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Toward Arbitrary Control of Lattice Interactions
in Nonequilibrium Condensates

Kirill P. Kalinin and Natalia G. Berloff*

There is a growing interest in investigating new states of matter using
out-of-equilibrium lattice spin models in two dimensions. However, a control
of pairwise interactions in such systems has been elusive as due to their
nonequilibrium nature they maintain nontrivial particle fluxes even at the
steady state. Here it is suggested how to overcome this problem and
formulate a method for engineering reconfigurable networks of
nonequilibrium condensates with control of individual pairwise interactions.
Representing spin by condensate phase, the effective two spin interactions are
created with nonresonant pumping, are directed with dissipative channels,
and are further controlled with dissipative gates. The dissipative barriers are
used to block unwanted interactions between condensates. Together, spatial
anisotropy of dissipation and pump profiles allow an effective control of sign
and intensity of the coupling strength between any two neighbouring sites
independent of the rest of the spins, which is demonstrated with a 2D square
lattice of polariton condensates. Experimental realization of such fully
controllable networks offers great potential for reservoir computing, modelling
of the systems of coupled oscillators, simulation of the new state of matters,
studying the phase transitions in large-scale systems, and optimization.

1. Introduction

In the last decade we have witnessed remarkable achievements
in laboratory realizations of exotic states of matter: spin glasses,
spin liquids, states of matter with emergent topological order,
and gapped or gapless behavior.[1,2] The ultimate goal is to en-
gineer new materials, enter new physical regimes, and develop
systematic tools for the controlled preparation and manipula-
tion of various excitations with applications ranging from fun-
damental questions in condensed matter physics to analogue
Hamiltonian computing. Many spin Hamiltonians have been

K. P. Kalinin, Prof. N. G. Berloff
Department of Applied Mathematics and Theoretical Physics
University of Cambridge
Cambridge CB3 0WA, United Kingdom
E-mail: N.G.Berloff@damtp.cam.ac.uk
Prof. N. G. Berloff
Skolkovo Institute of Science and Technology
Bolshoy Boulevard 30, bld. 1Moscow, Russia 121205

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/qute.201900065

DOI: 10.1002/qute.201900065

implemented and studied using a range
of systems: neutral atoms, ions, electrons
in semiconductors, polar molecules, su-
perconducting circuits, and nuclear spins
among others.[3] Gain-dissipative systems
such as photonic and polaritonic lattices
have recently emerged as promising plat-
forms formany-body quantumand classical
simulations.[4–6]

When studying networks with physi-
cal systems, one is interested in networks
that have architectures more complex than
those of classical random graphs with their
Poissonian distributions of connections.
For instance, the nature of the spin glass
state is well understood for the infinite-
range Sherrington–Kirkpatrick model[7,8]

and Erdös–Rényi networks.[9] In a more
realistic theory of spin glasses, each spin
interacts only with a finite number of neigh-
bors, which brings the notion of dimension-
ality into the system. Models of this type in-
clude the spin glass on a Cayley tree, a Bethe
lattice and a disordered random lattice with
fixed or fluctuating connectivity. In fact,

a finite connectivity structure connects the statistical mechanics
of disordered systems with many important optimisation prob-
lems, including that of the travelling salesman, graph partition-
ing, and K-satisfiability problems. The efficient optimization of
such computationally hard combinatorial and continuous prob-
lems can be realized by finding the ground state configuration of
spin models.[10] This can have a profound impact in many areas,
for example, prediction of new chemical materials and various
machine learning applications.
A significant interest is therefore attached to building easily

tunable physical systems capable of emulating lattice spin mod-
els. In this respect, a variety of physical platforms have been
explored including superconducting circuits,[11] trapped ions,[12]

CMOS (complementary metal-oxide-semiconductor) devices,[13]

and Coherent IsingMachines.[14–17] These artificial spin networks
are constructed and activated in such away that theywill naturally
evolve to the Ising ground state. Compared to classical optimiza-
tion methods that often result in finding a local energy minima,
these novel computing schemes promise a significant speed-up
of calculation time for finding the global minimum with respect
to classical computing.
We are particularly interested in the new subclass of simu-

lators based on networks of lasers[18] or nonequilibrium con-
densates such as polariton[5] or photon[19] condensates. These
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are gain driven systems with dissipation: when gain exceeds
the threshold and overcomes the losses a phase transition to a
coherent state characterized by a wavefunction !(r, t) occurs.
To create a network of condensates—a condensate lattice—the
gain should occur at various localized spatial positions within
the decoherence length of neighbouring condensates. For ex-
ample, a common way to experimentally form a polariton lat-
tice is to use a spatial light modulator, which creates polari-
ton condensates at the vertices of any prescribed graph.[5,20–23]

Initially each gain center is seeded with a random phase and
is evolved independently of other centres. As the occupation
of each gain centre grows with an increased pumping inten-
sity, different centres start interacting while exchanging par-
ticles. The dissipative nonlinearity saturates the gain and the
system may settle to a steady state with a particular distribu-
tion of phase differences between the network elements. We
shall refer to the phase of each gain center, "i, as the “spin”
of the i−th element in the network. Depending on the pump-
ing mechanism (ex. non-resonant or resonant) the phases of
the complex amplitudes may take continuous or discrete val-
ues in [0, 2#) and the system may simulate a variety of Hamil-
tonians. It was shown that non-resonant pumping in coupled
lasers[18] or nonequilibrium condensates[5] may lead tominimiza-
tion of the XY Hamiltonian HXY = −∑

i,j Jij cos("i − "j), whereas
a combination of resonant and nonresonant pumpings is theo-
retically predicted to minimize the Ising or n−state planar Potts
Hamiltonians.[24] For a general form of the matrix of couplings
Jij finding the ground state of such Hamiltonian is known to
be NP-hard.[25] By relating the mean-field equations on polari-
ton dynamics to the known universality classes of coupled oscilla-
tors, it was predicted that depending on the microcavity samples,
geometry and the regimes of operation, polariton lattices may
realize the Lang–Kobayashi, Kuramoto, Sakaguchi–Kuramoto,
Stuart-Landau oscillatons and beyond[26] and, therefore, can sim-
ulate processes described by these models from earthquakes to
power grids.
In addition to Hamiltonian optimization and simulations of

oscillators behavior, various nonlinear dynamical systems,
including electronic,[27–29] photonic,[30,31] spintronic,[32–34]

mechanical,[35] and biological[36] systems, have been recently
employed as potential reservoirs for reservoir computing (RC)
(see ref. [37] and references therein). RC methods, originally
referred to as echo state networks[38] or liquid state machines,[39]

constitute a computational framework for temporal data pro-
cessing. These methods have been successfully applied to
many practical problems involving real data with most of the
studies focused on machine learning applications. The best
performance on these applications is usually achieved by ap-
plying different reservoir designs to a particular problem and
finding an optimal reservoir by evaluating the computational
performance, processing speed, power efficiency, and scalability.
The role of the reservoir in RC is to nonlinearly map sequential
inputs into a higher-dimensional space so that the features
can then be extracted from its output with a simple learning
algorithm. Therefore, such reservoirs become attractive for an
experimental implementation in many physical systems with a
motivation of designing such RC hardware that would be able
to perform the high-speed computation for dynamic data and
would result in building fast information processing devices

with low learning cost. Networks of nonequilibrium condensates
or lasers can serve as interacting nonlinear elements for an
efficient network-type reservoir computing system. In particular,
many requirements for a physical RC system can be fulfilled
by polariton condensates, and indeed the first proposals of
such an implementation have appeared.[40] Polariton conden-
sates are scalable to a large number of lattice sites,[5] while
high dimensionality is necessary for mapping input data into
a high-dimensional space in RC. The polariton network is a
strongly nonlinear system[41] which rises from the excitonic part
of polaritons. This is necessary for the reservoir to operate as a
nonlinear mapping. The presence of short-term memory in po-
lariton systems is supported by many experimental observations
of their bistability behavior[42] and such memory is necessary
to ensure that the reservoir state is dependent on recent-past
inputs but independent of distant-past inputs. Thanks to the
polariton’s photonic component, the rich physical properties of
waves such as interference and synchronization make polariton
condensates similar to coupled oscillators,[26] and together with
a possible on-chip implementation at room temperature with
organic materials, they become a compelling candidate for
RC.
In this paper, we study a model of a fully controllable polari-

tonic network of a fixed geometry by spatially varying dissipation.
In this network, the desired interactions between any nodes can
be supported by creating channels of low dissipation and further
controlled individually by dissipative gates while undesired in-
teractions can be eliminated by high-dissipative barriers. We ar-
gue that spatially varying dissipation has an advantage over other
methods (e.g., external potential barriers, exciton reservoir injec-
tions etc.). The difficulty in using “conservative” barriers or gates
to control the couplings comes from the nonequilibrium nature
of polariton condensates where the main coupling mechanism
is of the Heisenberg type.[5] The presence, in addition, of the
Josephson type of couplings displaces the phases from those that
minimize the XYHamiltonian as has been elucidated in detail.[26]

The “conservative” barriers/gates, therefore, are not good can-
didates to control the couplings as they are responsible for the
Josephson part of the interactions and introduce the phase lag
in the system. As the result, the system exhibits oscillations in-
stead of finding the steady state even in the case of two identically
pumped condensates.[26]

The fixed dissipative barriers and dynamically reconfigurable
gates can be experimentally imprinted with a technique of pro-
ton implanting[43] or excited states absorption[44] as we discuss
later in the paper. By taking a square lattice of polariton conden-
sates, we show that full control over the polaritonic network can
be reached. The coupling strength of any two adjacent sites can
be changed on demand by varying the dissipative gate within
a physically reasonable range. We also show that such an ap-
proach is easily scalable and for 500 condensates with about
100 barriers a meaningful ground state can be reached, for ex-
ample, “Sk” letters in our case. We justify how such dissipa-
tive channels, gates, and barriers, can be experimentally imple-
mented for a few physical platforms, including polariton and
coupled laser systems. Such a polaritonic network can be fur-
ther used for the purpose of RC, analogue Hamiltonian opti-
misation or simulating large systems of oscillators of various
types.
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2. Configuring Dissipation for Periodic Density
Modulations

Systems with strong light–matter interactions are potential plat-
forms for the control of spin networks with spatially dependent
dissipation profiles. In this paper we consider polaritonic net-
works made of exciton-polariton condensates and use the mean-
field approach to describe polariton condensates, i.e. the gener-
alised complex Ginzburg–Landau equation (cGLE) coupled to the
reservoir dynamics[45–47]:

iℏ%!
%t

= − ℏ2
2m

(1 − i'̂nR)∇2! +U0|!|2!

+ℏgRnR! + iℏ
2
[RRnR − (C]! , (1)

%nR
%t

= −
(
(R + RR|!|2)nR + P(r, t), (2)

where !(r, t) is the wavefunction of the condensed system that
is coupled to the density of the exciton reservoir nR(r, t) via
nonlinear exciton–polariton interaction strength gR, scattering
rate RR, and diffusion rate '̂.[48,49] The polariton–polariton in-
teraction strength is denoted as U0 and the polariton effec-
tive mass as m. The polariton and exciton losses are described
by (C and (R, respectively. The incoherent pump source is de-
scribed by the pumping intensity P(r, t). We note that although
the process of Bose–Einstein condensation of polariton con-
densates includes quantum effects, once the condensation hap-
pened it can be accurately described by the mean-field equations
as was shown in numerous experimental studies.[22,23,50–56] We

nondimensionalize these equations by ! →
√

ℏRR∕2U0l20! , t →

2l20t∕RR, r →
√

ℏl20∕(mRR)r, nR → nR∕l20, P → RRP∕2l20 and intro-
duce the dimensionless parameters g = 2gR∕RR, b0 = 2(Rl20∕RR,
b1 = ℏRR∕U0, ' = '̂∕l20, ( = (Cl20∕RR, where l0 = 1 µm. The result-
ing model yields

i
%!
%t

= −(1 − i'nR)∇2! +|!|2! + gnR! + i(nR − ()! , (3)

%nR
%t

= −
(
b0 + b1|!|2)nR + P(r, t). (4)

To understand how the presence of spatially varying dissipa-
tion affects the landscape and the distribution of the polariton
particles we consider the steady state solutions of Equations (3)–
(4) characterized by the chemical potential ), such that ! =
Ψ(r) exp[−i)t], Ψ(r) =

√
*(r) exp[iS(r)] and neglect the energy re-

laxation since ' ≪ 1. Equations (3)–(4) under these assumptions
become

∇ ⋅ (*u) = (nR − ((r))*, (5)

) = * + gnR + u2(r) − ∇2√*∕
√
*, (6)

nR =
P(r, t)
b0 + b1*

, (7)

where u(r) = ∇S(r). If both the pumping intensity and the dis-
sipation are constant both in space and time, there are no ve-
locity fluxes across the sample u = 0 and both the polariton
and exciton reservoir densities take on the constant values nR =
( , * = P∕b1( − b0∕b1, ) = * + g( . Non-uniform pumping pro-
file or non-uniform dissipation leads to nontrivial velocity fluxes
and non-uniform densities. We illustrate this by solving Equa-
tions (5)–(7) in the Thomas-Fermi (TF) approximation in 1D. We
neglect the quantum pressure term (the last term on the right-
hand side of Equation (6)) and the detuning due to the repul-
sive interactions between polaritons and hot excitons (the solu-
tion method is straightforward to generalize to nontrivial g, but
leads to more complicated analytical expressions) and look for a
self-consistent solution. We shall assume that the velocity profile
is periodic with the period ,[)m]: u(x) = A sin(2#x∕,), therefore,
* = 1 + A2∕2 − A2 sin2(2#x∕,), where the chemical potential )
is chosen to normalize *: ∫ ,

0 * dx = , and A is a free parame-
ter. We integrate the quantum pressure term over the period of
density oscillations and conclude that the TF condition is met
if A ≪

√
2(,2(,2 + 8#2)∕(,2 + 4#2)2)1∕4. Integrating Equation (5)

for constant pumping intensity fixes the spatial form of the
dissipation

((x) = 2P

A2b1 cos
(
4#x
,

)
+ 2b1 + 2b0

−
2#A cos

(
2#x
,

)(
3A2 cos

(
4#x
,

)
− 2A2 + 2

)

,
(
A2 cos

(
4#x
,

)
+ 2

) . (8)

This is a doubly-periodic dissipative structure that creates peri-
odic density and velocity modulations even in the presence of
a uniform pumping profile. Thus, spatially varying dissipation
effectively creates an excitonic landscape of hills and valleys for
polariton flows with exciton reservoirs occupying the regions of
higher dissipation. This effectively creates a barrier for polariton
flow, and, therefore, changes the interaction depending on the
barrier hight. We will exploit this process in controlling the inter-
actions in periodically arranged polariton condensates.

3. Control of Lattice Interactions in 2D Lattice

The analysis of the relationship between density modulations
and spatially varying dissipation suggests to use a varying dis-
sipation profile across the sample to establish pairwise interac-
tions that can be independently tuned between any two con-
densates. For instance, this can be achieved by creating a spa-
tially dependent dissipation profile ((r), as illustrated in Figure 1.
With this scheme, a 2D square grid is formed. It consists of nar-
row rectangular strips, that is, channels, characterized by a con-
stant low dissipation rate ( = (channel. Such small dissipation sup-
ports flows of polariton quasi-particles through these channels.
Outside of the channels, the dissipation is strongly enhanced
and equal to ( = (barrier ≫ 1, thereby forming dissipative barriers.
The condensates are pumped at the grid vertices (schematically
shown as yellow spheres in Figure 1) and the high-dissipative
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Figure 1. Schematics of the spatially dependent dissipation profile with
nine condensates (yellow balls) arranged in a 2D lattice in a semiconductor
microcavity. The condensates interact via channels of low dissipation (light
gray). Dissipative barriers (brown areas) show an increased dissipation
that prevents the coupling between the condensates across the diagonals.
Dissipative gates (dark blue areas) show the areas where the dissipation
is increased or decreased to control the couplings between neighbouring
condensates.

barriers (brown areas) block the outflow of polaritons across the
diagonals.
The pairwise interactions between the neighboring conden-

sates are further controlled by another dissipative layer across
the channel: dissipative gates (dark blue narrow blocks in the
scheme) given by ( = (channel + (gate(r). The amplitude of dissi-
pative gates should be available for a dynamical adjustment and
be large enough to change the sign of interactions from ferro-
to antiferromagnetic. In contrast, the channel-barrier structure
forms the stationary dissipative profile that can be conclusively
imprinted in the sample. For the simulations below, the physi-
cally meaningful polariton lifetimes of 5, 20-200, and 200ps (or
2ps/13ps/100ps for simulations in Figure 4) are used for barri-
ers, gates, and channels, respectively (with an assumption of the
exciton lifetime of 2ns).
Spatially varied dissipation profiles can lead to the realization

of independent control of individual coupling strengths. This in
turn will open unprecedented opportunities to study collective
quantum phenomena and exotic phase configurations and tran-
sitions. Recently a variety of magnetic phases and frustrated con-
figurations of spin models have been realized using directional
control of couplings. For example, the XY model on a triangu-
lar lattice of atomic condensates has been studied with an inde-
pendent coupling control along only two directions,[57] realized
via an elliptical shaking of the lattice. In addition, simulations
of the Ising and XY models have been demonstrated in trapped
ions with direction-dependent couplings created by collective vi-
brational modes.[58]

To realize a fixed dissipative structure consisting of dissipative
channels and barriers, the following experimental approaches
may be promising. Since polaritons are quasi-particles that ex-
ist in semiconductor microcavity environments, their excitonic
or photonic components can be directly accessed by manipulat-
ing quantum wells or microcavities, respectively. The technique
of implanting protons into the quantum wells or into the top of
distributed Bragg reflectors[43] makes independent spatial control
of both the exciton and the cavity photon energies possible, which

in turn leads to a local control over the polariton decay rate. The
spatial control of the polariton lifetime, that is, the dissipation
profile ((r), can therefore be fabricated with the proton implant
technique with a multi-layer mask.[43] Another way to access the
exciton states alone is to create a controlled stress by applying
a pin to the back side of the substrate.[59] As a result, a spatial
trap is formed directly under the stressor where polaritons have
an energy minimum and the cavity photon states and the exci-
ton states are strongly coupled. Away from the center of the trap
the lowest polariton states are almost purely photon-like which
makes the coupling of the exciton states and cavity photon states
weaker. This in turn means that the lifetime of polaritons at high
energy is shorter than the lifetime of those at the energy mini-
mum. Thus, in principle, such strain-induced traps can be used
to create a configuration of dissipative channels and barriers if
the tip radius of the pin can be decreased to a micrometer or less.
The dynamic dissipation control for realizing dissipative gates

can be achieved by electrical carrier injection which leads to lo-
calized losses due to excited state absorption and bimolecular
annihilation involving polarons and long-lived triplets.[44] Alter-
natively, the local control of the dissipation can be achieved by in-
creasing the biexciton formation rate. Biexcitons can be created
by two-photon absorption, by exciton absorption, or by inducing
polariton–biexciton transitions.[60–63]

To relate the characteristics of the dissipative control with the
interaction between the condensates we first study a configura-
tion of two polariton condensates. The # phase modulation be-
tween geometrically fixed condensates is achieved by increasing
the amplitude of the dissipative gate between condensates, as
shown in Figure 2a. The complete transition to the # phase state
happens at higher gates in the presence of higher dissipative bar-
riers meaning that the excitonic landscape with deeper valleys
supports stronger couplings between condensates. Here “strong
coupling” means that the condensates have to remain synchro-
nized after the dissipative gate of a particular amplitude is placed.
Such strong coupling can be achieved by, for example, using a
uniform pumping profile or by closely arranging the condensates
with large intersections of their individual pumpings. If the exter-
nal potential is used to control the coupling, the condensates be-
come de-coupled before # phase difference can be reached. Next
we consider the same close arrangement of pumpings for a 3 × 3
square block of polariton condensates with the pumping profile
as in Figure 2b. In this case, the dissipative gates are placed be-
tween the vertical stripes of condensates (see Figure 2c). The ini-
tial gateless state is configured to be ferromagnetic as shown in
Figure 2d, The amplitude of dissipative gates is then increased
which leads to spin configurations in Figure 2e–g with an anti-
ferromagnetic coupling between vertical stripes of condensates
in the final configuration. Here we note that both the chosen dis-
sipative and pump profiles serve the same purpose of prevent-
ing undesired interactions. The former destroys polaritons by de-
creasing their lifetime, that is, increasing losses, and the latter
creates exciton reservoirs that block polariton outflows due to re-
pulsive exciton–polariton interactions.
To check the stability of an arbitrary network, we next demon-

strate that the individual control of couplings can be realised.
Figure 3a shows the dissipative profile with only one dissipa-
tive gate placed for the bottom-left condensate. This dissipative
gate creates frustration in the network and makes this particular
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Figure 2. a) The transitions from the ferromagnetic state with 0 phase dif-
ference to the antiferromagnetic state with # phase difference between
two polariton condensates by varying the amplitude of the dissipative
gate are shown for three dissipative barriers (solid lines). The conden-
sates remain synchronised though the small phase fluctuations appear
for higher dissipative gates. The amplitude of such fluctuations is con-
tained within the colour dashed lines. b) The pumping profile for a 3 × 3
square lattice of polariton condensates. c) The structure of a dissipation
profile ((r) consisting of dissipative channels (black), dissipative barriers
(pink), and dissipative gates (purple) being horizontally placed between
vertical stripes of condensates. d–g) The phase differences of all conden-
sates are shown with black arrows with respect to the central conden-
sate, the background is the normalised polariton density |!(r)|2. d) In
the absence of dissipative gates, the initial state is prepared to be ferro-
magnetic with all spins aligned in the same direction. e–g) With a dissipa-
tive gate of (gate = {3, 5, 7}, the coupling strengths between vertical stripes
of condensates are continiously changed from ferromagnetic to antiferro-
magnetic coupling. Simulation parameters for (3,4) are ' = 0.01, g = 0
(a small nonzero value of g ≈ 0.1 will make the spins less aligned), b0 =
0.2, b1 = 20, P = ∑

i P0 exp(−.(r − ri)2), P0 = 100, . = 0.4, (channel = 1,
(barrier = 40, lattice constant is d = 2.8, the width and length of channels
are 1 and 1.4.

Figure 3. a) A dissipation profile structure similar to that of Figure 2b but
with only one dissipative gate. This dissipative gate makes the particu-
lar link antiferromagnetic while all other links remain ferromagnetic and,
thus, frustration is created in the network. The resulting spin configuration
is shown in (b). c) The addition of another dissipative gate removes frus-
tration from the system and leads to the spin configuration which is shown
in (d). The dissipative gate’s amplitude is (gate = 7, and other simulation
parameters are the same as in Figure 2.

coupling antiferromagnetic while all the other couplings are fer-
romagnetic. The resulting spin configuration is depicted in Fig-
ure 3b and demonstrates how the frustration spreads across the
network. The addition of another dissipative gate as in Figure 3c
removes frustration from the system and leads to the spin con-
figuration which is shown in Figure 3d.
For a potential implementation of RC or analogue Hamilto-

nian optimization it is important to demonstrate the scalability
of the polaritonic network with dissipative gates, channels, and
barriers. In Figure 4 we show a configuration of 500 conden-
sates with 92 dissipative gates, which are placed so that regions
with antiferromagnetic couplings can form arbitrary symbols, in
this case “Sk”. We simulate Equations (3)–(4) starting with 500
random initial conditions and choosing two lowest energy states
shown in Figure 4. While the excited energy states do not main-
tain any recognisable spin configuration (see Figure 4b), the low-
est found energy state indeed recovers the letters “Sk” (see Fig-
ure 4a).
Figures 3 and 4 below give realistic distribution of spins un-

der the XY model; however, there are small deviations from the
exact spin orientations of the global minimum of the XY model.
The dissipative gates on the configurations presented there re-
move particles from the system in an asymmetric way creat-
ing gentle density inhomegenuity across the lattice sites that af-
fects the spins. The origin of this problem (even for a uniformly
pumped regular lattice) and the ways to overcome it have been
elucidated before and requires adjustments of the injection rate
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Figure 4. The 20 × 25 square lattice of polariton condensates with the low-
est energy state found in 500 realizations shown in (a) and one of the
excited energy states in (b). The polariton densities are shown with black-
and-white colour scheme, the phase differences are plotted with a cyclic
green-grey colour scheme. The dissipative gates (gate = 7 are placed be-
tween the condensates constituting letters “Sk” and other condensates
to create antiferromagnetic couplings, while all other couplings are ferro-
magnetic. The lowest energy state spin configuration (a) resembles “Sk”
letters while the excited energy state (b) is blurred. The energies are in
dimensionless units. The dimensionless parameters for numerical simu-
lations of (3,4) are b0 = 0.1, P0 = 60, (barrier = 60, (gate = 8, d = 3, while
other parameters are the same as in Figure 2.

via SLM reconfiguration[64] together with a weak dependence of
polariton outflow velocity on the pumping intensity which is a
sample-dependent property of polaritons. Without such require-
ments, the spins realize the stationary state of the Stuart–Landau
model.[26]

In conclusion, we have shown how to engineer a lattice of
nonequilibrium condensates with a pairwise control of classical
spin interactions. The former is achieved by a spatial variation
of a dissipation profile which is the key to control and direct the
flows of polaritons. Such localized control of pairwise spin inter-
actions paves the way to the study of previously intractable com-
plex physical systems and to the manufacturing of new materi-
als. It adds another dimension to the flexibility and tuneability of
control parameters in lattice spin models. Polaritonic networks
with spatially dependent dissipation profiles can be considered as
promising candidates for reservoir computing, analogue Hamil-
tonian optimisation, logic devices, to simulate extended systems
of coupled oscillators. They give full access to the study of large-
system phase transitions with arbitrary ferromagnetic or antifer-
romagnetic couplings, and symmetry-breaking caused by frus-
tration. These networks can be used as laboratory realizations of
new and exotic states of matter. In our paper, we focused on a
polaritonic network; however, other nonequilibrium physical sys-
tems can also be used, including photon condensates as well as
coupled lasers.
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