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Abstract

Recently several gain-dissipative platforms based on the networks of optical parametric oscilla-

tors, lasers and various non-equilibrium Bose-Einstein condensates have been proposed as analogue

Hamiltonian simulators for solving large-scale hard optimisation problems. The parameters of such

problems depend on the node occupancies that are not a priory known, which limits the appli-

cability of the gain-dissipative simulators to the classes of problems easily solvable by classical

computations. We show how to overcome this difficulty and formulate the principles of operation

of such simulators for solving the NP-hard large-scale optimisation problems such as constant mod-

ulus continuous quadratic optimisation and quadratic binary optimisation for any general matrix.

To solve such problems any gain-dissipative simulator has to implement a feedback mechanism for

the dynamical adjustment of the gain and coupling strengths, so that occupancy of each node is the

same. The estimates of the time operation of the physical implementation of the gain-dissipative

simulators for large matrices show the speed-up of the several orders of magnitude in comparison

with classical computations.
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Constructing models to simulate the physical world – analog simulators – has been in-

strumental in advancing scientific knowledge starting with orreries for the description of the

motions of celestial objects [1] and differential analysers or mechanical integrators capable

of modelling heat flow and transmission lines [2, 3]. With the invention of the classical

universal computer based on von Neumann architecture the need to use analog simulators

seemed to disappear. Their revival took place a couple of decades ago with Richard Feyn-

mann proposing to use one well-tuneable quantum system to simulate another less accessible

quantum system [4]. A large number of various quantum simulators has been proposed and

elucidated with a vast number of quantum hardware developed and types of problems they

aim to solve analysed. Among these are superconducting circuits, trapped ions, cold atoms

in optical lattices, photons, liquid and solid-state NMR, quantum dots, and NV centres

[5]. In addition to proposals to simulate quantum systems, there are proposals for quan-

tum devices to simulate classical NP-hard problems, where the number of operations grows

exponentially fast with the size of the problem [6, 7].

Solving efficiently an NP-complete problem means solving all NP problems, therefore,

it is important to find one subclass of problems within the NP-complete problems class

that starting with some size can be solved faster by an analogue simulator than a classical

computer. For instance, D-Wave built from superconducting qubits is a so-called quantum

annealer, which is a special purpose analogue device that solves quadratic unconstrained

binary optimisation problems (QUBO) [8], which can be reformulated as the problem of

finding the ground state of the famous model in statistical mechanics – the Ising Hamiltonian.

Other platforms were proposed and demonstrated a proof-of-principle for finding the global

minimum of the spin Hamiltonians such as the Ising and XY models: the networks of optical

parametric oscillators, [9–13], coupled lasers [14], polariton condensates [15], and photon

condensates [16]. The main principle of such simulators is based on a gain process that raises

the system above the threshold for a phase transition to a coherent state. Accordingly, we

refer to these platforms as gain-dissipative (GD) analog Hamiltonian simulators [17] that,

in spite of having different quantum hardwares, share the basic principle that suggests the

convergence to the global minimum of the Ising or XY Hamiltonian.

Such Hamiltonians are written for N classical “spins” sj, where for the Ising Model the

“spins” take discrete values sj = ±1 and for the XY Model are continuous and lie on a unit

circle sj = (cos θj, sin θj). The spins are coupled to each other with “strengths” Jij that can
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be positive (ferromagnetic) or negative (antiferromagnetic). At the ground state “spins”

arrange their orientation as to minimise the Ising Hamiltonian HI = −
∑N

i=1

∑N
j=1 Jijsisj or

the XY Hamiltonian

min
θθθ

HXY (θθθ) ≡ −
N∑
i=1

N∑
j=1

Jijsi · sj, (1)

where θθθ = (θ1, ..., θi, ..., θN).

Here we focus on the XY model, but the proposed approach can be generalised to the Ising

or other spin models in a straightforward fashion as we also show below. The minimisation

of the XY Hamiltonian can be alternatively written as the constant modulus quadratic

continuous optimisation (QCO) problem

min−zHJJJz, subject to |zj| = 1, (2)

if we associate the “spins” sj with the complex numbers zj = cos θj+i sin θj and the coupling

strengths Jij between the spins with the matrix elements of JJJ . In general, these problems

are known to be NP-hard [18] and finding even an approximate solution is hard as we discuss

in the Supplementary Information.

In the gain-dissipative simulators the “spin” – the node (the “bit”) of the simulators – is

represented by the phase of a condensate at a particular spatial position [15, 16] or by the

phase of a coherent state generated in a laser cavity [13, 14], so by the phase of the so-called

coherent center (CC). All of the proposals for the gain-dissipative simulators that aim to

find the absolute minimum of the spin Hamiltonians suffer from a serious limitation. As

we show below, the coupling strengths Jij in such systems are modified by the occupations

(number densities) of CCs i and j. The densities, however, are not a priory known and, for

a general matrix JJJ of the coupling strengths Jij, will be different from one CC to another.

The variability in the densities may also lead to the system fragmentation when different

subsystems acquire their own mode of oscillations, and the coherent steady state across

all CCs will never be reached. In all the previous experimental realisations of the gain-

dissipative simulators, an explicit or implicit assumption was made that the coupling terms

are small so that each laser or condensate is stabilised independently at the same steady-

state amplitude [9, 10, 13–15]. Such assumption is justified only for the simplest structures

of the coupling matrix JJJ, where all CCs are almost equally connected with about the same
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coupling strengths. The found solution for a more general matrix is bound to be either only

approximate or invalid. The problem of unequal densities has been recognised before [19],

but the proposed method to reduce the heterogeneity in densities was to drive the system

using randomly modulated signals and can yield only very modest improvement and only if

the densities are quite close for the unmodulated signals.

In this paper we show that by establishing a feedback connection between the gain mech-

anism and the density of the CC we can drive the system to the coherent ground state of

the XY model, while the minimisers of this ground state will give the true minimum of

the XY model precisely for the externally provided coupling strengths. We develop a gen-

eral framework for the operation of the gain-dissipative analogue simulators based on the

Fokker-Plank-Langevin gain-dissipative equations written for a set of CCs for two distinct

systems: a system dominated by the dissipative coupling and the system dominated by the

gain coupling, and describe the convergence to the global minimum of the XY model in

both cases. This framework allows us to formulate the hardware requirements for a physical

realisation of such simulator to achieve such a minimum and argue that such requirements

are within the recent technological capabilities. We show that for large problem sizes the

analogue simulator would outperform the classical computations by several orders of mag-

nitude. Finally, motivated by the operation of such a simulator we develop a new class of

global optimisers.

Gain-dissipative simulators dominated by dissipative coupling

The operation of a gain-dissipative optimiser consists of two stages: bosonic stimulation

below the threshold and the coherence of operations at and above the threshold. As one

ramps up the power of the gain mechanism (e.g. laser intensity) the gain overcomes the

linear losses and is stabilised by the nonlinear gain saturation. The emergent coherent state

maximises the total number of particles (minimises losses) and, therefore, minimises the

Ising or XY Hamiltonian depending on whether the phases of the wavefunctions describing

the CCs are constrained to 0 and π or not, respectively. To derive the governing equations

for the system one can describe each CC at a position r = ri by a classical complex function

Ψi(t). Such description can be obtained by eliminating the spatial degrees of freedom or by

using the Glauber-Sudarshan formalism of coherent states [20].
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In a system dominated by the dissipative coupling [21] the state of the oscillator (CC)

indexed by i is described by a wavefunction Ψi(t) that obeys the rate equation

dΨi

dt
= (γi − σ|Ψi|2)Ψi − iU |Ψi|2Ψi +

∑
j

JijΨj, (3)

where γi = γinji − γc is the effective gain at the CC indexed by i, where γinji is the rate

of adding particles to the i−th CC and γc is the rate of losing the particles via linear

dissipation, U is the strength (pseudo-potential) of the particle-particle interactions (that

is negligible for laser systems, but not for the interacting condensates), σ is the strength of

the nonlinear losses. The sum on the right-hand side corresponds to the dissipative coupling

via the wave interference between the i−th and j−th CCs of the system [21]. Such systems

of the coupled oscillators appear in many areas of dynamical research where it is used to

describe the complex amplitude of the oscillators near the supercritical Hopf bifurcation

[22] and various phenomena such as collective synchronisation transition, spatiotemporal

chaos, the Benjamin-Feir instability, nonlinear wave propagation have been shown to occur

in them [23]. To understand the nature of the function being minimised by Eq. (3) we use

the Madelung transformation Ψi =
√
ρi exp iθi to rewrite it in terms of the number densities

and the phases of the CCs:

1

2
ρ̇i(t) = (γi − σρi)ρi +

∑
Jij
√
ρiρj cos(θi − θj) (4)

θ̇i(t) = −Uρi −
∑

Jij

√
ρj√
ρi

sin(θi − θj). (5)

The first term on the right-hand side of Eq. (5) tends to provide θi with its own frequency of

oscillations whereas the second term tends to synchronise the phases. Phase synchronisation

in such a system has been extensively studied especially in the context of semiconductor laser

arrays [24, 25]. To guarantee that the steady state of the system is reached and coincides

with the steady state of the QCO problem, however, one needs to make sure that the

gain mechanism is chosen so that all densities ρi are the same. Only under this condition

Eq. (5) describes the gradient decent to the minimum of the XY Model. Previously, any

realisation of the XY model using the laser systems (or non-equilibrium condensates) was

based on the assumption that all lasers (condensates) have the same steady-state photon
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(particle) number [13, 24, 25]. This limits the QCO problems that can be addressed by such

a framework to trivial ones where all CCs have an almost equal number of connections with

almost the same pumping rate. To implement any couplings and connectivities, one needs to

be able to control the pumping rate of the individual CCs and bring all the densities to the

same value at the threshold. We schematically illustrate the operational principle of such

control mechanism in Fig. 1. Starting from below the threshold, all CCs are equally pumped

as shown at some t = t1. Depending on the node connectivity, the non-zero densities emerge

at different rates for each CC as the pumping intensity increases and takes some CCs above

the specified threshold ρ = ρth as illustrated on Fig. 1 at some later time t = t2. The

pumping mechanism must be adjusted for each CC to enable the saturation at the same

density: decreased for CCs with densities above the threshold and increased for the CCs

below the threshold. This requires the introduction of a feedback mechanism for the pumping

γinji that controls each CC separately

dγinji
dt

= ε(ρth − ρi), (6)

where ε is a parameter that can be tuned to control the speed of approaching the threshold.

The steady state of Eqs. (4-6) is

ρi = ρth = − 1

U

HXY (θθθ)

dθi
=

1

σ
(γi +

∑
j

Jij cos(θi − θj)) (7)

for all i and describes the gradient decent to the minimum of the XY Hamiltonian. The

minimum is approached from below by gradually raising the pumping above the threshold

which facilitates the achievement of the global minimum as Fig. 1 at t = t3 illustrates.

The actual physical system is driven by classical and quantum fluctuations that force

phases to span various configuration before the coherence is established. In our classical

model we can introduce white complex noise ξi(t) (〈ξi(t)ξ∗i (t′)〉 = δ(t − t′)) which repre-

sents intrinsic vacuum fluctuations and classical noise with a diffusion coefficient D which

disappears at the threshold:

dΨi

dt
= (γi − σ|Ψi|2)Ψi − iU |Ψi|2Ψi +

∑
j

JijΨj +Dξi(t). (8)

6



FIG. 1: The schematics of operation of the GD simulator. Initially, at t = t1 all CCs are equally

pumped (green bars) below the threshold, and all have negligible densities. As the pumping

intensities increase and depending on the connectivity between CCs, the different densities emerge

(red bars) as shown at some t = t2. The individual control of the pumping intensity as described

by Eq. (6) leads to the steady state with all the densities reaching the threshold at t = t3.

Equations (6) and (8) can be viewed as the classical mean-field descriptions that can be

efficiently simulated on classical computers, and indeed as we show below lead to a new

class of global optimisation algorithms. We argue that the actual physical gain-dissipative

simulator may outperform any classical computer algorithm due to the super-fast rates of

its operation and inherent parallelism of spanning various phases before the configuration

that enables coherence at the threshold is reached. To stand such a challenge any simulator

has to meet several requirements for its operation such as the realisation of independent

control of the couplings between two nodes, coupling beyond the next neighbour, and the

feedback mechanism that allows one to adjust the pumping depending on whether or not

the corresponding CC is above or below the threshold.

Gain-dissipative simulators dominated by gain coupling

The method for achieving the global minimum of the QCO problems presented in the

last section has to be modified when the coupling strengths depend on the gain mechanism.

The gain-dissipative simulator in this case is described by

dΨi

dt
= (γi − σ|Ψi|2)Ψi − iU |Ψi|2Ψi + γinji (t)

∑
j

KijΨj +Dξi(t). (9)
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The couplings Kij in this system can have a different origin: they can be geometrically

induced by the particle outflow from other CCs [15] or induced by the mutual injection

rate between lasers [13, 26] or spatially separated condensates; they can be controlled by

external potentials [16]. In Methods we derive Eq. (9) for the geometrically induced flow

for the network of the polariton condensates starting from the mean–field description by the

Ginzburg-Landau equations [27].

Unlike as in Eq.(8), the coupling terms γinji (t)Kij now depend on the particle injection

rates γinji that would not be known a priori if one requested the equal densities at the

threshold. Therefore, not only γinji (t) has to be adjusted in time to equalise the densities

using Eq. (6) but also the coupling parameters Kij have to be modified in time to bring the

required couplings Jij of the QCO matrix to the steady state by

dKij

dt
= ε̂(Jij − γinji (t)Kij), (10)

where ε̂ controls the rate of the coupling strengths adjustment. Since ε̂� ε such adjustments

do not significantly slow down the operation of the simulator as they have to be performed

much more rarely then adjustments of the gain. Equation (10) indicates that the couplings

need to be reconfigured depending on the injection rate: if the coupling strength scaled by

the gain at time t is lower (higher) then the objective coupling Jij, it has to be increased

(decreased). Equations (6,9,10) replace Eqs. (6,8) for solving QCO problems using the

gain-dissipative simulator with gain couplings and we refer to the corresponding algorithm

as the GD-mod algorithm.

We note that the gain-dependent rate of nonlinear dissipation σ can be incorporated into

Eq. (10) in a similar fashion. The generalisation of the GD algorithm for solving different

classes of NP-hard problems with the analytically available Jacobians is also straightforward

for both continuous and discrete problems. For instance, the Coherent Ising Machine based

on the network of degenerate optical parametric oscillators [9–12] or other physical sys-

tem implementing QUBO problems (the global minimisation of the Ising Hamiltonian), are

modelled by incorporating the continuous spin mapping f(xi) = δ
∑
wijxixj + 1

2
αx2i − 1

4
x4i ,

where the last two terms represent double-well potentials that impose spins discreetness

si = xi/|xi|, xi 6= 0, and δ, α are the system dependent parameters [28]. To describe such a
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FIG. 2: The success probability of different methods. GD, BH and MC algorithms are used to solve

QCO problems for dense matrices (all coupled with all) of sizes N = {10, 30, 50, 70, 100, 200, 300}
with the elements randomly distributed in [−10, 10]. The results are averaged over 30 random

coupling matrices. The percentage of iterations that leads to the value of the objective function

that is 99% close to the global minimum is shown for each method. The number of internal BH

iterations was set to ten to bring about a similar performance to the GD algorithm.

simulator the equations Eqs. (4-5) have to be modified as

ρ̇i(t) = (γi − σρi)ρi + δ
∑√

ρiρjwijxixj + ρi

(
1

2
αx2i −

1

4
x4i

)
, (11)

ẋi(t) = −Uρi + 2δ
∑ √

ρj√
ρi
wijxj + αxi − x3i , (12)

where δ = const, wij = Jij for the simulators with dissipative coupling and δ = γinji (t), wij =

Kij for the simulators with gain coupling. The system of Eqs. (11, 12) with white noise and

together with the feedback mechanisms given by Eq. (6) or Eq. (6, 10) realises the global

minimum of the QUBO problem at the steady state.

Large-Scale Non-linear Optimisation

To confirm that the GD simulators find the global minimum of the QCO problems we

compared the solutions found by the GD algorithms with those found by two global classical

optimisers such as the direct Monte Carlo sampling (MC) and the basin-hopping (BH)

algorithm (see Methods) when solving QCO for various matrix sizes N using the parameters

listed in [29]. For each N , we generate 30 real symmetric coupling matrices J = {Jij} with

elements that are randomly distributed in [−10, 10]. For each such matrix, we run the

BH and MC algorithms starting from 500 random initial conditions and the GD algorithm
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starting from zero initial conditions and 500 different noise seeds. For each method, the

success probabilities to find a solution within 99% of the global minimum are shown in

Fig. 2. The success probabilities of the GD algorithm are similar to both comparison

methods for all considered matrix sizes. The spin configurations of the global minimum (the

“minimisers”) are the same as well, which we show for N = 100 in Fig. 3. Also shown on

Fig. 3 are the values of the global minimum of the objective function found by GD and the

comparison methods that match to ten significant digits.

The distribution of success probabilities over the various matrix instances is shown in

Fig. 4(a-c) for N = 50 and suggests that the randomly generated matrices of couplings have

very narrow spectral gap so the distributions are densely packed for probabilities over 93%

for the MC, 96% for the BH, and 95% for GD algorithm. To separate the absolute minimum

from the low energy excited states, we also consider sparse coupling matrices where each CC

is connected to exactly three other CCs with the coupling strengths randomly generated from

the interval with the bounds that are randomly taken from {−10,−3, 3, 10}. This structure

makes the barriers between local and global minima higher, and, therefore, worsens the

performance of BH and MC methods, but does not affect the GD algorithm that much as

Figs. 4(d,e,f) illustrate. The further advantages of the GD algorithm over the best classical

global optimisers for some special types of the coupling matrices are elucidated elsewhere

[30].

The number of iterations one needs to reliably find the global minimum grows with the

size of the problem N . This growth is expected to be exponential for any algorithm (if

P 6=NP). However, we can compare how time per iteration grows with the problem size for

FIG. 3: The spin configurations of the absolute minimum of XY Hamiltonian with the system size

N = 100 found by (a) GD and (b) BH algorithms. All spins are coupled with all the other spins

with the coupling strengths being randomly distributed in [−10, 10].

10



considered algorithms. We perform the complexity analysis per iteration on mid- and large-

scale problems and summarise the results in Fig. 5. The GD algorithm demonstrates the

consistent speedup over BH algorithm for all problem sizes N in Fig. 5(a). The log plot

in Fig. 5(b) indicates that both algorithms show polynomial time per iteration with the

complexity of GD algorithm being close to O(N2.29).

Projected performance of the GD simulators

So far we discussed the implementation of the GD and GD-mod simulators on a classical

computer. An actual physical implementation of these simulators will enjoy a super-fast op-

eration and parallelism in processing various phase configurations as the system approaches

the global minimum from below even if the system behaves fully classically. Further accel-

eration could be expected if quantum fluctuations and quantum superpositions contribute

to processing of the phase configurations. The times involved into the hardware operation

of the GD simulators vary on the scale of pico- to milli-seconds. For instance, in the sys-

tem of non-degenerate optical parametric oscillators (NOPO) the time-devision multiplexing

FIG. 4: The success probability of (a,d) MC, (b,e) BH, and (c,f) GD algorithms when solving

the QCO problem for the matrix size N = 50. The results of 500 runs are averaged over 30 real

symmetric coupling matrices J with the elements randomly distributed in [−10, 10] for (a-c) dense

and (d-f) sparse matrices as described in the main text.
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FIG. 5: The performance of the GD, GD-mod, and BH algorithms for solving the QCO problems

of sizes N up to 3000. (a) The time per instance T as a function of the problem size N . In the

case of GD and GD-mod algorithms, T is the time necessary to reach a stationary state averaged

over 20 runs. For the BH algorithm, this time is per ten internal BH iterations necessary to have

about the same success probabilities as with the GD algorithm. (b) T as a function of N in

the logarithmic scale. The performance of the algorithms are fitted by the linear interpolation

functions 2.29 logN − 13.42, 2.85 logN − 16.2, and 2.38 logN − 12.39, for the GD, GD-mod, and

BH algorithms, respectively. The projected performance of the GD simulator dominated by the

dissipative (gain) coupling is shown with solid green (yellow) lines with the linear asymptotics in

(b) given by 0.2 logN − 2.6 (0.04 logN − 1.38).

method is used to connect a large number of nodes and the couplings are realised by mutu-

ally injecting with optical delay lines with the cavity round trip time being of the order of

µs [13], it takes an order of 100 picoseconds for the polariton graphs to condense [15] and

10 ps to 1 ns for photon condensates [16]. The feedback mechanism can be implemented

via optical delay lines (in a NOPO system), by adjusting the injection via the spatial light

modulator (in the polariton and photon condensates) or by electrical injection (e.g. in the

polariton lattices [31]). As the feedback mechanism has to be implemented we need to factor

in the time it takes and the necessary number of such adjustments which corresponds to the

number of internal iterations for the GD and GD-mod algorithm per each run. By taking

an upper limit on the feedback time as 0.1ms and using an average number of iterations

of the GD and GD-mod algorithms we can estimate the upper bound of the time needed

by the physical implementation of the GD simulator to find the global minimum. In Fig. 5

we show such estimates by the solid green (yellow) lines for the GD (GD-mod) simulators.

For large N from Fig. 5 we estimate the speed-up of the GD simulators in comparison with

the classical computations to be of the order of 10−5N2 − 10−7N3. For N of the order of

ten thousands this gives the speed-up of at least four orders of magnitude. Because of the

adaptive setting of the coupling matrix in the GD-mod algorithm, the number of internal
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iterations grows slower with the size of problem N than for the GD algorithm so that the

performance of GD simulator with dissipative couplings can possibly be surpassed by the

GD simulator with gain couplings for large N .

Conclusions

Motivated by a recent emergence of a new type of analog Hamiltonian optimisers – the

gain-dissipative simulators – we formulate a novel gain-dissipative algorithm for solving

NP-hard problems such as constant modulus quadratic continuous and quadratic binary

optimisation that can be realised by gain-dissipative simulators of different nature. We

show that the feedback mechanism between the CCs density and the pumping intensity is

necessary for the operation of such simulators. When the run-time of the classical algorithm

is interpreted in terms of the time of the actual operation of the physical system one would

expect such simulators to greatly outperform the classical computer starting with thousands

of nodes.

In this paper we discussed gain-dissipative systems such as optical cavities, lasers, and

non-equilibrium condensates. The physics of the gain-dissipative oscillators may cover a

much large variety of systems such as electronic circuits, voltage controlled oscillators, mi-

croelectromechanical systems, spin-torque nano-oscillators, oxide-based oscillators, etc. Our

analysis is applicable to a broad family of oscillatory networks regardless of the nature of

each oscillator as long as it is governed by the generic Eqs. (8) or (9), may be operated

stably at the threshold and allows for the feedback mechanism of adjusting the pumping

intensity of an individual CCs, similar to the operation of the considered systems.

Finally, we would like to comment on classical vs quantum operation of such simulators.

When a condensate (a coherent state) is formed – the system behaves classically as many

bosons are in the same single-particle mode and non-commutativity of the field operators

can be neglected. However, the condensation process by which the global minimum of the

XY model is found involves quantum effects. It was shown before, that the condensation

process can be described by a fully classical evolution of the Nonlinear Schrödinger equation

that takes into account only stimulated scattering effects and neglects spontaneous scattering

[32]. The classical or quantum assignment to gain-dissipative simulators depends on whether

quantum fluctuations and spontaneous scattering effects during the condensation provide a
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speed-up in comparison with fully classical noise and stimulated scattering. This is an

important question to address in the future research on such simulators and the comparison

with the classical algorithm that we developed based on the gain-dissipative simulators

architecture allows one to see if the time to find the solution scales better than with the

best classical algorithms.
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Methods

Performance of the GD algorithm

To characterise the performance of the GD algorithm, we compared it to Basin-Hopping

and Monte-Carlo algorithms. Both methods depend on a local minimisation algorithm

for the optimal decent to a local minimum at each iteration. We considered several local

minimisation methods as applied to the QCO problems and determined that the quasi-

Newton method of Broyden, Fletcher, Goldfarb, and Shanno (L-BFGS-B) [33, 34] has shown

the best performance (see Supplementary Information). The L-BFGS-B algorithm is a local

minimisation solver which is designed for large-scale problems and shows a good performance

even for non-smooth optimisation problems [33, 34]. At each iteration of the MC algorithm,

we generate a random starting point and use L-BFGS-B algorithm to find the nearest local

minimum. These minima are compared to find the global minimum. The BH algorithm

is a global minimisation method that has been shown to be extremely efficient for a wide

variety of problems in physics and chemistry [35] and to give a better performance on QCO

than other heuristic methods such as simulated annealing [36]. It is an iterative stochastic

algorithm that at each iteration uses a random perturbation of the coordinates with a local

minimisation followed by the acceptance test of new coordinates based on the Metropolis

criterion. Again L-BFGS-B algorithm has shown the best performance as a local optimiser

at each step of the BH algorithm. Both BH and MC algorithms were supplied with the

analytical Jacobian of the objective function for better performance results.
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System of gain-dissipative coherent centers with gain couplings

Here we derive the equations for the coherent centers (CCs) starting with the mean-

field Ginzburg-Landau equations. Such derivation has been done before using the infinite

quantum well orthogonal basis [37] which is not natural for the localized condensates in the

lattice. As the result, the phases of the time-dependent modes are not directly related to

the phases of the condensates. Instead, we will use the natural basis associated with the

wavefunction of an individual condensate.

The mean–field description of the gain-dissipative condensates is provided by the

Ginzburg-Landau equations [27]

i
∂ψ

∂t
= −∇2ψ + (Ũ − iσ̃)|ψ|2ψ + i(Γ(r, t)− γc)ψ, (13)

where ψ(r, t) is the wavefunction of the system, Ũ is the strength of the δ – function in-

teraction (pseudo) potential, Γ(r, t) represents the rate of adding particles to the system

(pumping), γc is the rate of linear losses and σ̃ is the rate of the density-dependent losses.

In writing Eq. (13) we let ~ = 1,m = 1/2. For the network of N CCs we introduce the

pumping profile that creates particles in N spatial locations r = ri, i = 1, ..., N

Γ(r, t) =
N∑
i=1

γinji , γinji = P (|r− ri|)fi(t), (14)

where fi(t) is the time-dependent part of the pumping and Pi(r) ≡ P (|r − ri|) is a given

spatially localised pumping profile. If the distances between CCs are larger than the width

of P (r), the wavefunction of the condensate can be written as

ψ(r, t) =
N∑
i=1

ai(t)φi(r), (15)

where φi(r) = φ(|r− ri|) is the wavefunction of a single localised condensate for the steady

localised pumping profile P (r), normalised so that 2π
∫
|φ(r)|2r dr = 1. We substitute the

expression for ψ into Eq. (13), multiply by φ∗i for i = 1, ..., N , and integrate in space to yield
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the rate equations on ai(t)

iȧaaT =
[
−aaaTDDD + iaaaTΓΓΓ− iγcaaaTΞΞΞ + (Ũ − iσ̃)QQQ

]
ΞΞΞ−1, (16)

where aaa = {ai}, ΞΞΞ = {χij}, DDD = {dij}, ΓΓΓ = {Γij}, QQQ = {qij}, where χij =
∫
φjφ

∗
i dr

(χii = 1), qij = a2ja
∗
i

∫
φ2
j(φ
∗
i )

2 dr+ 2|ai|2aj
∫
|φi|2φiφj dr+ ... for i 6= j, qii = |ai|2ai

∫
|φi|4 dr,

Γij =
∑

k fk
∫
Pkφjφ

∗
i dr, and dij ≡

∫
φ∗i∇2φj dr. An asymptotics of φ(r) for the Gaussian

pumping profile have been developed in [38]. Function φ can be approximated by

φ(r) = β2 exp[−βr + ikcr], (17)

where kc is the outflow velocity and β is the inverse characteristic width of the condensate

[38]. The integrals χij =
∫
φjφ

∗
i dr for i 6= j can be evaluated in elliptical coordinates in

terms of the Bessel functions [39]

χij = β2lij

[
1

β
J0(kclij)K1(βlij) +

1

kc
J1(kclij)K0(βlij)

]
, (18)

where lij = |ri−rj|. We assumed that the CCs are well separated: lijβ � 1, so that for i 6= j

we have χij � 1 as follows from Eq. (18). The integrals in the off-diagonal terms in QQQ are of

the same order in smallness as χij. Since at the threshold |ai(t)|2 are small, the off-diagonal

terms in QQQ are quadratic in small quantities and can be neglected to the linear order in Eq.

(16), so that QQQ is the diagonal matrix with elements |ai|2aiq, where q = 2π
∫
|φ|4r dr. Using

Eq. (17) one can show that dij � χij for i 6= j and can be neglected to the linear order,

so that DDD = dIII, where d = 2π
∫
φ∇2φr dr. The matrix ΞΞΞ has 1 on the diagonal and χij as

ij−th element. Taking the inverse and keeping only up to the linear order terms gives a

matrix with 1 on the diagonal and −χij as the ij−th element. Finally, to the linear order

terms the elements of matrix ΓΓΓ are Γii = fip and Γij = (fipij + fjp
∗
ij) for i 6= j, where

p = 2π
∫
P (r)|φ|2r dr, and pij =

∫
Pjφjφ

∗
i dr. To the linear order terms in small quantities

|ai(t)|2, pij and χij for i 6= j Eqs. (16) become

ȧi = idai + ai(fi(t)p− γc) + fi(t)
∑
i 6=j

ajpij − iq(Ũ − iσ̃)|ai|2ai, (19)

where we also used the observation that terms p∗ij − pχij are quadratic in small quantities.
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Equation (19) coincides with Eq. (9) if one adds noise, let Ψi = ai exp(idt), U = qŨ , σ = qσ̃,

γinj = fi(t), and Kij = pij.

Supplementary Information

Quadratic constrained optimisation (QCO) problems

QCO and QUBO problems are known to be strongly NP-hard in general [18] (with the

decision problem to be NP-complete), meaning that an efficient way of solving the QCO or

QUBO problem can be used to solve all problems in the complexity class NP, which includes

a vast number of important problems such as partitioning, the travelling salesman problem,

graph isomorphisms, factoring, nonlinear optimisation beyond quadratic, etc. The NP-

hardness also implies that starting with medium-sized matrices QCO or QUBO problems

are difficult to solve on a classical computer as the number of required operations grows

exponentially fast with N . The actual time required to find the solution also depends

on the matrix structure. For instance, for positive definite matrices, the QCO problem

remains NP-hard due to the non-convex constraints but can be effectively approximated

using an SDP relaxation [40] with the performance guarantee π/4 [18]. Sparsity also plays

an important role: for sufficiently sparse matrices fast methods exist [41]. As for many

other hard optimisation problems, there are three types of algorithms for solving QCO

problems on a classical computer: exact methods that find the optimal solution to the

machine precision, approximate algorithms that generate the solution within a performance

guarantee and heuristic algorithms where suitability for solving a particular problem comes

from some empirical testing [42]. Exact methods can be used to solve small to medium matrix

instances, as they typically involve branch-and-bound algorithms and the exponential worst-

case runtime. The heuristic algorithms such as simulated annealing can quickly deliver a

decent, but suboptimal (and possibly infeasible) solution [43]. Finally, QCO is known to

be in the APX-hard class of problems [44], so there is no polynomial-time approximation

algorithm that gives the value of the objective function that is arbitrarily close to the optimal

solution (unless P = NP). The problem becomes even more challenging when the task is

to find not an approximation to the global minimum of the objective function, but the

minimisers as needed for instance in image reconstruction. The values of the objective
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FIG. 6: The performance of the various local optimisers when solving QCO problem of sizes up

to N = 200. The run-time dependence on the matrix size N is shown in (a) and in a log scale

in (b). The success probability of 99% is shown in (c) where each algorithm starts from the same

100 random initial states. The probabilities are averaged over 25 dense coupling matrices with

randomly generated elements in [−10, 10].

functions can be very close, but for the entirely different sets of minimizers.

The interest in solving QCO problems is justified in its own right. These problems appear

in many real-life applications in a context of a phase retrieval – recovering a general signal

from the magnitude of its Fourier transform – which is perceived as a notoriously hard

optimisation problem [40]. It arises in X-ray crystallography [45], diffraction imaging [46],

astronomical imaging [47], optics [48], microscopy [49], biomedical applications [50].

Performance of local optimisation algorithms for QCO problem

At each iteration of the Monte-Carlo and the Basin-Hopping methods we use the L-

BFGS-B algorithm, since it has shown better results for the QCO problems in terms of

both performance and the quality of solution compared to other available algorithms in

scipy.optimize.minimize library such as the sequential least squares programming (SLSQP),

nonlinear conjugate gradient algorithm (CG), truncated Newton (TNC) algorithm, and

BFGS. In comparison with the BFGS algorithm, the L-BFGS-B (limited memory BFGS)

algorithm exploits an estimation of the inverse Hessian matrix. Each algorithm was supplied

with the analytical Jacobian. The performance of the algorithms is shown in Fig. 6. The L-

BFGS-B algorithms is the fastest in comparison with all the other algorithms (see Fig. 6(a,b))

while the success probabilities are comparable (Fig. 6(c)).
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All numerical calculations were performed on a MacBook Pro (15-inch, 2016), 2.7 GHz

Intel Core i7, 16 GB 2133 MHz LPDDR3.
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