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Abstract

We study the formation of large-scale coherent structures (condensates) for a system of two weakly interacting Bose gases in the
semiclassical approximation. Using the coupled defocusing nonlinear Schrödinger (NLS) equations as a representative model, we
focus on condensation in the phase mixing regime. We employ weak turbulence theory to provide a complete thermodynamic
description of the classical condensation process. We show that the temperature and the condensate mass fractions are fully
determined by the total number of particles in each component and the initial total energy. Moreover, we find that, at higher
energies, condensation can occur in only one component. We derive an analytic result for the variation of the critical energy where
this transition occurs. The theory presented provides excellent agreement with results of numerical simulations obtained by directly
integrating the dynamical model.
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1. Introduction

Many classical systems in nature reveal the emergence
of large scale coherent structures from a background irreg-
ular field characterised by small-scale fluctuations. Exam-
ples of systems that exhibit such behaviour include classical
turbulence, nonlinear optics, superfluids, ultracold gases
and Bose-Einstein Condensates (BECs), and the formation
of the early universe. In certain regions of the parameter
space, a large sub-class of these systems can be described by
a system of weakly nonlinear dispersive waves. A universal
equation that governs the evolving field in such scenarios is
then given by the Nonlinear Schrödinger (NLS) equation.
The process of self-organisation in the focusing NLS equa-
tion has been studied in [1]. It was found that a large-scale
solitary wave tends to emerge from a sea of small-scale tur-
bulent fluctuations. In this work, we concentrate on the de-
focusing NLS equations. This equation has been receiving
increasing attention due to the experimental advances in
BECs. In this context, the defocusing NLS equation corre-
sponds to the Gross-Pitaevskii (GP) equation [2] of a ho-
mogeneous Bose gas. The GP equation has long been used
as a model of a weakly interacting Bose gas at zero tem-
perature. More recently, it has been argued [3] that the GP
equation can be used to model the long wavelength part of
the spectrum of a BEC at finite temperatures. Numerical
simulations conducted within this framework [4], [5] have

indeed confirmed this, revealing the ability of the model
to capture the formation of a condensate from an initially
turbulent state.

With the rapid developments being made in experimen-
tal techniques, it is now possible to realize multi-component
BECs formed by the simultaneous trapping and cooling
of atoms in distinct spin or hyperfine levels [6] or differ-
ent atomic species [7]. The finite temperature dynamics of
such Bose gas mixtures is then goverened by a system of
coupled NLS equations. An important question that subse-
quently arises is “How can we describe the thermodynamic

state of such a two-component system?” This would then
allow a clear specification of the temperature of the system
which in turn would provide a means to quantify effects
such as the mutual friction between the thermal cloud and
superfluid vortices (see e.g. [8] for work addressing these as-
pects for a one-component Bose gas). Furthermore, whilst
such two-component Bose gas mixtures are of interest in
their own right, they also serve as idealised models to study
symmetry-breaking phase transitions that are believed to
have occurred in the early evolution of the universe. A spe-
cific example is given by the Kibble-Zurek mechanism [9]
of the formation of topological defects following the rapid
quench of the system below the point of second-order phase
transitions. This scenario would correspond to the forma-
tion of cosmological vortons and springs that are analogous
to the vortex ring-slaved wave and vortex ring-vortex ring
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complexes of BECs [10]. In addition to these physical ex-
amples, the coupled NLS equations are also encountered
in the study of optical fibres and electromagnetic waves
[11]. Given the universality of these equations in the non-
linear sciences, an accurate thermodynamic description of
the condensation process in such a system could have sig-
nificant implications in various branches of physics.

In this paper, we will generalise the results presented
in [12], that describe the condensation process of a one-
component system, to a two-component system. We note
that two-component systems tend to show a broad class of
qualitatively different behavior depending on the relative
strengths of the intercomponent and intracomponent in-
teractions. This can lead to contrasting regimes of conden-
sation: the phase mixing regime and the phase separation
regime [13]. Consistent with the assumptions commonly
used in weak turbulence theory, we will focus exclusively
on the phase mixing regime.

2. Kinetic theory for two-component system

We begin by considering the scenario of a system of
two weakly interacting Bose gases within the semiclassi-
cal approximation that have been rapidly cooled below the
transition temperature. Their evolution from the resulting
strongly nonequilibrium initial state is then described by
the coupled NLS equations given by

i∂tψ1 =−∇2ψ1 + |ψ1|2ψ1 + α|ψ2|2ψ1,

i∂tψ2 =−∇2ψ2 + |ψ2|2ψ2 + α|ψ1|2ψ2, (1)

where ψ1 and ψ2 are complex-valued classical fields corre-
sponding to each component, and α is the intracomponent
coupling constant. For the phase mixing regime, we require
0 < α < 1. The dynamics governed by the above equations
will conserve the total mass (number of particles) given by
N1 =

∫
|ψ1|2dx and N2 =

∫
|ψ2|2dx. In addition, the total

energy (Hamiltonian) of the coupled system

H =

∫ [ 2∑

i=1

{|∇ψi|2 +
1

2
|ψi|4} + α|ψ1|2|ψ2|2

]
dV. (2)

will be conserved. Without loss of generality we shall as-
sume that N2 ≤ N1.

Despite the formal reversibility of the above Hamiltonian
system, the evolution of the nonlinear waves ψ1 and ψ2 is
nonintegrable giving rise to an effective diffusion in phase
space. This results in an irreversible evolution to thermal
equilibrium. By invoking the random phase approxima-
tion (assumption of quasi-Gaussian statistics), it is possi-
ble to derive closed irreversible kinetic equations that de-
scribe the evolution of the system using Weak Turbulence
Theory (WTT) [14]. For a homogeneous system, we ac-
complish this by expressing the order parameters in terms
of their Fourier transforms ψ1 = 1

(2π)3/2

∫
ak(t)eik·xdk,

ψ2 = 1
(2π)3/2

∫
bk(t)eik·xdk. Substituting into Eq. (2), we

can derive expressions for the spectral number densities

〈
ak1

a∗
k2

〉
= n1δ(k1 − k2);

〈
bk1

b∗
k2

〉
= l1δ(k1 − k2). Pro-

vided the nonlinearity in the system is sufficiently weak (i.e.
N1/V ≪ 1; N2/V ≪ 1; α ≪ 1, where V is the volume of
the system), we can derive the kinetic equations

∂tnk =
4π

(2π)6

∫ ([
(nk + n1)n2n3 − nkn1(n2 + n3)

]

+α2

[
(nk + l1)l2n3 − nkl1(l2 + n3)

])

×δ(k + k1 − k2 − k3)δ(k
2 + k2

1 − k2
2 − k2

3)dk1dk2dk3.

∂tlk =
4π

(2π)6

∫ ([
(lk + l1)l2l3 − lkl1(l2 + l3)

]

+α2

[
(lk + n1)n2l3 − lkn1(n2 + l3)

])
(3)

×δ(k + k1 − k2 − k3)δ(k
2 + k2

1 − k2
2 − k2

3)dk1dk2dk3.

These equations conserve N1 = V
∫
nk(t)dk, N2 =

V
∫
lk(t)dk, and the total kinetic energyE = V

∫
k2(nk(t)+

lk(t))dk. They admit two formal equilibrium solutions;
the first corresponding to a uniform distribution neq

k
= c1,

leq
k

= c2, and the second given by the Rayleigh-Jeans (RJ)
distribution

neq
k

=
T

k2 − µ1
, leq

k
=

T

k2 − µ2
. (4)

Here, T is the thermodynamic temperature, and µ1 and
µ2 are the chemical potentials. Equation (3) satisfies a H-
theorem for entropy growth which implies that the RJ dis-
tribution will be realized in practice. However, Eq. (4) pro-
vides only a formal solution since it leads to non-convergent
expressions for N1, N2, and the kinetic energy E, as k →
∞. We recall that, for BECs, Eq. (1) is valid in the limit of
large occupation numbers where a semi-classical descrip-
tion is valid. When nk ∼ 1 and lk ∼ 1, Eq. (1) begins to
break down and a full quantum mechanical treatment of the
problem becomes necessary. To regularise the ultra-violet
catastrophe, we introduce a cut-off kc such that neq(|kc|) >
1, leq(|kc|) > 1. This cut-off does not affect the equilibrium
state provided a sufficiently large number of modes can
be represented classically [4,15]. The reason is that a full
quantum mechanical description corresponds to a grand-
canonical ensemble with fluctuations in particle number
and energy. However, for sufficiently many modes, such fluc-
tuations will be small and we can introduce the above trun-
cation to reduce the system to a microcanonical ensemble
where the number of particles and the energy are conserved.
In practice, this cut-off is introduced by prescribing a par-
ticular grid resolution in our simulations. Such a cut-off can
only gaurantee that the above condition is satisfied at ther-
modynamic equilibrium but not necessarily throughout the
transients (i.e. throughout the formation and growth of the
condensates). Consequently, the nonequilibrium state of
the system is generally grid-dependent whereas the thermo-
dynamic state is well-defined. We will illustrate this point
further below with our numerical simulations.
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The RJ distribution corresponding to the solution of
Eq. (3) is only valid at sufficiently high energies when no
condensate is present. At sufficiently low energies, Eq. (3)
breaks down very rapidly giving way to the formation of
a condensate as elucidated in numerical simulations for a
one-component system [4,5,12] and a two-component sys-
tem [16]. In the simplest scenario, condensates with zero
wavenumbers are formed and are associated with the uni-
form states provided we are in the phase mixing regime.
If the condensates that form are strong in the sense that
(N1−no)/N1 ≪ 1, (N2−lo)/N2 ≪ 1 (no = |ao|2; lo = |bo|2
are the occupation numbers of the condensates in compo-
nents 1 and 2, respectively), one can describe the nonlin-
ear dynamics at these later times by considering the evo-
lution of small quasiparticle perturbations around the con-
densates. For our two-component system, we accomplish
this by introducing the ansatz

ak = [
√
noδ(k) + ãk(t)]e−inot, (5)

bk = [
√
loδ(k) + b̃k(t)]e−ilot. (6)

Upon substituting these expressions into the Fourier-
transform representation of Eq. (2), we introduce a trans-
formation to diagonalise terms in the Hamiltonian that
are quadratic in ãk and b̃k. A generalisation of Bogoli-
ubov’s transformation [17] to diagonalise the Hamiltonian
in two-component systems was given in [18]. To this end,
we introduce the canonical variables N = (ξk, ηk)T which

are related to the original variables A = (ãk, b̃k)T through
the relation



 A
A†



 =



 U+ U−

U− U+







 N
N †



 , (7)

where N † = (ξ∗−k
, η∗−k

)T , and A = (ã∗−k
, b̃∗−k

)T . To pre-
serve the properties of the Poisson bracket in the new basis,

the transformation must satisfy the condition U+U+T −
U−U−T

= I. A transformation that satisfies this condition
and diagonalises the quadratic term is obtained when the
elements u±ij of the 2 × 2 transformation matrices U± are
given by

U± =




Γ+2

k ± 1

2Γ+
k

cos γk −Γ−2

k ± 1

2Γ−
k

sin γk

Γ+2

k ± 1

2Γ+
k

sin γk
Γ−2

k ± 1

2Γ−
k

cos γk


 . (8)

Γ±
k =

√
k2/Ω± denotes the ratios of the dispersion rela-

tions, where Ω± =
√
k4 + c±k2 and

c±
2

= [no + lo ±
√

(no − lo)2 + 4α2nolo]/V, (9)

sin γk =

√√√√1

2

[
1 − 1 − r√

(1 − r)2 + 4z2

]
, (10)

cos γk =

√√√√1

2

[
1 +

1 − r√
(1 − r)2 + 4z2

]
, (11)

where r = lo/no and z = α
√
lo/no. The resulting expres-

sion for the Hamiltonian leads to kinetic equations for the
canonical (quasiparticle) densities

〈
ξk1

ξ∗
k2

〉
= ñ1δ(k1−k2);〈

ηk1
η∗
k2

〉
= l̃1δ(k1 − k2) which are given by

∂tñk = π

∫ (
[Rk12 −R1k2 −R2k1] + [S1k2 + S12k]

+ [Tk12 − T1k2] + Uk12 + V21k

)
dk1dk2, (12)

Rk12 = ∆
(1)
k12 [ñ1ñ2 − ñkñ1 − ñkñ2] δ(Ω

+
k − Ω+

1 − Ω+
2 ),

S1k2 = ∆
(2)
1k2

[
ñkñ2 − l̃1ñk − l̃1ñ2

]
δ(Ω−

1 − Ω+
k − Ω+

2 ),

Tk12 = ∆
(3)
k12

[
ñ1 l̃2 − ñkñ1 − ñk l̃2

]
δ(Ω+

k − Ω+
1 − Ω−

2 ),

Uk12 = ∆
(4)
k12

[
l̃1 l̃2 − ñk l̃1 − ñk l̃2

]
δ(Ω+

k − Ω−
1 − Ω−

2 ),

V21k = ∆
(5)
21k

[
l̃1ñk − l̃2 l̃1 − l̃2ñk

]
δ(Ω−

2 − Ω−
1 − Ω+

k ),

where ∆
(i)
k12 = C

(i)
k12δ(k − k1 − k2) and C(i) denote coef-

ficients that will, in general, depend on u±ij , no, lo and α.
Since we are only interested in equilibrium solutions, their
precise form is not too important. The equation for l̃k fol-
lows by symmetry of the dynamical equation. These kinetic
equations are now given by resonant three-wave interac-
tions and have a one parameter family of solutions given by

ñeq
k

= T/Ω+(k), l̃eq
k

= T/Ω−(k), (13)

respectively. The condensates, therefore, strongly affect the
equilibrium distributions of the quasiparticles.

We note that in contrast to the kinetic equations pre-
sented in [19] and [20] for the one-component case, Eq. (12)
was derived assuming fixed amplitudes for the condensate
densities no, and lo as in [21]. The reader should be made

aware that Eq. (12) and its counterpart for l̃k are not ap-
plicable during the growth of the condensates. During such
transient regimes, additional terms coupling the evolution
of ñk and l̃k to no and lo would arise (see e.g. [20] for the one
component system). However, at equilibrium, these terms
vanish and, therefore, assuming no and lo is justifiable for
our purposes since we are specifically interested in ther-
modynamic states. Equation (12) can, therefore, be used
to determine the equilibrium distribution functions of the
quasiparticles at thermodynamic equilibrium.
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3. Thermodynamic description

Using the equilibrium solutions of Eq. (12) stated above,
we can now derive a relation between the occupation
numbers no, lo, and the total number of particles N1, N2

and the energy H . For a finite sized system, the Hamilto-
nian can be expressed in terms of the Fourier series ψ1 =

1√
V

∑
k ak exp(ik · x), ψ2 = 1√

V

∑
k bk exp(ik · x). The

Hamiltonian can then be written asH = Ho+H2+H3+H4

depending on how ao = ak=0 and bo = bk=0, and non-zero
modes enter the expansion:

Ho =
1

2V
[|ao|4 + |bo|4 + 2|ao|2(N1 − |ao|2)

+ 2|bo|2(N2 − |bo|2)] +
α

V

[
|ao|2N2 + |bo|2N1

]
,

H2 =

′∑

k

[(k2 +
|ao|2
V

)aka
∗
k

+
1

2V
(a2

oa
∗
k
a∗−k

+ c.c.)]

+

′∑

k

[(k2 +
|bo|2
V

)bkb
∗
k +

1

2V
(b2ob

∗
kb

∗
−k + c.c.)]

+

′∑

k

[
α

V
(aoboa

∗
kb

∗
−k + aob

∗
oa

∗
kbk + c.c.)],

H3 =

′∑

k1,k2,k3

[
1

2V
(2aoak1

a∗k2
a∗k3

+ 2bobk1
b∗k2
b∗k3

+ c.c.)

+
α

V
(aobk1

a∗k2
b∗k3

+ boak1
a∗k2

b∗k3
+ c.c.)]δk1−k2−k3

,

H4 =

′∑

k1,k2,k3,k4

[
1

2V
(ak1

ak2
a∗k3

a∗k4
+ bk1

bk2
b∗k3
b∗k4

)

+
α

V
(ak1

bk2
a∗k3

b∗k4
)]δk1+k2−k3−k4

. (14)

In Eq. (14),
∑′

k denotes summation over k but exclud-
ing the k = 0 mode, and c.c. denotes the complex conju-
gate of the preceding terms. To relate the equilibrium dis-
tributions obtained from the kinetic equation (12) to this
form of the Hamiltonian, we must diagonalise the quadratic
term H2. Rewriting the Hamiltonian in terms of the basis
N = (ξk, ηk)T , the quadratic part takes the form H2 =∑′

k(Ω+(k)ξkξ
∗
k +Ω−(k)ηkη

∗
k). Now ensemble averaging the

equations and using the equilibrium distributions ñeq
k

, and

l̃eq
k

given above, we can express the occupation numbers of
the two gases in the new basis as

N1 − no = T

′∑

k

(u+2

11 + u−
2

11 )

Ω+(k)
+

(u+2

12 + u−
2

12 )

Ω−(k)
, (15)

N2 − lo = T

′∑

k

(u+2

21 + u−
2

21 )

Ω+(k)
+

(u+2

22 + u−
2

22 )

Ω−(k)
. (16)

We note that whenN1 = N2, the two species have identical
properties and Eqs. (15) and (16) must coincide. In this

case it can be shown, by setting no = lo in the expressions
for c±, sin γk, and cos γk appearing in the transformation
described above that this limit is correctly recovered by our
equations.

The ensemble averaged Hamiltonian will have contribu-
tions from only H0, H2, and H4. Rewriting the resulting
expression in the new basis, we obtain

〈H〉=E0 +
′∑

k

(Ω1(k)ñ
eq
k

+ Ω2(k)l̃
eq
k

)

=E0 + 2T

′∑

k

1, (17)

where

E0 =
1

2V
[N2

1 + (N1 − no)
2 +N2

2 + (N2 − lo)
2]

+
α

V
[N1N2], (18)

denotes the energy of the ground state. Using either Eq.
(15) or (16), we can eliminate the temperature in the ex-
pression for 〈H〉 to obtain

〈H〉=E0 +
(N1 − no)

∑′
k 1

∑′
k

(
(u+2

11
+u−

2

11
)

Ω+(k) +
(u+2

12
+u−

2

12
)

Ω−(k)

) ,

=E0 +
(N2 − lo)

∑′
k 1

∑′
k

(
(u+2

21
+u−

2

21
)

Ω+(k) +
(u+2

22
+u−

2

22
)

Ω−(k)

) . (19)

This equation provides two algebraic relations for the two
unknowns no and lo given H , N1, N2.

At intermediate energies, we find that only one com-
ponent condenses and the theory presented above breaks
down (in practice resulting in negative values of lo). In
this part of the parameter space, we need to introduce the
ansatz ak = [

√
noδ(k)+ ãk(t)]e−inot only for the first com-

ponent whilst assuming a purely continuous spectrum for
the second component. This results in a coupled system of
kinetic equations that are similar to Eqs. (3) and (12) above
but where the first component is governed by three-wave
resonances whereas the second is governed by four-wave
resonances. These equations will have the equilibrium dis-
tributions ñk = T

ωB
and lk = T

k2−µ2
where ñk is now defined

as above but with lo set to zero and ωB =
√
k4 + 2nok2/V

is the classical single-component Bogoliubov dispersion re-
lation. Therefore, when only one component is condensed,
we obtain the expressions

N1 − no = T

′∑

k

(k2 + no/V )

ω2
B(k)

, (20)

N2 =
∑

k

T

k2 − µ2
. (21)

The ensemble averaged Hamiltonian then takes the form
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Fig. 1. Mass fractions as a function of time for three different grid
sizes Ng. The other parameters were set toH/V = 1.53, N1/V = 0.5,
N2/V = 0.25, α = 0.1.

〈H〉=E0 +
(N1 − no)

∑′
k

(
1 + k2

k2−µ2

)

∑′
k

(k2+no/V )
ω2

B
(k)

,

=E0 +
N2

∑′
k

(
1 + k2

k2−µ2

)

∑
k

1
k2−µ2

(22)

and now

E0 =
1

2V
[N2

1 + (N1 − no)
2 + 2N2

2 + 2αN1N2]. (23)

This equation provides two algebraic expressions for the
two unknowns no andµ2. We note that at the critical energy
where the condensate in the second component vanishes,
we have lo = 0 and µ2 = 0. At this point, it can be shown
that the equilibrium distributions given by T

Ω+(k) and T
Ω−(k)

reduce to T
ωB(k) and T

k2 and the two solutions given above

match at the critical energy. This provides a solution for
the thermodynamic state that is uniformly valid over the
entire range of energies.

4. Numerical simulation

To verify the theory, we numerically solved the coupled
system of equations (1) in a cubic region with periodic
boundary conditions using a pseudo-spectral method. The
initial conditions were set up using the random phase ap-
proximation (see e.g. [4]). To determine the properties of
the system at equilibrium, we assumed that the ergodic hy-
pothesis applies and used time-averages from our simula-
tions to represent ensemble averages that arise in the theory
presented above. We will firstly address the affect of the fre-
quency cut-off on the thermodynamic equilibrium distribu-
tions predicted from our simulations. As explained above,
the cut-off kc is set by specifying the resolution in our com-
putations. We have, therefore, performed simulations with

three different resolutions in a parameter regime where con-
densation occurs in both gases. Results for the evolution of
the condensate mass fractions with time are shown in Fig. 1
for three different spatial resolutions. The results clearly re-
veal that the onset of the condensate formation (i.e. where
Eq. (3) breaks down) and subsequent rate of growth, corre-
sponding to the so called superfluid turbulence regime, are
dependent on the grid resolution. This strong dependence
of the turbulent state of the system on grid resolution is a
well-known problem in non-dissipative classical systems. It
typically arises from the bottleneck effect associated with
energy spectrum pileup at high wave numbers [22]. How-
ever, as argued in Section 2, the final equilibrium mass frac-
tions are independent of the resolution of the simulations.
These results verify that, for the thermodynamic descrip-
tions we wish to focus on in this work, introducing an ul-
traviolet cut-off does not affect the thermodynamic state.
Given these observations, we will focus on the case with
Ng = 643 in the remainder of this section.

The superfluid turbulence regime that leads to thermo-
dynamic equilibrium can be visualised by tracking in time
the evolution of the topological defects in the phase of the
long wavelength part of the complex fields ψ1, and ψ2.
Following the approaches used in [5], [16], we can accom-
plish this by filtering out the high frequency harmonics
through the transformation âk → ak max{1 − k2/k2

cv, 0},
b̂k → bk max{1 − k2/k2

cv, 0}. kcv is a cut-off wave number
chosen according to the phenomenological formula kcv =
9−t/1000 in order to aid in the visualisation of the topolog-
ical defects. Figure 2 shows the distribution of these defects
at three different times. The density of the tangle clearly
decreases with time as vortices annihilate that leads to a
growing coherence length and hence condensate formation
in analogy with the 2D results presented in [23]. The results
described above correspond to a parameter range where
both gases undergo condensation. If the initial total energy
of the system is increased beyond some critical value, how-
ever, then we find condensation will occur in only one gas.
This is clearly illustrated in Fig. 3 in terms of the contour
plots of the topological defects of the two gases at different
times for H/V = 3.94. To aid in the visualisation, we have
produced separate plots of the tangle in each component.
The plots clearly show the decreasing density of the defects
with time in component one that is suggestive of the for-
mation of a large coherent state. In contrast, no such order-
ing takes place in the second component which continues
to exhibit many defects at later times. To further illustrate
this behaviour at higher energies, we have included in Fig.
3 the growth of the condensate mass fractions at two dif-
ferent energies. The figure clearly shows that both gases
undergo condensation when the initial total energy density
H/V = 1.53, but only one gas condenses for an initial en-
ergy density of H/V = 3.94.

Having illustrated the formation of the condensates in
our simulations, we will now compare the theoretical re-
sults derived in the previous section with predictions ob-
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(a) (i) t = 100. (a) (ii) t = 300. (a) (iii) t = 600.

Fig. 2. Evolution of topological defects in the long wavelength parts of ψ1 and ψ2 denoted by ψ̂1 (light grey) and ψ̂2 (dark grey),
respectively. The computational parameters are H/V = 1.53, N1/V = 0.5, N2/V = 0.25, α = 0.1. The defects are visualised by iso-surfaces

of |ψ̂i|2 = 0.04
〈
ψ̂i

〉
where 〈·〉 is used here to denote a spatial average.

(a) (i) t = 300. (a) (ii) t = 600. (a) (iii) t = 1100.

(b) (i) t = 300. (b) (ii) t = 600. (b) (iii) t = 1100.

Fig. 3. Evolution of topological defects in the long wavelength parts of (a) ψ1 and (b) ψ2 denoted by ψ̂1 and ψ̂2, respectively. The computational

parameters are H/V = 1.53, N1/V = 0.5, N2/V = 0.25, α = 0.1. The defects are visualised by iso-surfaces of |ψ̂i|
2 = 0.04

〈
ψ̂i

〉
where 〈·〉 is

used here to denote a spatial average.

tained from our computations. Figure 5 presents results for
the variation of the condensate mass fractions with 〈H〉 /V .
The numerically computed condensate mass fractions were
evaluated from a long time average once thermodynamic
equilibrium was established. The results shown reveal re-
markable agreement with the theory presented over the en-
tire range of energies. For very large energies where only
a small condensate mass fraction of the first component is

present, the theory deviates very slightly from the results
of the simulations. This occurs since many particles are
non-condensed in this region violating the assumption of a
strong condensate that is required for the theory. Given the
excellent agreement between the theory and predictions,
we can use Eq. (22) to determine how the critical energy
(〈H〉crit), at which condensation in the second component
ceases, varies with the discrepancy parameter σ = N1−N2

N1
.
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Fig. 4. Condensate mass fractions as a function of time for two differ-
ent initial total energies. The systems’ other parameters correspond
to N1/V = 0.5, N2/V = 0.25, and α = 0.1.

The variation of 〈H〉crit, nondimensionalised with respect
to the value at σ = 0 (〈H〉ref), is shown in the inset of Fig.
5. The figure clearly illustrates that 〈H〉crit deviates signif-
icantly from its value at σ = 0 as the discrepancy parame-
ter is increased giving rise to a range of energies where only
the first component condenses.

5. Conclusions

In this study we have derived a theoretical formulation
of the thermodynamic state of a two-component Bose gas
in the semi-classical approximation governed by the cou-
pled NLS system of equations. The theory derived relies
on the weak nonlinearity (small potential energies relative
to kinetic energies) assumed for our system. The theory is
based on a statistical formulation resulting in kinetic equa-
tions for the spectral number densities of each gas. Clo-
sure is achieved through the use of weak turbulence theory.
Through detailed numerical simulations of the governing
full dynamical equations, we have shown that the results are
in excellent quantitative agreement with the theory. More-
over, we have illustrated that three parameters determine
the final thermodynamic state of the system; the initial to-
tal energy H , and the total number of particles N1 and N2

in each gas. At very low energies, we have shown that con-
densation will occur in both gases whereas only one com-
ponent condenses if the initial total energy is increased be-
yond some critical value that can be evaluated analytically.

The study presented here has focussed on the particular
case of a two-component Bose gas mixture that exclude
other forms of coupling (e.g. Josephson coupling). A natural
next step will be to extend the theory to a more general
class of two-component mixtures that include other types
of interaction between the two components. Furthermore,
the weak turbulence theory used in this work is applicable
in the phase mixing regime. Indeed, the phase separation
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f

Fig. 5. Mass fractions as a function of averaged total energy for
N1/V = 0.5, N2/V = 0.25, α = 0.1; inset - non-dimensionalised
critical energy as a function of discrepancy parameter.

regime, which has not been considered in this work, exhibits
a rich class of behaviour that can not be analysed using the
approaches described in this work. An in-depth study of
the condensation in this regime remains an essential step
for a complete understanding of condensation in systems
composed of Bose gas mixtures.

We end by noting that given the universality of the cou-
pled NLS system of equations, the study presented here is
relevant in quantifying condensation in a number of physi-
cal systems. In addition to the Bose gas mixtures at finite
temperature considered in this work, the results are equally
relevant to the field of nonlinear optics provided many
modes are present that can be modeled semi-classically (see
e.g. [24] for an analogous study of the one component sys-
tem).
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K. Rzażewski J. Phys. B: At. Mol. Opt. Phys. 40, R1-R37 (2007).

[16] N.G. Berloff and C. Yin, J. Low Temp. Phys. 145, 187 (2006).
[17] N.N. Bogoliubov, J. Phys. 11, 23 (1947).
[18] P. Tommasini, E.J.V. de Passos, A.F.R. de Toledo Piza,

M.S. Hussein, and E. Timmermans Phys. Rev. A, 67, 023606
(2003); see also W.B. Colson and A.L. Fetter, J. Low Temp.

Phys. 33, 231 (1978).
[19] R. Lacaze, P. Lallemand, Y. Pomeau, and S. Rica, Physica D,

152, 779 (2001).
[20] C. Connaughton, and Y. Pomeau, C.R. Physique 5 5, 91 (2004).
[21] S. Dyachenko, A.C. Newell, A. Pushkarev, and V.E. Zakharov,

Physica D, 57, 96 (1992).
[22] G. Falkovich, Phys. Fluids 6, 1411 (1994).
[23] S. Nazarenko, and M. Onorato, J. Low Temp. Phys. 146, 31

(2007).
[24] A. Picozzi, Optics Express, 15, 9063 (2007).

8


