context of
superfluid turbulence (9, 15, 16, 21).
Having reviewed the most common ways to deal with the

thermal cloud in weakly interacting BECs, we briefly summarize
some of their key predictions for the dynamics of single vortices–
vortex rings, before focusing on a topical application of the
proposed framework to the problem of vortex multiplication
in superfluid helium.

Applications to Finite-Temperature Vortex Dynamics
Firstly we revisit the validity of the phenomenological mutual
friction description of Eq. 2, in the context of the previously
analyzed models. Within the TGPE, straight vortex lines and
rings in a homogeneous system were found to behave consistently
with Eq. 2. Expressing α=Bρn=2ρ; α′= B′ρn=2ρ, the weakly
temperature-dependent dimensionless parameters B and B′ were
found to be of order unity (90) for straight vortices, and in the
context of vortex rings (63). Furthermore, using the SGLE to
prepare initial data with counterflow, it is known that the coun-
terflow can block the contraction of vortex rings and also induce
a dilatation (90).
The temperature dependence of α and α′ was also studied in

the context of a single off-centered vortex in a harmonically
confined quasi-2D weakly interacting condensate (91), where the
vortex deviates from its circular trajectory along the equipoten-
tial by spiraling out to regions of lower density. Throughout its
decaying motion, the vortex core of the condensate is filled by
thermal atoms [of approximately constant density (92)], which
are believed to continuously interact with the surrounding thermal
cloud. The first mutual friction contribution was found to domi-
nate, with α increasing with both increasing temperature and atom
number, whereas α′ did not display a clear dependence on the
parameters probed, with its small value consistent with previous
results (63, 90). The related S(P)GPE study of the decay of
a single vortex (80) revealed the important role of the stochastic
kick for T ≈Tc, with persistent current decay found to be well-
described (81) by such an appropriately generalized approach.
In the context of a vortex ring in a finite-temperature bath, the

TGPE found a rather unexpected strong dependence of the

translational velocity on the temperature, an order of magnitude
above the standard transverse mutual friction effect of Eq. 2.
This can be related to the anomalous translational velocity due to
finite-amplitude Kelvin waves found previously in refs. 93, 94.
Assuming equipartition of the energy of the ring’s thermally ex-
cited Kelvin waves with the heat bath yields a formula that gives
a very good quantitative estimate of the numerically observed
effect (90). Although the TGPE model is only expected to give (at
best) qualitative predictions in the physical case of superfluid 4He,
it nonetheless naturally includes thermal fluctuations that excite
Kelvin waves and these fluctuations are generic features of finite-
temperature superfluids. Their strong slowdown effect on the ring
translational velocity is experimentally testable.
Thus, studies of the mutual friction coefficients for the motion

of a single vortex in a dilute atomic gas have revealed good
agreement between the classical field method (63), the truncated
equations (90), and the ZNG framework (91) (see also ref. 95 for
corresponding predictions of the GPE coupled to Bogoliubov–de
Gennes equations). Although such approaches have already been
implemented to study various aspects of superfluid turbulence
(see, e.g., refs. 54, 61, 96), this remains an exciting and rapidly
growing area, with more experimental and theoretical results an-
ticipated in the coming years.
To illustrate phenomena that can be studied in the context of

these finite-temperature frameworks for the gNLSE of Eq. 3, we
now turn our attention to the particular problem of the dynamics
of a vortex ring in superfluid helium.

Vortex Multiplication in Superfluid Helium
In this section we illustrate the use of the classical field methods
when applied to superfluid helium. In particular, we consider the
evolution of a vortex ring in the context of Eq. 7 at low and high
temperatures. The equation of state of superfluid helium in-
corporated in Eq. 7 allows one to study the effects of negative
pressure on vortices. In particular, the behavior of vortices as
pressure oscillates between negative and positive values is rele-
vant to understanding the nature of electron bubbles trapped on
vortices in a set of experiments performed over the years by
Maris and his colleagues (31, 32). Due to repulsive interactions
with helium atoms, electrons in superfluid helium form a soft
bubble of about 19 Å in radius at atmospheric pressure. The
experiments are based on the property of the electron bubble to
become unstable and explode at a critical pressure of about
−1.89 bar. When vortices are present electrons are attracted to
vortex cores due to the Bernoulli effect, with the force inversely
proportional to the cube of the distance between the vortex line
and the electron. This force pushes the electrons toward the
vortex core until they become trapped in their cores; this process
was elucidated in the context of the NLSE equation (97, 98). The
flow around the trapped electron bubble acquires a circulation,
therefore reducing the pressure around it. As a result, the bub-
bles that are trapped on vortices explode at an applied negative
pressure of a smaller magnitude than that required for an elec-
tron bubble away from a vortex (31). Indeed, the experiments
that measure the negative pressure required to explode an
electron bubble in superfluid helium (32) show the existence of
distinct thresholds in such critical pressure. Two of these were
identified with electron bubbles not attached to a vortex and
bubbles attached to a vortex. These two groups existed across the
entire range of temperatures. However, there was another mys-
terious class of objects that existed for low temperature only and
required even smaller in magnitude negative pressures for their
explosion than the first two groups. These were referred to as
“unidentified electron objects.” Maris and colleagues suggested
that this could be due to electrons being trapped on a doubly
quantized vortex or on more than one vortex. However, it was
not clear how this would be possible, as a multiply quantized
vortex is dynamically unstable to breaking into singly quantized
vortices, and so should not even exist. For an electron to be
trapped by multiple vortices seemed highly unlikely as the
trapping vortices have to be extremely close to each other and
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have the same orientation. It was not clear which processes
would create such vortices.
An analog of Eq. 7 has been used in ref. 43 to study the evo-

lution of a point vortex in varying pressure at T = 0. It was shown
that as the pressure is lowered to negative values the vortex core
enlarges as expected, but during the contraction stage at in-
creasing pressure the vortex core “splits” into many vortices of
various signs of circulation (in sum maintaining the circulation of
the original vortex in agreement with the Kelvin circulation the-
orem). It was suggested that this mechanism explains how the
electron bubble can get trapped into more than one vortex: It
simply gets trapped by two or more parallel vortices during the
vortex core contraction with new vortex generation. It was not
clear how this would relate to 3D scenario and to high temper-
atures where no unidentified electron objects were detected ex-
perimentally (32).
One can envision that the scattering of vortices with the

thermal cloud, the finite-amplitude sound waves, and rarefaction
pulses (99–101) changes the dynamics of the vortex ring and its
behavior when negative pressure is applied. To elucidate the
vortex multiplication during the vortex core contraction at finite

temperatures, we implemented the classical-field method using
Eq. 7, as the physics associated with the existence of the roton
minimum does not seem to be relevant for this problem. In
dimensionless form,

−2iψ t =
h
∇2 + jψ j2 + χ4γjψ j4 − χ6γ

2jψ j6 + �
χ6γ

2 − χ4γ − 1
�i
ψ ;

[19]

where we rescaled the distance, x→ ξx, by healing length ξ=
Z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0mγψ2

a

p
, time by t→ ðξ2m=ZÞt, and the wave function by

ψ →
ffiffiffi
γ

p
ψaψ , with ψa being the uniform unperturbed state at

atmospheric pressure. The dimensionless parameter γ relates
the uniform state at atmospheric pressure to that at a different
pressure via ψ2

uniform = γψ2
a. The dimensionless parameters χ4 and

χ6 are given by χ4 =V1ψ2
a=V0 = 1:10337, χ6 =V2ψ4

a=V0 = 1:64744
using the known value of the superfluid uniform number density
at atmospheric pressure na =ψ2

a = 0:0218546 Å−3.
The initial state of our simulations is a vortex ring in a ther-

mally equilibrated state. We can generate this state by numerically
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integrating Eq. 19 starting with a randomly distributed collection of
harmonics, until it equilibrates, to get the condensate with a normal
fluid (thermal cloud) distributed according to Eq. 14. The initial
state with the ring is the product of the thermally equilibrated state
ψ thermal and a wave function of the vortex ring at T = 0. Alterna-
tively, onemay use the SGLE (Eq. 16) to generate a ψ thermal quickly
and to directly control the temperature at equilibrium.
We consider the evolution of a vortex ring in the following

circumstance. The pressure in the system with a single vortex ring
that is initially at zero pressure ðγ = 1Þ is suddenly quenched to
−3.66 bar (which in our units corresponds to setting γ = 0:9) and
is allowed to expand its core size (the “expansion stage”). After
that the pressure is returned to zero and the subsequent evolu-
tion of the ring is recorded (the “contraction stage”). We con-
sider this evolution at two temperatures: “low” at T = 0:05Tλ and
“high” at T = 0:5Tλ. During the expansion stage the vortex rings
reduce their radii at different rates at different temperatures in
accordance with dR=dt= − αuðRÞ, so the high-temperature ring
is reduced in its radius more dramatically than the low-temperature
ring, but apart from this the processes at the two temperatures are
quite similar: the vortex cores expand somewhat nonuniformly (as
seen in Fig. 1A) due to the curvature of the vortex core. Because
we are primarily interested in comparing the contracting stage
between vortex rings at different temperatures, we consider this
stage for two rings of the same radii. The results of the contraction
stage are seen in Fig.1B for low temperature and Fig.1C for high
temperature. At low temperature the vortex cores collapsed,
producing three separate vortex rings of various radii rapidly
moving away from each other. When this vortex formation occurs
in the vicinity of an electron bubble, one may expect that the
bubble is likely to be captured by more than one vortex ring. At
high temperature there remains a single vortex ring rapidly re-
ducing in size. The process of “vortex multiplication” is completely
suppressed by scattering with a normal fluid component, and the
probability of an electron bubble to be trapped by more than one
ring is negligible. The 3D time snapshots of the vortices are given
in Fig. 2. We conclude that unidentified electron objects at low
temperature are electrons trapped by more than one vortex line
produced during the vortex core contraction as pressure is in-
creased. This also explains why in experiments (32) such objects
were not found, as high temperature suppresses such mechanisms
of vortex multiplication.

Conclusions
In the past decade much theoretical work has been done to model
finite temperature in weakly interacting Bose–Einstein condensates.

The starting point of suchmodels is the cubic NLSE (GPE), which is
either an accurate model of the condensate (as in ZNG formalism)
or an accurate description of all highly occupied modes in a weakly
interacting gas (as in classical-field models).
The requirement of weak interactions is essential for the val-

idity of these models as it is the necessary condition for the
derivation of the GPE. In a strongly interacting system, such as
superfluid helium, it is impossible to divide single-particle modes
into highly occupied and practically empty ones, so there are
always quantum modes with occupation numbers of order unity
coupled to the rest of the system. Nevertheless, as we show
in this paper, it is possible to write a classical matter field
equation that mathematically is analogous to the Landau two-
fluid model, but also accurately accounts for the processes
associated with quantized vortices.
This framework gives rise to a number of numerical issues that

can be dealt with in the context of the methods that model finite
temperature in weakly interacting gases, and we shortly reviewed
the elements that can be used and generalized. In principle, one
should allow for both features of strong phase fluctuations and
dynamics of high-lying (“nonmacroscopically occupied”) modes
to be simultaneously accounted for; in effect, this would corre-
spond to still enforcing a distinction into low-lying macroscopically
occupied modes (as in the c-field methods), while also allowing for
their coupling to the above cutoff atoms for which the full quantum
Boltzmann equation (Eq. 18) should be simulated. [The latter
would automatically enforce a natural high-energy gradual cutoff in
the occupation numbers due to the Bose–Einstein (as opposed
to classical Rayleigh–Jeans) distribution]. A hybrid of these two
methods (see, e.g., ref. 75 for related discussion) should resolve all
such issues and lead to a potentially improved unified description
of all stages of evolution.
The investigation of superfluid turbulence remains an active

topic of research and experiments currently underway in both
liquid helium and trapped weakly interacting gases, combined
with continuously evolving theoretical models promise interesting
developments in the years ahead. We hope that the present
article will help stimulate further work in this important and
still partly open area.
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