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Introduction: Exciton—polariton condensates
Gross-Pitaevskii equation with loss and gain

e Radially symmetric stationary states
e Spiral vortex states
e Vortex lattices

Non-equilibrium spinor system: interplay between interconversion and
detuning

e Stability of cross—polarized vortices

e Synchronisation/desynchronisation

Controllable half-vortex lattices

Turbulence in nonequilibrium condensates
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Nonequilibrium condensates: condensates made of light

Absorption of photon by semiconductor = exciton = emitting photon =
mirrors = exciton photon superposition = polariton mp, = 107%me =
BEC expected at “high” temperature!
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Nonequilibrium condensates: condensates made of light

Absorption of photon by semiconductor = exciton = emitting photon =
mirrors = exciton photon superposition = polariton mp, = 107%me =
BEC expected at hlgh temperature!
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Lower and Upper polariton branches

Polariton frequency wy = (c/n)/k? + (27N /L,)?

n is the refractive index, ¢ the speed of light in vacuum, and N labels the
transverse mode in a cavity of transverse size L,,.

For small k hwp = hwo + h?k?/2m with photon mass
m=h(n/c)(2rN/Ly).
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Lower and Upper polariton branches

Polariton frequency wy = (c/n)/k? + (27N /L,)?

n is the refractive index, ¢ the speed of light in vacuum, and N labels the
transverse mode in a cavity of transverse size L,,.

For small k hwp = hwo + h?k?/2m with photon mass
m=h(n/c)(2rN/Ly).

, Wohot hwy lg)(‘”hm)
iho P = 2 P
t( llJeX ) ( 2g E \UGX
Eigenstates

1 h2 k2 h2k2\?
E;P’UP: E (hwo—i-&'-i-ﬂ) :F\/(MO_E_FW) +g2

Direct observation of spectrum: transmission and reflection of the
microcavity as a function of energy and incident angle.

Exciton-polariton BECs ()




Properties of exciton-polaritons

e polariton-polariton interactions:
interactions between charged particles, saturation of the
exciton-photon interactions, electron-electron exchange;
for low densities pseudo-potential U(r) — Ud(r);
typical scale of U is 1073 meVum?.

e short lifetime (5-10 ps):
(i) non-equilibrium condensate (ii) helps image the properties.
ck = EXP"UF sin(6), therefore, refer to polariton momentum,

k - .
wavevector or emission angle 6 interchangeably.

@ two polarisation states:
left- and right-circularly polarised photon states;

@ coupling between mechanical strain in the sample and the energy of
electron and hole breaks symmetry and favours a particular linear
polarisation.
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Experiments on exciton-polariton condensates

Schematic of an experiment studying polaritons:
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Detector measures:

@ (b) the real and momentum space images;

@ (c) energy resolved images using a spectrometer;

@ (d) first-order coherence using an interferometer.
From M.Richard, PhD Thesis, Universite Joseph Fourier, Grenoble, 2004.
http://tel.archives-ouvertes.fr/tel-00009088/fr
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Experimental techniques

Materials: CdTe or GaAs
Polariton Injection

o directly creating zero momentum polaritons with a
coherent pump laser;
coherently creating polaritons at a 'magic angle’;

coherently creating polaritons at large angles;

incoherent pump laser;

Momentum

injecting electrons and holes by electric currents.
Momentum distribution and thermalisation
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[Kasprzai( et al Nature (2006); Deng et al PRL (2006)]:
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Non-equilibrium condensation vs lasing

Polariton condensates are non-equilibrium steady states emitting coherent
light.

Should they be described as condensates or as lasers?
Criteria:

e (i)Thermal distribution? Polariton distribution is set by balance of
pumping, decay and relaxation.
Smooth cross-over between equilibrium BEC, polariton condensate
and lasing.

e (ii) Stimulated scattering into ground state. Within polariton
modes vs stimulated emission of photons in lasers.

o (iii) Inversion of gain medium in lasers. Polariton condensation
occurs with a quasi-thermal distribution of polaritons. No need for
inverted (negative temperature) distribution of gain medium in order
for gain to exceed absorption.
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Coherence and correlation measurements

The first and second order correlation functions of the electromagnetic
field:

o EOEGY)
AN/ = ) BT = oA

e (ELOE R OEER )
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e Temporal coherence gi(7) = gi(7, 7, t + 7, t);
@ Spatial coherence gi(|r]) = gi(ro + 1,10, t, t).
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Modelling non-equilibrium condensates

The complex Ginzburg-Landau equation:

i0p) = a1t V2 + |2 + ez
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Modelling non-equilibrium condensates

The complex Ginzburg-Landau equation:

i0p) = a1t V2 + |2 + ez

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation—the simplest equation consistent with special relativity.

o 272 2
W = cVV -\ V¥
Represent W = 1) exp[Fi\t] for matter and anti-matter solutions.
81,b 821/1
—A\p — 2iA - = V) — N\?
Non-relativistic limit at2 < )\
Gross-Pitaevskii equation
o c®_,
=—-—V
ot 2\ v
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Modelling non-equilibrium condensates

The complex Ginzburg-Landau equation:

i0p) = a1t V2 + |2 + ez

Gross-Pitaevskii equation as a non-relativistic limit of the Klein-Gordon
equation—the simplest equation consistent with special relativity.

o 22 2
W = cVV -\ V¥
Represent W = 1) exp[Fi\t] for matter and anti-matter solutions.
81,b 821/1
—A\p — 2iA - = V) — N\?
Non-relativistic limit at2 < )\
Gross-Pitaevskii equation
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Modelling non-equilibrium condensates

Equation for the macroscopically occupied polariton state W(r, t):
ihoW = [E(iV) + UV + V(1) Wi [Peon(r, t) + (Pinc(r) — £ — o[V [?) W

Polariton dispersion, E(k) (eg. a quadratic dispersion

E(k) ~ B?k?/2mya);

Strength of the j—function interaction (pseudo)potential U;
External potential V(r);

Coherent pump field P (r)e™rt;

Incoherent pump field Pinc(r);

k and o describe linear and nonlinear losses respectively.

cf. "generic laser model” of Wouters and Carusotto PRA (2007)
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Bogoliubov spectrum comes from considering fluctuations of the form
(7, t) = e int/h (Wo + 37, uge T EktHiIkT 4 vke’ftt_"k'?)v and finding a
self consistent set of equations for uy, vk and the frequency &.

Spectrum of non-equilibrium system A&y ~ —ihn + \/ph?k? [ mpor — 1212
for small k.

7 is a characteristic size of the pump rate, e.g. 7 >~ Pi,c — K.

For small k, the real part of the spectrum is zero for k < 1/mpol/ 1.

No superfluidity in non-equilibrium condensates?
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Superfluidity checklist

Table 1| Superfluidity checklist

Quantized
vortices

Landau
critical
velocity

Metastable Two-fluid Local
persistent
flow dynamics equilibrium

Solitary
waves

hydro- thermal

Superfluid *He/cold atom
Bose-Einstein condensate

Non-interacting
Bose-Einstein condensate

Classical irrotational fluid

Incoherently pumped
polariton condensates

v/

v
X
v

v

X
v/
X

v v v v

X X v X
X v v v
¢ ? X ¢
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Nonequilibrium condensates: condensates made of light

[Balili et al Science 316,(2007)]:
A harmonic trapping potential is created by squeezing the sample by a
sharp pin.

Signatures of BEC:
spatial and spectral narrowing; coherence
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Gross-Pitaevskii equation with loss and gain

Mean-field model of a non-equilibrium BEC of exciton-polaritons

2\72

ot Ve + Ul + i(net — er)] ¥,

Vext IS an external trapping potential, = %mwzrz, Ynet— Net gain,

I — effective loss, U — effective (pseudo-) interaction potential.
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Gross-Pitaevskii equation with loss and gain

Mean-field model of a non-equilibrium BEC of exciton-polaritons

. h2v? o . >
’hatw = | om =+ Vext + U|1/)| + I(’Vnet - FW| ) ﬂ%
Vext IS an external trapping potential, = %mwzrz, Ynet— Net gain,

I — effective loss, U — effective (pseudo-) interaction potential.
Length in units of oscillator length \/h/mw, energies in units of hw, and

v — Jhw/2U, yields:
0p) = [-V2+ PP+ Y2 +i(a—olp?)] .

Two parameters: o = 27net/fiw (gain), and o =T/ U (loss).
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Gross-Pitaevskii equation with loss and gain

Mean-field model of a non-equilibrium BEC of exciton-polaritons

. h2v? o . >
’hatw = | om =+ Vext + U|Q/)| + I(’Vnet - FW| ) ﬂ%
Vext IS an external trapping potential, = %mwzrz, Ynet— Net gain,

I — effective loss, U — effective (pseudo-) interaction potential.
Length in units of oscillator length \/h/mw, energies in units of hw, and

v — Jhw/2U, yields:
0p) = [-V2+ PP+ Y2 +i(a—olp?)] .

Two parameters: o = 27net/fiw (gain), and o =T/ U (loss).
Estimate from experiments: 0 < o <10 and 0 ~ 0.3
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Radially symmetric stationary states

= [=V2+rP+ [P +i(a—olpf) ]

a not too large,
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Radially symmetric stationary states

wp = | r?+ [y v

a not too large, Thomas-Fermi solution |12 = (u — r?) for r < rep = /1t
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Radially symmetric stationary states

ph=[=V2+ 2+ [P +i(a—oly)]v
a not too large, Thomas-Fermi solution [¢|? = (u — r?) for r < rep = /1t
[d?r (a—al¥]?) 9|2 =0 = pu=3a/20.
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Radially symmetric stationary states

= [=V2+rP+ [P +i(a—olpf) ]

a not too large, Thomas-Fermi solution [¢|? = (u — r?) for r < rep = /1t
[d?r (a—al¥]?) 9|2 =0 = pu=3a/20.
Madelung transformation, ¢ = \/ﬁe’¢:

V- [pVe] = (o= 0op)p,

v2/p
= Vo> +r2+p— —Y°,
p= |Vl N
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Radially symmetric stationary states

= [=V2+rP+ [P +i(a—olpf) ]

a not too large, Thomas-Fermi solution [¢|? = (u — r?) for r < rep = /1t
[d?r (a—al¥]?) 9|2 =0 = pu=3a/20.
Madelung transformation, ¢ = \/ﬁe’¢:

V- [pVe] = (o= 0op)p,

v2/p
= Vo> +r2+p— —Y°,
p= |Vl N

High density = loss
low density = gain
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Radially symmetric stationary states

ph=[=V2+ 2+ [P +i(a—oly)]v
a not too large, Thomas-Fermi solution [¢|? = (u — r?) for r < rep = /1t

[d?r (a—al¥]?) 9|2 =0 = pu=3a/20.
Madelung transformation, ¢ = \/ﬁei¢:

V- [pVe] = (o= 0op)p,

V2\/ﬁ
2, .2
p=IVol"+ri+p———.
NG
High density = loss
low density = gain
currents V¢, between these regions

(in TF ¢'(r) = —orp(r)/6)
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Radially symmetric stationary states

ph=[=V2+ 2+ [P +i(a—oly)]v
a not too large, Thomas-Fermi solution [¢|? = (u — r?) for r < rep = /1t
[d?r (a—al¥]?) 9|2 =0 = pu=3a/20.
Madelung transformation, ¢ = \/ﬁei¢:

V- [pVe] = (o= 0op)p,

p=IVolP+r’+p

High density = loss

low density = gain

currents V¢, between these regions
(in TF ¢/(r) = —orp(r)/6)

Large currents = density depletion.
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Radially symmetric stationary states

= [=V2+rP+ [P +i(a—olpf) ]

a not too large, Thomas-Fermi solution [¢|? = (u — r?) for r < rep = /1t
[d?r (a—al¥]?) 9|2 =0 = pu=3a/20.
Madelung transformation, ¢ = \/ﬁe’¢:

V- [pVe] = (o= 0op)p,

v2/p
= Vo> +r2+p— —Y°,
p= |Vl N

High density = loss

low density = gain A e
currents V¢, between these regions 2
(in TF ¢'(r) = —orp(r)/6) 3
Large currents = density depletion. s \
’ 0 2 4 6 s Radius
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Spiral vortex states

Theory:
()

W = f(r)exp[isf + i¢(r)]

Leading order
¢'(r) ~a/2(s+1)r.
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Spiral vortex states

Theory:

()

Experiment:
[Lagoudakis et al. Nature Physncs (2008)]

real space X (jun)
6

W = f(r)exp[isf + i¢(r)]

05 1.0 15
azimuthal angle ()

Leading order
¢'(r) ~a/2(s+1)r.
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Instability of rotationally symmetric states

Unstable regions

Density

Distance
1
S0+ V(v = (a—0op)p, O+ V(p+ 1+ |v?) =0

If o, 0 small, find normal modes in 2D trap: dppm = e"’”eh,,,m(r)e"“"vmt

Wn,m = 24/m(1+ 2n) + 2n(n + 1).

Add weak pumping and decay

N v [ m(1 +2n) + 2n(n +1)—m? ]
n,m n,m T/
“n, “n, a2m(1+2n)+4n(n+l)+m2
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Finite Spot Size

In experiments: finite spot, of size comparable to observed cloud, is used.
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Finite Spot Size

In experiments: finite spot, of size comparable to observed cloud, is used.
Model this as o = a(r) = a©(rg — r)
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Finite Spot Size

In experiments: finite spot, of size comparable to observed cloud, is used.
Model this as o = a(r) = a©(rg — r)

For small ry ( ro < rrr ~ /3 /20), this stabilises the radially symmetric
modes and vortex modes:

AMAAAAAAAAAAAA]

Density

Distance
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Development of instability?

Density

Distance
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Vortex Lattices
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Vortex Lattices

[T

35

25 Density profile
. Thomas-Fermi in flattcned trap
2
15
z
210
]
5
-15 15
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Vortex Lattices

[T

35
30
25
20
15

10

In rotating frame

/W“W“Fv\ V- 1p(Vo— Qxn)] = (@O(r0 — r) = op) p,
- 2
L u:\V¢—er\2+r2(1—92)+p—m.

0
-15 -10 -5 0 5 10 15
Nz
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Vortex Lattices

n

35

30

0 4 6 8 0 R
5 Density profie In rotating frame
20 Thomas-Fermi in flattened trap
V- [p(Ve—Qxr)] = (a —ap) p,
S 1
p=|Ve—Qxr?+rP1-0%+p

In TF regime away from boundaries solution is
Vo=Qxr,p=ajoc=uN%=1.
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Experiments on spinor polariton condensates

Results so far do not involve polariton spin:
[Lagoudakis et al, Science, November 2009]:
Phase maps of left- and right-circular polarized polariton states

[+ x real space (umj =]

_xreal space {(umj
4202 48

by
=

57 158 5 158
= m§ 3. 108
B ta &
g 52 3 0532
b =

0.0 00

m
-

Observed all possible (+1,+1) vortex states.
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Polariton spin degree of freedom

@ Include spin degree of freedom: left- and right-circular polariton
states v, and Yg.
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Polariton spin degree of freedom

@ Include spin degree of freedom: left- and right-circular polariton
states v, and Yg.

@ For weakly-interacting dilute Bose gas model:

h2|v 2 hZV 2 2
po= MV BIVORE L Yo ey e
2m 2m
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Polariton spin degree of freedom

@ Include spin degree of freedom: left- and right-circular polariton
states v, and Yg.

@ For weakly-interacting dilute Bose gas model:

2 2 2 2
H — I |V¢L| h |V¢R| (‘w |2+|1/}R|2>

2m 2m

— 22Uy PlYRP+ Q8 <|¢L!2 - WR2>

@ Tendency to biexciton formation — U; . Magnetic field: Qg
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Polariton spin degree of freedom

@ Include spin degree of freedom: left- and right-circular polariton
states v, and Yg.

@ For weakly-interacting dilute Bose gas model:

2 2 2 2
H — I |V¢L| h |V1/)R| (‘w |2+|1/}R|2>

2m 2m

— 22Uy PlYRP+ Q8 <|¢L!2 - WR2>

2
+ 4 <¢{¢R + H.c) + (ﬂsz + H.c.>

@ Tendency to biexciton formation — U; . Magnetic field: Qg

@ J Circular symmetry broken — two equivalent axes.
J1 preferred direction — inequivalent axes.
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Non-equilibrium spinor system

Spinor Gross-Pitaevskii equation:

) h2v?2 Q
ihow = [— o T Vexe(r) + 78

+ Uo|vr > + (Up — 2Un) yr

+ i (Ynet — |_|¢L!2)] Y+ LR

Similarly for g with ¥; <> ¥g and Qg — —Q5.
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Non-equilibrium spinor system

Spinor Gross-Pitaevskii equation:

. h2v? Q
ey = [— VoD + 5

+ Voo + (Uo — 2U1) [bg|?

+ i (Ynet — FWL’z)] YL+ LR

Similarly for g with ¥; <> ¥g and Qg — —Q5.
Dimensionless cGPE:

et = |~V s(r) 4P (=)l 4 0 = olun?) [t e

Exciton-polariton BECs ()



Non-equilibrium spinor system

Spinor Gross-Pitaevskii equation:

. h2v? Q
ey = [— VoD + 5

+ Voo + (Uo — 2U1) [bg|?

+ i (Ynet — r|¢L!2)] YL+ LR

Similarly for g with ¥; <> ¥g and Qg — —Q5.
Dimensionless cGPE:

et = |~V s(r) 4P (=)l 4 0 = olun?) [t e

If v(r) = r? then take a — a®(ry — r) as before.
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Non-equilibrium spinor system

Spinor Gross-Pitaevskii equation:

) h2v?2 Q
oy = |~ Vsl +

2 B 2
- 5 + Uolw]” + (Uo — 2Ur) |[YR|

+ i (Ynet — rWLF)] YL+ LR

Similarly for g with ¥; <> ¥g and Qg — —Q5.
Dimensionless cGPE:

et = |~V s(r) 4P (=)l 4 0 = olun?) [t e

If v(r) = r? then take a — a®(ry — r) as before.
Questions:
@ Normal modes of uniform model: diffusive, linear, gapped.
@ Effect of A and J on vortices?
© How does interconversion J interact with currents?
@ Synchronization/desynchronization.
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Stability of cross-polarized vortices

J=0: All (£1,0) and (£1,+1)
vortex complexes are
dynamically stable.
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Stability of cross-polarized vortices

J=0: All (£1,0) and (£1,+1)
vortex complexes are
dynamically stable.

J # 0,A = 0: Solutions (+1,+1) are stable,
(£1,0) and (+1,—1) are
unstable.
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Stability of cross-polarized vortices

J =0: All (£1,0) and (£1,+£1) Outcome of instability A =0
vortex complexes are
dynamically stable.
J # 0,A = 0: Solutions (+1,+1) are stable,
(£1,0) and (+1,—1) are
unstable.
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Stability of cross-polarized vortices

J =0: All (£1,0) and (£1,+£1) Outcome of instability A =0
vortex complexes are ‘ ‘
dynamically stable. ; @

J#0,A = 0: Solutions (+1,+1) are stable, I B0
(£1,0) and (+1,—1) are
unstable.

Exciton-polariton BECs ()




Stability of cross-polarized vortices

J =0: All (£1,0) and (£1,+£1) Outcome of instability A =0
vortex complexes are ‘ ‘
dynamically stable.

J # 0,A = 0: Solutions (+1,+1) are stable,-!
(£1,0) and (+1,—1) are '
unstable.
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Stability of cross-polarized vortices

J =0: All (£1,0) and (£1,+£1) Outcome of instability A =0
vortex complexes are | i B
dynamically stable.
J # 0,A = 0: Solutions (+1,+1) are stable,-!
(£1,0) and (+1,—1) are '
unstable.
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Stability of cross-polarized vortices

J =0: All (£1,0) and (£1,+£1) Outcome of instability A =0
vortex complexes are | i B
dynamically stable.

J #0,A = 0: Solutions (+1,+1) are stable, ! J=05
(£1,0) and (+1,—1) are
unstable.
fffff J=1
J=15
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Stability of cross-polarized vortices

J=0: All (£1,0) and (£1,+1)
vortex complexes are
dynamically stable.

J # 0,A = 0: Solutions (+1,+1) are stable,
(£1,0) and (+1,—1) are
unstable.

J #0,A # 0: For a given J, any sufficiently
large A allows the vortex
complexes (+1,—1) and
(£1,0) to stabilize.

J=1,A=8
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Two-mode system

Neglect v(r) and spatial variations, write

¢L7R:mef(¢i9/2)’ R:M—T'OR, Z:u’

2
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Two-mode system

Neglect v(r) and spatial variations, write

¢L7R:mef(¢i9/2)’ R:MTpR, z:u’

2

- 2Jz cos()
0=-A— 2UaZ + ?

z=2(a—20R)z — 2Jy/ R? — z%sin(0)
5 Qs 52 2
R—2U<UR R z).

—Z
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Two-mode system

Neglect v(r) and spatial variations, write
_ i(¢+0/2) p_PLYPR _ PL”PR
Y1,R = \/PLRE ; 5 2 >

- 2Jz cos()
0=-A— 2UaZ + W

z=2(a—20R)z — 2Jy/ R? — z%sin(0)
5 Qs 52 2
R—2U<UR R z).

Josephson regime J < u;R &
z<L R,
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Two-mode system

Neglect v(r) and spatial variations, write
_ i(¢+0/2) p_PLYPR _ PL”PR
Y1,R = \/PLRE ; 5 2 >

0=—-A—2u,z

z=2(a—20R)z —2JV/R? sin(0)
5 g o2
R =20 (UR R )

Josephson regime J < u;R &
z<L R,
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Two-mode system

Neglect v(r) and spatial variations, write
_ i(¢+0/2) p_PLYPR _ PL”PR
Y1,R = \/PLRE ; 5 2 >

0=—-A—2u,z

z=2(a—20R)z —2JV/R? sin(0)
5 g o2
R =20 (UR R )

Josephson regime J < u;R &
z< R, R=Ry=ajo

Exciton-polariton BECs ()



Two-mode system

Neglect v(r) and spatial variations, write
_ i(¢+0/2) p_PLYPR _ PL”PR
Y1,R = \/PLRE ; 5 2 >

0=—-A—2u,z
z=2(a—20R)z —2JV/R? sin(0)
R =20 (UR R ) .

Josephson regime J < u;R &

z< R, R=Ry=ajo

Equation for a driven, damped
pendulum

0 + 200 = —2aA + 4uan sin(0).
o
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Two-mode system

Neglect v(r) and spatial variations, write

YR = \/pL,Rei(¢i9/2),

0 = —A —2u,z

z=2(a—20R)z — 2Jy/ R? — z%sin(0)

R =20

R2 _ 72

(%R—RZ—ZZ).

p— PLTPR

n 2Jz cos()

¢ for stable cycle

' 2

saddle-node
for cycles

_ PL—PR

Y

Hopf bifurcation
for fixed point
(suberitical!)

bifurcation

7
*I saddle—node (SN)

for fixed points

|
8 homoclinic
™~ bifurcation

for saddle cycle

ow point — Takens—Bogdano

v

Hatched arca — bistability between fixed point and|
limit cycle

[with Balanov and Janson]
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Trapped spinor system: ;g = 10:(In 1 g) vs

22 25 J=1,1=4
20 204

u18 n —o— M
16 15 —— Mg
14w 10
127 1y

0 5
0 2 4 6 8 1012 0 5 10 15 20
A A
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Trapped spinor system: ;g = 10:(In 1 g) vs

22 25 J=1,1=4
20 204

u18 n —o— M
16 15 —— Mg
14w 10
127 1y

0 5
0 2 4 6 8 1012 0 5 10 15 20
A A

Simple case no vortices; rp < rrr.
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Trapped spinor system: ;g = 10:(In 1 g) vs

22 25 J=1,1=4
20 204

u18 n —o— M
16 15 —— Mg
14w 10
127 1y

0 5
0 2 4 6 8 1012 0 5 10 15 20
A A

Marginal case rg ~ rrr.

Simple case no vortices; rp < rrr. A causes R(L) to grow (shrink),
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Trapped spinor system: 1 g = i0¢(In 1 g) vs

22 25 J=1,1=4
20 204

H18 N
16 15 JRVE T
14w 10
127 1y
1 5

A

Simple case no vortices; rp < rrr.
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0 2 4 6 8 1012

0 5 10 15 20
A

Marginal case rg ~ rrr.

A causes R(L) to grow (shrink).
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Trapped spinor system: 1 g = i0¢(In 1 g) vs

22 25 J=1,1=4

20 204
u's u ——R
16 15 JRVE T
14w 10

127 1y

10

5
0 2 4 6 8 1012 0 5 10 15 20
A A

Marginal case rg ~ rrr.

Simple case no vortices; rp < rrr. A causes R(L) to grow (shrink)

"Simple case” not so simple: |
retrograde loop 4 - "

0 ™ Stfd w2 ™

3 5 2 15
5
H o » 10
¥ s
= ! 5
K F F
o - 5 ©
-1 5
0 k S8 16 14 12 2 15 15
0 [
o c 10 10
0
A g
5 o
- 5 5 0 5
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Full two-component model

@ Full model with a trap confirms the predictions of two-mode model,
but has richer behaviour:
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Full two-component model

@ Full model with a trap confirms the predictions of two-mode model,
but has richer behaviour:

e Phase portraits: fixed points, limit cycles with winding 0, 1, 2;
retrograde loops, quasi-periodic and chaotic behaviours

0= -1g
3 o

0=u-Hp
s

@ o

05
T
- 1
-20 4

-15

“37/4 T 5n/4 3x/2

3 275 25
] 0 J
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Full two-component model

@ Full model with a trap confirms the predictions of two-mode model,
but has richer behaviour:

e Phase portraits: fixed points, limit cycles with winding 0, 1, 2;
retrograde loops, quasi-periodic and chaotic behaviours
e Counter-rotating lattices; spatially non-uniform interconversions...

t=151.48 t=151.58

1, f w@ )

-5 [ 5

05 t-150 42 t=150.47

=

F 0

Fa

;-‘é, -05 54
-20 5 603
E P -15
3m/4 57/4 3w/2 -3 -2.75 -25

] ¥

)

°

0= -1g
L
3
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Stationary solitary waves

Stationary density depletion for intermediate J and small A
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Stationary solitary waves

Stationary density depletion for intermediate J and small A

A=0

Density depletions appear in trapped and uniform equilibrium condensates:

dark/black/grey solitons; rarefaction waves;
Travelling hole solutions of the complex Ginzburg—Landau equations: e.g.

Nozaki—Bekki solutions
Are these relevant?
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Stationary solitary waves

Stationary density depletion for intermediate J and small A

A=0

Density depletions appear in trapped and uniform equilibrium condensates:

dark/black/grey solitons; rarefaction waves;
Travelling hole solutions of the complex Ginzburg—Landau equations: e.g.

Nozaki—Bekki solutions
Are these relevant?

From simulations ¢/ (x, y) = ¥r(x, —y), so this stationary state satisfies

i0p) = [-V2 + r* + [Y|* +i(a®(rg — r) — o[ |*)]e + Ju(x, —y).

31/ 50
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One-dimensional modified GL equation

Consider solutions of a modified GL equation without trap

i06h = —thx + Y120 + i(o — o9[P)ep + S (—x).
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One-dimensional modified GL equation

Consider solutions of a modified GL equation without trap
106 = —thex + [Y[*0 + (e = aW?)i) + Juo(—x).

Stationary solutions exist for 0 < J < J.,. Black soliton evolves into these

states. )
14 3
12| ;
L .E‘ 2
10 2
& 1
8 :
0

0 1 2 3
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One-dimensional modified GL equation

Consider solutions of a modified GL equation without trap
106 = —thex + [Y[*0 + (e = aW?)i) + Juo(—x).

Stationary solutions exist for 0 < J < J.,. Black soliton evolves into these

states. )
14 3
12| ;
L .E‘ 2
10 2
& 1
8 :
0

0 1 2 3

Note: For Nozaki—Bekki holes J = 0 but one needs diffusion 1),y
(spectral filtering to stabilize the central frequency of the pulse)
32 /50
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Vortex trajectories

Densities of L and R components for J =1
_ A=04 o A=2 Al
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Vortex trajectories

Trajectories for A =4
15 }

Densities of L and R components for J =1
| A=0h A=z A=

—1.5- 1
l'—51.5 =10 -05 00 05 10 15

Spirographs
(epitrochoids/hypotrochoid)
Similarly complicated cycloid trajectories of vortices are known for
two-layer fluids with one vortex in each layer — e.g. in models of tropical
vortices. Reaction difusion equations may lead to spiral wave dynamics.
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Vortex trajectories explained (somewhat)

Taking into account forces: Magnus force, radial advection, vortex
interactions can explain stationary vortex pairs.
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Vortex trajectories explained (somewhat)

Taking into account forces: Magnus force, radial advection, vortex
interactions can explain stationary vortex pairs.

Variational technique and ansatz
b = A(t)(z — 2u(t)) exp(—|2P)
YR = B(t)(z* — zg(t)) exp(—|z]?)
yield equations of motion.
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Vortex trajectories explained (somewhat)

Taking into account forces: Magnus force, radial advection, vortex

interactions can explain stationary vortex pairs.
Spirographs:

.....

Variational technique and ansatz R o
b= Az -z ew(-lzP), 7
YR = B(t)(z* — zg(t)) exp(—|z]?)
yield equations of motion.

zi(t) = x(t)+iye(t),

ZR(t) = XR(t) + iyR(t),
zi = a(A —9d)izy + 2Jbizg,
zr = a(A+90)izr —2Jbiz].
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Spinor condensates—vortex lattices

Vortex patterns generated by superposition of fluxes.
Spinor complex Ginzburg-Landau equation:

A

2idey, = [i; — V2 v(r) + |1, 2

2 + (1 - Ua)W}r,l
+i (=200 — ol > — 7| )] 1 + S

71 — energy relaxation [Wouters and Savona arXiv:1007.5431 (2010)];

T — cross-spin nonlinear dissipation;

A - effect of the magnetic fied (in Hamiltonian ~ A(|,2 — |4]?));

J — electric field, stress or due to asymmetry of quantum well interfaces;

Magnetic field, A, drives the transition from synchronized to
desyncronized regimes for n = 7 = 0.
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Synchronized /desynchronized regimes

For nonzero 7 there is a second transition at A back to synchronized
state, Ao ~ (2a/n)(0 — 7+ nua) /(o + 7 4+ 1(2 — u,)) (dashed line)

0.30- o o ‘—\—;oo&‘ooooo‘oo.‘o.ooo‘—
i
1
i =
ol \ J=16
1
\
~ 0200 o o o
;=='n
2 015 e ¢
2
g
s
a

0 20 40 60 80 0 20 40 60 80

e —synchronized states ( vortex-free states or synchronized vortices);
o— desynchronized states (vortices of opposite sign for / and r).

Conclude: homogeneous model gives good prediction of spatially varying
system.
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Pumping in three equidistant spots

(a) A = 0 showing geometry of
pumping;

(b) Desynchronized A = 20 steady
majority density with streamlines;
(c) Lower synchronized A =5
steamlines of both polarizations;
(d) Upper synchronized A = 40
steamlines of both polarizations.
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Half-vortices

"Half-vortices” have been seen in experiments:
[Lagoudakis et al Nature Phys. (2008)]
Are "half-vortices” pinned and stabilized by disorder?

7 TR

()

e
&

12

=

7t

7

N

(a) Desyncronized A = 20 half-vortex
lattice;

(b) -(c) -(d) evolution of minority
component in desyncronized regime
A =20.

Minority component is stationary in syncronized regime only.
In desyncronized regime averages to vortex-free state.
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Vortex Lattice Spacing

Currents are neglible at the pumping centre, p(py,);
away from pumping spot — densities are neglible.

Synchronized regime: away from the pump

p— @2 F A2 = J(p1/p) T2 cos(6) and

V- (p1,d) + caprr = FJ/piprsin(0).

These are solved by sin(§) = 0 and V(p;/p,) =0,

so |]? = p+ \/J2 + A2/4.

Desynchronized regime: 6 and p;/p, are not time independent, so one
calculates averages. If p, > p;, then for majority component

(Ia,12) = () + /2.

Superposition of such currents results in hexagonal vortex lattice with
spacing | = (2n/|d]) x 2/3V/3.

" i ' " Simulation —
Estimate ——

L b T

-

e
%

Lattice vector

e
P

/\
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Classical turbulence — cascading vorticity;
Superfluid turbulence — quantisation of velocity circulation — differences
with classical turbulence;
Strong turbulence— unstructured vortices (distance between vortices of the
order of their core);
Weak turbulence regime — almost independent motion of weakly
interacting dispersive waves.

Stages in condensate formation from a nonequilibrium state:
[Berloff & Svistunov Phys Rev A (2002)]
weak turbulence — strong turbulence — superfluid turbulence —
condensate

Exciton-polariton BECs ()



Experimental realization in ultra-cold atoms

Vortex formed during nonequilibrium kinetics of BEC
(2008)]

Tima =
M- 26208

[Weiler et al. Nature

2

Reverse the process going from condensate to weak turbulent state?

[Henn at el PRL (2009)]: applied an external oscillatory perturbation to
produce vortices.
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Complex Ginzburg—Landau equation

Modelling Exciton-polariton condensates:
the complex Ginzburg-Landau equation

2i0) = [V + v(r) + [ + i (a(r) — i2n0ep — o |ip?)] ¥

v(r) — external disorder potential (ex. v(r) = mw?r?/2);

a — an effective gain (intensity of the pumping field);

o — nonlinear losses.

Energy and length rescaled using harmonic oscillator energy and length.
From experiments, 0 < a < 10,0 ~ 0.3.
7 — energy relaxation [Wouters and Savona arXiv:1007.5431 (2010)] —
interactions with normal fluid [Pitaevskii, JETP (1959)].
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Vortex formation

Vortex formation in equilibrium condensates
@ interactions of finite amplitude sound waves

@ existence of critical velocities of the flow

@ modulational instabilities.
In addition in nonequilibrium condensates — pattern forming, interaction of

fluxes with a disorder etc.
Vortex formation due to interference of supercurrents

ay n=o=0

AAAAAAAMAA

—Po—&l/(o'ﬂi)

b 741

Velodity

Dersily

2
¥ =po

Distance

Analytical solution for the velocity r(u) on co < r < oo
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Interference of currents

Regular emission of vortices Many irregular spots: turbulence

Two regimes: forced turbulence and turbulence decay.

0.5
Z 0.4
0.3
0.2 ‘
0.1
0.0

Vortex densit;

0 200 400 600 800
Time
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Weak turbulence

In forced turbulence it is possible to reach a weak turbulence state:
g = {|[0|*)/{|1]?)?. Weak turbulence implies g» ~ 2.

Red Squares — nonzero 7 facilitates the transition to weak turbulence.
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Turbulence spectra

Assume
(i) the existence of inertial range in the momentum space;
(i) neglect pumping and dissipation there.

Weak turbulence theory
[Zhakharov et al (1992); Salman and Berloff, Physica D (2009)]:

Main idea:

Use random phase approximation to obtain evolution equation for the
wave spectrum (ay, a; ) = i, 6(k1 — k),

ax — the Fourier transform of v and k; are discrete wave vectors.
81-‘”k1(t) =

[d? kod? k3 d? ka Wiy ky:ks ks (Pks kg My i Mia My — My My ks — My My Micg )
where Wi oiks, ke = payr0(Ke + ko — ks — ka)o(kf + k3 — k3 — k)
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Two solutions:

(i) Equipartition of the total kinetic energy E = [ k?nj dk, so that

ng ~ k=2

(i) Equipartition of the total number of particles N = [ ny dk, so that

ny ~ const.
-1
t < 500 \
ng ~ const
N it A
I

Wave Spectrum

Wave Spectrum
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Conclusions-1

@ Nonequilibrium condensates: condensates made of light
o Gross-Pitaevskii equation with loss and gain

0up = [-V2+ P+ [y]?+i(aO(ro — r) — o|y]?)] ¥.
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Conclusions-1

@ Nonequilibrium condensates: condensates made of light
o Gross-Pitaevskii equation with loss and gain

0up = [-V2+ P+ [y]?+i(aO(ro — r) — o|y]?)] ¥.

e Radially symmetric stationary states: narrowing of density profile
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@ Nonequilibrium condensates: condensates made of light
o Gross-Pitaevskii equation with loss and gain

0up = [-V2+ P+ [y]?+i(aO(ro — r) — o|y]?)] ¥.

e Radially symmetric stationary states: narrowing of density profile
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Conclusions-1

@ Nonequilibrium condensates: condensates made of light
o Gross-Pitaevskii equation with loss and gain

0up = [-V2+ P+ [y]?+i(aO(ro — r) — o|y]?)] ¥.

e Radially symmetric stationary states: narrowing of density profile
e Spiral vortex states

Feal-space ¥ (um)
-

Peal-space x fm)

e Vortex lattices

%600
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Conclusions-2

@ Non-equilibrium spinor system

et = [~V 4 V() + 5 1P + (1= vl

+i(a®(rg—r) — 0|¢L!2)] v+ JYr

o Effect of A and J on vortices. . .
Trajectories for A =4

Densities of L and R components for J =1

A=2

Spirographs
(epitrochoids/hypotrochoid)
@ Synchronization/desynchronization with the region of bistability.

49 / 50
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Conclusions-3

@ Turbulence in exciton-polariton condensates may lead to novel
regimes of turbulence of classical matter field.

e The regimes can be distinguished by finding second order correlation
function; by looking at the wave spectrum.

e What are the stages in transition from strong turbululence to weak
turbulence and back?

@ Spinor condensates: predictions of homogeneous model
(syncronization/desynchronization) are not significantly modified by
spatial inhomogeneity.

o Observation of the experimental behaviour in an applied field can thus
be used to distinguish the the loss nonlinearities o, 7 and 7.

e Vortices, vortex lattices and half-vortex latices in spinor condensates.
Being stationary these textures can be studied experimentally.

@ Turbulence in spinor condensates.

Scaling laws? Cross-overs of different regimes? Interplay between
turbulent regimes and the effects of magnetic field?...
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