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1. DERIVATIONS OF RATE EQUATIONS FOR MINIMIZATION OF THE k-LOCAL HAMILTONIANS.

1.1. Rate equations from the complex Ginzburg-Landau model

In this section we provide the details of deriving Eq. (3) from Eq. (2) of the main text. Our starting point is Eq. (2)
which is a generic laser model with a saturable nonlinearity

i
∂ψ

∂t
= −∇2ψ + Ũ |ψ|2ψ + i

(
P (r, t)

1 + b|ψ|2
− γc

)
ψ, (S1)

where ψ(r, t) is the wavefunction of the system, Ũ is the strength of the delta-function interaction potential, γc is the
rate of linear losses, b parametrizes the effective strength of nonlinear losses, P (r, t) describes the gain mechanism
that adds particles to the system. First of all, we assume that b� U , so that the saturation term can be replaced by
its Taylor expansion:

P (r, t)

1 + b|ψ|2
≈ P (r, t)− P (r, t)b|ψ|2. (S2)

We define by p(r) = P (r, t) the injection profile that gives rise to a single condensate centered at the origin that is
described by a normalized wavefunction φ(r). Mathematically, φ(r) satisfies

µφ = −∇2φ+ Ũ |φ|2φ+ i

(
p− pb|φ|2 − γc

)
φ, (S3)

∫
Γ

|φ(r)|2 dr = 1, (S4)

where µ is the chemical potential (the Lagrange multiplier) and Γ is the entire system space. Based on the wavefunction
of the single isolated condensate, we can construct an approximation for N localized condensates noting that the well-
separated condensates interact by the outflow of the particles from the positions where they were created [1, 2]. This
is in a contrast with the conservative condensates, such as ultracold atomic Bose-Einstein condensates, where spatially
separated condensates (with separation much larger than the condensate width) do not interact.

We shall assume that pumping P (r, t) adds particles in N spatial locations centered at ri, i = 1, ..., N , so that
P (r, t) =

∑
i fi(t)pi(r), where fi is the time-dependent part of the pumping at the position r = ri and pi(r) ≡ p(r−ri).

If the distances between the neighbouring condensates are larger than the width of p(r), we employ the tight binding
approximation and write the wavefunction of the system as a linear superposition of the wavefunctions of the individual

condensates ψ(r, t) ≈
∑N
i=1 ai(t)φi(r), where ai(t) is the time-dependent complex amplitude and φi(r) ≡ φ(r − ri).

We substitute the expressions for P and ψ into Eq. (S1) with the Taylor expansion of the saturation term given by
Eq. (S2), multiply by φ∗j for j = 1, ..., N and eliminate the spatial degrees of freedom by integrating in the entire
plane Γ. The time evolution of the individual functions ai(t) will separate if we assume that the integrals that involve
products of the wavefunctions of the separated condensates are negligible compared with the integrals of the products
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of the same condensates or with the integrals that involve the pumping profiles that overlap with φi, so that∫
Ω

φiφ
∗
j dr �

∫
Ω

|φ|2 dr = 1 for i 6= j,∫
Ω

φ∗j∇2φi dr �
∫

Ω

φ∗∇2φdr ≡ d for i 6= j∫
Ω

φiφ
∗
j dr �

∫
Ω

pmφiφ
∗
j dr for i 6= j,m ∈ {i, j},∫

Ω

φiφ
∗
jφkφ

∗
m dr �

∫
Ω

pmφiφ
∗
jφkφ

∗
l dr, m ∈ {i, j, k, l}, etc.

The validity of these assumptions can be verified using asymptotics developed in [3] where it was shown that φ created
with a Gaussian pump can be approximated by

φ(r) =

√
2

π
β exp[−βr + ikcr],

where kc is the outflow velocity and β is the inverse characteristic width of the condensate [3]. The integrals χij =∫
φiφ
∗
j dr for i 6= j can be evaluated using the elliptical coordinates in terms of the Bessel functions [4]

χij = 2β2lij

[
1

β
J0(kclij)K1(βlij) +

1

kc
J1(kclij)K0(βlij)

]
, (S5)

where lij = |ri−rj |. We assumed that the condensates are well separated, lijβ � 1, so that for i 6= j we have χij � 1
as follows from Eq. (S5). The correctness of other assumptions can be established in a similar manner. Under these
assumptions, the tight binding approximation of Eq. (S1) leads to N equations

dai
dt

∫
Γ

|φ|2 dr = iaid− iU |ai|2ai
∫

Γ

|φ|4 dr + ai(fi

∫
Γ

p|φ|2 dr− γc
∫

Γ

|φ|2 dr)

+
∑
j,j 6=i

ajfj

∫
Γ

pjφjφ
∗
i dr− b−1

∑
m∈{i,j,k,l},j,k,l

fm

∫
Γ

pmφjφkφ
∗
l φ
∗
i dr ajaka

∗
l .

We use normalization Eq. (S4) and introduce Ψi = ai exp(itd) to absorb the first term on the right hand side into the

phase of Ψi. We also denote γi = fi
∫

Γ
p|φ|2 dr−γc, U = Ũ

∫
Γ
|φ|4 dr, Jij = fj

∫
Γ
piφjφ

∗
i dr for j 6= i, σi = bfi

∫
Γ
p|φ|4 dr

and Qijkl = −b
∑
m∈{i,j,k,l} fm

∫
Γ
pmφkφ

∗
l φjφ

∗
i dr, where i = j = k = l is excluded from the summation. With this

notation, we obtain N equations of the form

dΨi

dt
= Ψi

(
γi − (σi + iU)| Ψi |2

)
+
∑
j,j 6=i

JijΨj +
∑
〈j,k,l〉

QijklΨjΨkΨ∗l . (S6)

where 〈i, j, k〉 denotes the permutations of {j, k, l} that exclude j = k = l = i.

1.2. Physics-inspired gain-dissipative algorithm.

To formulate the physics-inspired algorithm, we extend Eq.(3) to a general tensor minimisation by replacing the
four-way interaction Qijkl with k-way interactions given by Ai1,...ik . Here Ai1,...ik is an arbitrary super-symmetric
real-valued tensor. We drop the quadratic coupling terms Jij as they can always be incorporated by the higher order
terms by introducing squares of the spins, e.g. the term J12x1x2 can be written as J1233x1x2x

2
3 where as before,

xi = cos θi. We also simplify Eq. (S6) by rescaling ρi → ρi/σi and setting U = 0, as the main effect of U is to
introduce the natural frequencies to individual oscillators (see below the discussion of the meaning of the natural
frequencies in the Kuramoto system) and their absence only helps synchronisation. Finally, we drive the occupancy
of the oscillators to the same a priori known value ρth by introducing the feedback for the pumping adjustments

γ̇i = ε(ρth − ρi), (S7)

where ε characterizes how fast γi adjusts to changes in ρi. These arguments lead to Eq.(6-7) of the main text.
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2. HIGHER-ORDER KURAMOTO OSCILLATORS

In this section we elucidate the relationship between Eq.(5) of the main text and the higher-order Kuramoto
model. The paradigmatic Kuramoto model for the dissipative collective dynamics of N phase oscillators coupled with
strengths J̃ij described by θi(t) with natural frequencies ωi is [5]

θ̇i(t) = ωi +
∑
j,j 6=i

J̃ij sin(θj − θi), i = 1, 2, · · ·, N. (S8)

Such (standard) Kuramoto model describes self-sustained phase oscillators coupled through the sine of their phase
differences. This model exhibits a phase transition at a critical coupling, beyond which a collective behavior is achieved.
It is commonly used as a toy model to describe ubiquitous synchronization phenomena in various driven-dissipative
systems with examples ranging from chemical reactions, laser arrays, optomechanical systems, neurons to heart cells.
A conservative Hamiltonian systems may exhibit a family of invariant tori on which the dynamics is identical to that
of the Kuramoto model [6, 7].The higher-order Kuramoto models have been proposed recently to model higher-order
interactions between neurological dynamical units, i.e., including four-way interactions Gijkl in addition to pairwise
interactions [8]

θ̇i(t) = ωi +
∑
j,j 6=i

J̃ij sin(θj − θi) +
∑
〈i,j,k〉

Gijkl sin(θj + θk − θl − θi). (S9)

The higher-order couplings come directly from the higher order terms that emerge from phase-reductions of limit-cycle
oscillators [9].

By using the Madelung transformation Ψi =
√
ρi exp[iθi] in Eq. (3) of the main text (Eq. (S6) above) we obtain

the equation on the real part of Eq.(3) as Eq. (5) of the main text:

θ̇i(t) = −Uρi +
∑
j,j 6=i

Jij

√
ρj
√
ρi

sin(θj − θi) +
∑
〈j,k,l〉

Qijkl

√
ρjρkρl
√
ρi

sin(θj + θk − θl − θi). (S10)

This coincides with the higher-order Kuramoto model Eq. (S9) if we allow for density-dependent (and therefore time-

dependent) coupling tensors J̃ij = Jij

√
ρj(t)√
ρi(t)

and Gijkl = Qijkl

√
ρj(t)ρk(t)ρl(t)√

ρi(t)
. When the feedback given by Eq. (S7) is

implemented, near the fixed point where ρi ≈ ρth Eq. (S10) represents the system of N almost identical higher-order

Kuramoto oscillators with ωi ≈ −Uρth with couplings Jij = J̃ij and Qijkl = Gijkl/ρth.

3. K TENSORS

Here we present the detailed description of K tensors for both cases considered in the main text: the small-scale
toy-model Hamiltonian and the large-scale problem for testing the proposed TGD algorithm.

3.1. Toy-model Hamiltonian

The purpose of the toy-model Hamiltonian is to present an instance K tensor to demonstrate the algorithmic
effectiveness and to introduce the idea of the complex-coupling switching. The tensor rank k = 3 is different from
the quadratic problems, which were extensively studied before. We choose K elements so that the minimization of
the corresponding tensor Hamiltonian is non trivial and has not only the global but also several local minima with a
large basin of attraction.

The toy Hamiltonian considered in the main text is

Htest(x) = −8x1x2x3 − 4x1x2x4 − 2x2x3x4 − x1x3x4, (S11)

with variables xi ∈ {±1} and the corresponding tensor K has nonzero entries K123 = 1,K124 = 4,K234 = 2, and
K134 = 1. Tensor K is assumed to be super-symmetric, so that the permutations of indexes give the same values of
K, for instance, K213 = K312 = 1. There are 24 possible minimizers (the possible values of variables xi) while the
Hamiltonian Htest has 24 possible distinct values {±1,±3,±5,±7,±9,±11,±13,±15}. The coefficients before each
of the triplet of Eq. (S11) is a certain power of 2, which allows one to classify the solution by the energy value in
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the binary tree and excludes the possibility of the degenerate solutions with the same energy. There are three local
minima with H1 = −9, H2 = −11, H3 = −13 and the global minimum H4 = −15, that can be accessed during the time
evolution of the system. To understand the basins of attraction for these stationary points we numerically integrate
the corresponding differential equations Eqs. (6-7) from the main article. It appeared that the basins of attraction of
the local minima for the dynamics of Eqs. (6-7) in total is larger than the basin of attraction of the global minimum
with the statistics shown in Fig. 1(a) of the main text.

The system of Eqs. (6) from the main text becomes

dΨ1

dt
= Ψ1

(
γ1 − |Ψ1|2

)
+ 8Ψ2Ψ∗3 + 4Ψ2Ψ∗4 + Ψ3Ψ∗4,

dΨ2

dt
= Ψ2

(
γ2 − | Ψ2 |2

)
+ 8Ψ1Ψ∗3 + 4Ψ1Ψ∗4 + 2Ψ3Ψ∗4,

dΨ3

dt
= Ψ3

(
γ3 − | Ψ3 |2

)
+ 8Ψ1Ψ∗2 + 2Ψ2Ψ∗4 + Ψ1Ψ∗4,

dΨ4

dt
= Ψ4

(
γ4 − | Ψ4 |2

)
+ 4Ψ1Ψ∗2 + 2Ψ2Ψ∗3 + Ψ1Ψ∗3.

These equations are integrated together with Eq. (S7). The system with always reach a steady state with ρi = ρth

for all i = 1, 2, 3, 4 . At the steady state, from the imaginary part of the equations above we have

ρth = γ1 + 8
√
ρth cos(θ2 − θ3 − θ1) + 4

√
ρth cos(θ2 − θ3 − θ1) +

√
ρth cos(θ3 − θ4 − θ1),

ρth = γ2 + 8
√
ρth cos(θ1 − θ3 − θ2) + 4

√
ρth cos(θ1 − θ4 − θ2) + 2

√
ρth cos(θ3 − θ4 − θ2),

ρth = γ3 + 8
√
ρth cos(θ1 − θ2 − θ3) + 2

√
ρth cos(θ2 − θ4 − θ3) +

√
ρth cos(θ1 − θ4 − θ3),

ρth = γ4 + 4
√
ρth cos(θ1 − θ2 − θ4) + 2

√
ρth cos(θ2 − θ3 − θ4) +

√
ρth cos(θ1 − θ3 − θ4),

while from the real part we get

0 = 8 sin(θ2 − θ3 − θ1) + 4 sin(θ2 − θ3 − θ1) + sin(θ3 − θ4 − θ1),

0 = 8 sin(θ1 − θ3 − θ2) + 4 sin(θ1 − θ4 − θ2) + 2 sin(θ3 − θ4 − θ2),

0 = 8 sin(θ1 − θ2 − θ3) + 2 sin(θ2 − θ4 − θ3) + sin(θ1 − θ4 − θ3),

0 = 4 sin(θ1 − θ2 − θ4) + 2 sin(θ2 − θ3 − θ4) + sin(θ1 − θ3 − θ4).

The system has U(1) symmetry, so we can set θ1 = 0 and notice that the only possible solution of the last four
equations is when θi = {0, π} in which case cos(θi) = {±1} and cos(θi − θj − θk) = cos(θi) cos(θj) cos(θk) = xixjxk.
Finally, when we add the equations from the imaginary part together we get

4ρth =

4∑
i=1

γi − 3
√
ρthHtest.

The left-hand side represents the total number density in the system that is a priori known. The first term on the
right-hand side is the total effective injection that we assume is the minimum possible, therefore, Htest is minimised
at the steady state of the system.

Complex coupling switching parameters.
The presence of the complex part of the coupling introduces the phase lag in the system. To see this we consider

a one tensor element in Eq. (S6) and replace the real coupling Qijkl with the complex coupling Qijkl + iQ̂ijkl. The

corresponding term in the Eq. (S6) is replaced with aijkl = −Qijkl sin θijkl+Q̂ijkl cos θijkl where θijkl = θi+θl−θk−θj .
We denote tan δijkl = Q̂ijkl/Qijkl so that aijkl = −Qijkl(cos δ)−1 sin(θijkl − δijkl). The meaning and the role played
by the phase lag δijkl is well-understood in the Kuramoto systems [5]. It leads to either shift of the stationary points
that always exist when lag is zero or to the destabilization of it by the creation of a saddle point. In the latter
case, if the complex part of the coupling is turned on, the system trajectory leaves the neighborhood of the previous
stationary point along the fastest direction. Including this switching dynamics into our system facilitates the search
for the true global minimum by allowing fuller exploration of the phase space.

By varying the coupling elements to be switched, the duration of the switching in time and the amplitude of
the imaginary coupling we allow the system to explore the phase space in the search for global minimum. In our
test example, we implemented the switching of the coupling coefficients K123 and K124 (and their super-symmetric
counterparts) according to K123(t) = 8(1+4i),K124(t) = 4(1−10i), t ∈ [t1, t1 +160]∪ [t2, t2 +160]∪ [t3, t3 +280] while
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keeping K123(t) = 8,K124(t) = 4 otherwise, which allows every trajectory irrespective of its initial state to arrive to
the global minimum. Here t1, t2, t3 are times at which the system settles to a steady state after switching the complex
part of the couplings off. Turning on the complex part of K123(t) = 8(1 + 4i) and K124(t) = 4(1− 10i) for t = T after
the steady states are reached leads to the following permutation of the states: a)(1, 2, 3, 4) → (2, 3, 3, 4) if T = 80;
b)(1, 2, 3, 4)→ (1, 1, 1, 2) if T = 160; c)(1, 2, 3, 4)→ (4, 3, 3, 4) if T = 280. Clearly the switching protocol b)b)c) brings
all trajectories to the global minimum.

3.2. Large-scale simulations

We adapt the idea of the complex couplings switching for the large scale simulations and illustrate the benefits
of such approach on 20 dense and 20 sparse tensor sets Kijk of 3d rank of size 106 over 500 runs. The elements of
the super-symmetric tensor Kijk are generated are uniformly randomly chosen from [−1, 1] for each unique cluster of
triplets (ijk, i < j < k) independently. The same value is assigned to Kijk with any permutation of indices ijk. To
generate sparse tensors we take the generated dense tensors with elements from the uniform distribution on [−1, 1]
and randomly set 9/10th of all elements to zero. Both types of tensors lead to the spin glass problems for which it is
hard (highly likely NP-hard) to find the ground state.

Complex coupling switching parameters.
To implement the complex coupling switching (TGD+CC) method on large N, as soon as the system reaches the

steady state we randomly choose N/50 of the coupling strengths Kijk (and their corresponding elements with all
possible permutations of the indexes) and modify them by adding χijk = 3iKijk. This destabilises the system and
forces the trajectory to leave along a certain orbit. After that we let χijk = 0 and allow the original system to relax
to a new steady state.

4. DETAILS OF THE NUMERICAL SIMULATIONS.

The systems of differential equations described in the main text such as Eqs. (6-7) with and without the complex
switching, Eq.(9) and Eqs.(10) were numerically integrated using the Euler integration scheme. All systems were
allowed to run for the same amount of time which favoured the comparison methods (Eq.(9) and Eqs.(10)) as they
require 4 times fewer equations than TGD and TGD+CC. Nevertheless, TGD+CC outperformed all these methods.
We used the time step dt = 0.001− 0.02 in all runs. The parameters were optimised for each method independently
taking into the account 1) stability of the scheme (using the Runge-Kutta scheme would allow for a larger time step)
and the sufficiently slow approach to the minimum to allow the system to search the system hyperspace. While
integrating Eqs. (6-7) we used ε = 0.01M , γl(t = 0) = −0.2M , ρth = 0.1M, the diffusion coefficient of the white
noise D = 100 max(1 − ρ/ρth, 0), dt = 0.001, M = max1≤l≤N

∑
Ω̄ |Akl,i1,i2,···,ik |. The elements of the dense (sparse)

tensors were scaled by 5/6N (15/6N) to slow the dynamics down. To numerically integrate Eq. (9) we used the initial
conditions xl(t = 0) that were uniformly randomly distributed in [−0.5, 0.5], and hj+1 = 1.2hj was updated each time∑N
l=1 |

dxl

dt | < 0.001 was satisfied. To numerically integrate Eqs.(10) we used the initial conditions xl(t = 0) that were

randomly distributed in [−5, 5], β(t = 0) = 10, while βj+1 = 0.8βj was updated each time
∑N
l=1 |

dxl

dt | < 0.001 was
satisfied.
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