
Solitary and Periodic Solutions of Nonlinear
Nonintegrable Equations

By Natalia G. Berloff and Louis N. Howard

The singular manifold method and partial fraction decomposition allow one
to find some special solutions of nonintegrable partial differential equations
Ž .PDE in the form of solitary waves, traveling wave fronts, and periodic
pulse trains. The truncated Painleve expansion is used to reduce a nonlinear´
PDE to a multilinear form. Some special solutions of the latter equation
represent solitary waves and traveling wave fronts of the original PDE. The
partial fraction decomposition is used to obtain a periodic wave train
solution as an infinite superposition of the ‘‘corrected’’ solitary waves.

1. Introduction

The existence of solitons and periodic wave trains is an important question
in the study of nonlinear evolution equations. The methods of finding such
solutions for integrable equations are well known: the solitary solutions can

w xbe found by the Hirota bilinear method 1, 2 and the periodic solutions can
be represented by sums of equally spaced solitons represented by sech-func-

w xtion 3, 4 . We extend these methods to find the solitary and periodic
solutions for some nonintegrable nonlinear equations by means of some

Ž w x.generalization of the Painleve expansion Psi series 5 .´
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w xWeiss et al. 5, 6 developed the singular manifold method to introduce
Ž .the Painleve property in the theory of partial differential equations PDE .´

A PDE is said to possess the Painleve property if its solutions are single´
w xvalued about the movable singularity manifold 5 . To be more specific, if the

Ž .singularity manifold is given by F z , z , . . . , z s0, then a solution of the1 2 n

PDE must have the expansion

`
ya ju s F u F , 1.1Ž .Ý j

js 0

where u are analytic functions in the neighborhood of the singularityn

manifold and a is a positive integer. Substitution of this expansion into the
Ž .PDE determines the positive value of a from the leading-order analysis

and defines the recursion relations for u .j
w xWeiss 5, 6 truncated the expansion at the ‘‘constant term’’ level, i.e.,

u s u Fya q u Fyaq1 q ??? qu Fy1 q u . 1.2Ž .0 1 my1 m

Substituting back into the PDE, one obtains an overdetermined system of
equations for F and u . The beauty of the singular manifold method is thatj

this expansion for a nonlinear PDE contains a lot of information about this
PDE. For an equation that possesses the Painleve property the singular´
manifold method leads to the Backlund transformation, the Lax pair, and¨
Muira transformations and makes connections to the Hirota bilinear method,

w xLaplace]Darboux transformations, and the Toda lattice 5, 7 .
Most nonlinear nonintegrable equations do not possess the Painlevé

property; i.e., they are not free from ‘‘movable’’ critical singularities. For
some equations it is still possible to obtain single-valued expansions by
putting a constraint on the arbitrary function in the Painleve expansion.´

w xSuch equations are said to be partially integrable and Weiss 5 conjectured
that these systems can be reduced to integrable equations. Another treat-

w xment of the partially integrable systems was offered by Hietarinta 2 by the
generalization of the Hirota bilinear formalism for nonintegrable systems.
He conjectured that all completely integrable PDEs can be put into a
bilinear form. There are also nonintegrable equations that can be put into
the bilinear form and then the partial integrability is associated with the
levels of integrability defined by the number of solitons that can be com-
bined to an N-soliton solution. Partial integrability then means that the
equation allows a restricted number of multisoliton solutions. We suggest
joining these treatments of the partial integrability and using the Painlevé
expansion truncated before the ‘‘constant term’’ level as the transform for
reducing a nonintegrable PDE to a multilinear equation. The partial integra-
bility will be associated with the solvability of that equation.
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We illustrate our method by applying it to the study of some nonlinear
partial differential equations of the form

 u  u  2 u  3u  4 u  5urq u q a q b q c q d s 0. 1.3Ž .2 3 4 5 t  x  x  x  x  x

This equation was first derived by Benney then by Kawahara and Lin and
is an important general equation that describes the evolution of long waves

Žin various problems in fluid dynamics. In purely dispersive form ascs0,
. Ž . Žr s1 , 1.3 reduces to the Kawahara equation generalized KdV equation

.with higher-order dispersion that describes water waves with surface ten-
w x Ž . Ž .sion 8]10 . In the purely dissipative form bs ds0 , 1.3 reduces to the

Kuramoto]Sivashinsky equation that originates from a weakly nonlinear and
long-wave simplification of the Navier]Stokes equation and has been used
to describe different phenomena such as spatial patterns of the Belousov]
Zhabotinsky reaction, surface-tension-driven convection in a liquid film, and

Ž . w xunstable flame fronts. The dissipative]dispersive equation ds0 11 is a
generalized Kuramoto]Sivashinsky equation that describes the waves in the
vertical and inclined falling film, in liquid films that are subjected to
interfacial stress from adjacent gas flow, interfacial instability between two
cocurrent viscous fluids, unstable drift waves in plasma, and phase evolution
for the complex Ginzburg]Landau equation.

Such equations are the least integrable systems in the Hietarinta classifi-
cation. For such equations we offer a simple method for finding the traveling
wave solutions in the form of solitary waves and traveling wave fronts.
Furthermore, if the soliton solution is found, the periodic wave train
represented by the superposition of the solitons approximates the exact
periodic solution as the spacing between pulses gets large. The partial
fraction decomposition is used to characterize such solutions. The expres-
sions for the speed of propagation and the constant of integration in terms
of the period of the solutions is obtained. Such superposition is shown to
satisfy the original equation plus some small correction term. Then we show
how the exact solution can be obtained by taking into account the correction
term and some small perturbation of the traveling wave coordinate. Our
method gives an explicit expression for the velocity and amplitude of the
periodic pulse train in terms of period.

2. Solitary solutions of the generalized Kuramoto–Sivashinsky equations

Ž .We consider the generalized Kuramoto]Sivashinsky equation GKSE in the
form

u q2uu q u q s u q u s 0. 2.1Ž .t x x x x x x x x x x



N. G. Berloff and L. N. Howard4

Ž .We take the transform 1.2 truncated at the term before the ‘‘constant
term’’ level u :m

u s u Fya q u Fyaq1 q ??? qu Fy1 . 2.2Ž .0 1 my1

The analysis of the leading-order terms gives a s3. By substituting the
Ž . Ž .expansion 2.2 into 2.1 in the special case s s4 and equating the

coefficients of the highest powers of F to zero one obtains expressions for
u , u , u in terms of F that lead to the transform0 1 2

u s 30 ln F q30 ln F . 2.3Ž . Ž . Ž .x x x x x

This transform implemented to

u q2uu q u q4u q u s 0 2.4Ž .t x x x x x x x x x x

leads after one integration in x to the following equation, which is trilinear
in F, meaning that each term contains three functions F or its derivatives:

y FF F q2 F F 2 q2 F 3 q F 2F y2 FF F y FF F y3FF F q15FF 2
t x t x x x t x x t t x x x x x x x

y20F F 2 q30F 3 q F 2F q F 2F y20FF F q40F 2Fx x x x x t x x x x x x x x x x x x x

q10FF F y60F F F q20FF 2 q5F 2F y25FF Fx x x x x x x x x x x x x x x x x x x x x x x

q30F 2F y15FF F q5F 2F y6FF F q F 2Fx x x x x x x x x x x x x x x x x x x x x x x x x x x x

s B. 2.5Ž .

Substituting F s1q ek xqv tyx 0 into this equation and equating the coeffi-
cients of different powers of e to zero we get the solution F s1q e xy6 tyx 0 ,
where the constant of integration Bs0. This solution corresponds to the

Ž .homoclinic orbit]one-soliton solution of 2.4 :

60e xy6 tyx 0

u x s . 2.6Ž . Ž .3xy6 tyx 01q eŽ .

Ž . Ž .The transform 2.2 for 2.1 and arbitrary s has the form

15 15 2u s 30 ln F q s ln F q 16ys ln F , 2.7Ž . Ž . Ž . Ž . Ž .x x x x x x2 152
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w xthe same as in 12 omitting the ‘‘constant term’’ level. One can use this
Ž .transform to find the solutions of 2.1 for the following values of the

parameter s with corresponding values of k and v

s v k

"4 y6 "1
330 11

0 y "(361 19
12 60 1

" y "2209' '47 47
16 90 1

" y "5329' '73 73

With other parameter values, solutions F of the above form are not
w xfound 12 .

Furthermore, since the formal Painleve expansion applied to this equa-´
tion, which does not possess the Painleve property, gives the exact solution´
of the equation under consideration we can try to use this expansion even
for equations with noninteger a . Let us consider the GKSE with the cubic
nonlinear term

u q u2 u q u q s u q u s 0. 2.8Ž .t x x x x x x x x x x

3The leading term analysis gives a s . So we can consider the generalized2

Painleve expansion´

u x , t u x , tŽ . Ž .0 1u x , t s q . 2.9Ž . Ž .3r2 1r2h x , t h x , tŽ . Ž .

Ž .By equating the coefficients at the same powers of h x, t we obtained the
Ž . Ž .expressions for u x, t and u x, t in terms of h, leading to the transform0 1

3r2' 'h 2s h q15h3 35 3 70x x x xu x , t s y q . 2.10Ž . Ž .ž /h 80' h h2 2 ' x

Ž . Ž .Then 2.10 transforms 2.8 to the octalinear equation with 56 terms, which
Ž .resembles 2.5 . Despite the seeming complexity the one-soliton solution can
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be found for some values of the parameter s :

5 15 5 45
s s , " , " , " .( 11' ' '2 71 374

'For example, if s s5r 2 , the one-soliton solution was found as

4 '2 x y4 t' '3 35 2 e
u x , t s . 2.11Ž . Ž .32 ) '2 x y4 t1q eŽ .

Some other solutions were found for the following values of the parame-
ters:

s v k

5 210 5
" y "2( (11 121 11

15 210 2
" y .5041' '71 71

45 210 2
" y "(34969 187'374

Ž . Ž .All of these latter solutions are ‘‘fronts.’’ The graphs of 2.6 and 2.11
look qualitatively like ‘‘solitons,’’ but are not quite symmetric front-to-back.

3. Periodic pulse train

w xWhitham 3, 4 originally suggested the representation of periodic waves as
sums of equally spaced solitons for the KdV, modified KdV, and the
Boussinesq equations.

We use this idea to apply the direct partial fraction decomposition to find
the periodic solution for the GKSE

u q2uu q u q4u q u s 0. 3.1Ž .t x x x x x x x x x x

Ž . Ž .The traveling form, usu xyct su j , in this gives

ycuX q2uuX q uY q4uZ q u00 s 0, 3.2Ž .

or after we integrate once

ycu q u2 q uX q4uY q uZ s B. 3.3Ž .
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Ž . Ž .In view of 2.6 the solution of 3.9 for cs6 and Bs0 is

60e j

u j s . 3.4Ž . Ž .s 3j1q eŽ .

Ž .We consider the solution of 3.3 in the form

q`

u j s u j y2md . 3.5Ž . Ž . Ž .Ý s
msy`

Ž . Ž .u j is a solution of 3.3 if one of the following identity holds true:

2q` q`
2u j y2md y u j y2mdŽ . Ž .Ý Ýs sž /

msy` msy`

q`

s B y A u j y2md 3.6Ž . Ž .Ý s
msy`

or

q` q` q`

2 u j y2md u j y2 mq j d s B y A u j y2md .Ž . Ž . Ž .Ž .Ý Ý Ýs s s
msy` msy`js1

3.7Ž .

Introducing ws ey2 d and zs eyj this becomes

q` q` q`4 2 mqj 2 mz w z w22?60 s B y A .Ý Ý Ý3 33 mm mqj zqwŽ .zqw zqwŽ . Ž .msy` msy`js1

3.8Ž .

Using the partial fraction decomposition for

z 4 w2 mqj

33m mqjzqw zqwŽ . Ž .
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and the identities

ky1k n i nw z wis y1 C 3.9Ž . Ž .Ý ky1, ik iq1n nzqw zqwŽ . Ž .is 0

it can be shown that

z 4 w2 mqj

33m mqjzqw zqwŽ . Ž .

w j z 2 w m w2 j z 2 w mq j

s y3 3 3 3mj j mqjzqwŽ .w y1 w y1 zqwŽ . Ž . Ž .

2w2 jqw j zw m 2w2 jqw3 j zw mq j

q q4 2 4 2mj j mqjzqwŽ .w y1 w y1 zqwŽ . Ž . Ž .

3w2 j 1qw j m mqjw wŽ .q y . 3.10Ž .m5 mqjž /j zqwŽ . zqwŽ .w y1Ž .

When we sum over m and j the series corresponding to the last term in
Ž . Ž .the 3.10 tend to 0 for mªq`, but for mªy` they do not individually

since the terms of the m-series tend to 1. But this part has the form

q` q`

a j b m y b mq jŽ . Ž . Ž .Ž .Ý Ý
msy` js1

q` q` q` q`

s a j b m y a j b mq jŽ . Ž . Ž . Ž .Ý Ý Ý Ý
ms 0 js1 ms 0 js1

q` q`

q a j b m y1 y a j b mq j y1Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ý Ý
m- 0 js1 m- 0 js1

q` q` q` q` q`
Xs a j b m y a j b m q a j b m y1Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý Ý Ý Ý Ý Ý

Xjs1 ms 0 js1 m s j js1 m- 0

q` q`
Xy a j b m y1Ž . Ž .Ž .Ý Ý

Xjs1 m - j

jy1 jy1q` q` q`
Xs a j b m y a j b m y1 s a j j.Ž . Ž . Ž . Ž . Ž .Ž .Ý Ý Ý Ý Ý

Xjs1 ms 0 js1 m s 0 js1

3.11Ž .
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Ž . Ž .By taking the sum in m and j and using 3.11 in 3.10 we obtain that

q` q` 4 2 mqjz wÝ Ý 33m mqjzqw zqwŽ . Ž .msy` js1

q` q`j 2 j 2 mw yw z ws Ý Ý3 3mj zqwŽ .w y1Ž . msy`js1

q` q` q` 2 j jj 2 j 3 j m 3w 1qww q4w qw zw Ž .q q j.Ý Ý Ý4 2 5mj jzqwŽ .w y1 w y1Ž . Ž .msy`js1 js1

3.12Ž .

Since

zw m z 2 w m zw2 m

s q , 3.13Ž .2 3 3m m mzqw zqw zqwŽ . Ž . Ž .

Ž .the left-hand side of 3.8 can be written as

q` q` 4 2 mqjz w22?60 Ý Ý 33m mqjzqw zqwŽ . Ž .msy` js1

q` q`2 j 2 m6w z w2s 2?60 Ý Ý4 3mjž zqwŽ .1ywŽ . msy`js1

q` q` q` 2 j jj 2 j 3 j 2 m 3w 1qww q4w qw zw Ž .q j . 3.14Ž .Ý Ý Ý4 3 5mj j /zqwŽ .w y1 w y1Ž . Ž .msy`js1 js1

Ž .So instead of identity 3.6 we have

2q` q`
2u j y2md y u j y2mdŽ . Ž .Ý Ýs sž /

msy` msy`

q` q`

s B y A u j y2md q e u y j y2md , 3.15Ž . Ž . Ž .Ž .Ý Ýs s
msy` msy`
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where the constants A, B, and e are defined as infinite series of hyperbolic
functions

q`
4A d s 90 csch d j , 3.16Ž . Ž . Ž .Ý

js1

q` 4csch d jŽ .
B d s 45r2 j , 3.17Ž . Ž .Ý tanh d jŽ .js1

q` q`
4 2e d s 45 csch d j q30 csch d j . 3.18Ž . Ž . Ž . Ž .Ý Ý

js1 js1

Ž . q` Ž .So u j sÝ u j y2md satisfies the equationmsy` s

y 6y A u j q u2 j q uX j q4uY j q uZ j s B q e u yj .Ž . Ž . Ž . Ž . Ž . Ž . Ž .
3.19Ž .

Ž . Ž .For d large enough the periodic pulse train u j defined by 3.5 ap-
Ž .proaches the exact periodic solution of GKSE, since the e given by 3.18 is

small.

4. Solitary and approximate periodic solutions for the Kawahara equation

The Kawahara equation describing nonlinear wave processes in a dispersive
w xsystem 10 has form

u q a uu q b u s u . 4.1Ž .t x x x x x x x x x

Ž 3r2 . XThis equation can be easily normalized by rescaling us 2b ra u , x
X X5r2Ž .'s 1r b x , ts 1r b t , so thatŽ .

u q2uu q u s u . 4.2Ž .t x x x x x x x x x

Ž .For this equation the transform 2.2 is

140 Y
u s ln F y140 ln F 00 . 4.3Ž . Ž . Ž .13

This transform implemented to the Kawahara equation gives an equation
consisting of 59 terms quintilinear in F. If one substitutes F s1qe k xqv tyx 0

into that equation and equates the coefficients of the same powers of e, one
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gets the solution

Ž . Ž .'" 1r13 x . 36r169 13 t y x' 0F s 1q e . 4.4Ž .

Ž .So the solitary solution of Kawahara equation 4.2 is

Ž . Ž .'" 2 1r13 x . 72r169 13 t y x' 0840 e
. 4.5Ž .4169 Ž . Ž .'1r13 x y 36r169 13 t y x' 01q eŽ .

Furthermore, the Kawahara equation written in the traveling wave form

u00 y uY y u2 q c u s B 4.6Ž .0

has a solitary wave solution

.'" Ž2r 13 j840 e
u j s , 4.7Ž . Ž .4169 .'" Ž1r 13 j1q eŽ .

with c s36r169 and Bs0. This solution was repeatedly found in a0
w xnumber of papers 9 in the form of the hyperbolic function

105 1y4 'u j s cosh j 13 . 4.8Ž . Ž .ž /338 2

Ž .Next, we look for a periodic solution of 4.6 in the form

q`

u j s u j y2md , 4.9Ž . Ž . Ž .Ý s
msy`

where

840 e2 kj

u j s , 4.10Ž . Ž .s 4169 kj1q eŽ .

'< <with k s1r 13 .
As before we consider the difference

2q` q`
2u j y2md y u j y2mdŽ . Ž .Ý Ýs sž /

msy` msy`

q` q`

s 2 u j y2md u j y2 mq j d . 4.11Ž . Ž . Ž .Ž .Ý Ýs s
msy` js1
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Introducing ws ey2 d and zs eyk j this becomes

q` q`2 4 4 mq2 j840 z w
2 . 4.12Ž .Ý Ý 4ž / 4169 m mqjzqw zqwŽ . Ž .msy` js1

Using the same arguments as in the previous section, it can be shown that

q` q` 4 4 mq2 jz wÝ Ý 44m mqjzqw zqwŽ . Ž .msy` js1

q` q`2 j 3 j 4 j 3 m 3m4w q12w q4w z w q zws y Ý Ý6 4mj zqwŽ .w y1Ž . msy`js1

q` q`2 j 3 j 4 j 2 2 m3w q14w q3w z wy2 Ý Ý6 4mj zqwŽ .w y1Ž . msy`js1

q` 2 j 3 j 4 j 5 jw q9w q9w qwy j. 4.13Ž .Ý 7jw y1Ž .js1

Ž . q` Ž .So, u j sÝ u j y2md satisfies the equationmsy` s

c y A u j y u2 j y uY j q u00 j s B q e g j , 4.14Ž . Ž . Ž . Ž . Ž . Ž . Ž .0

where

q`2840 1 12 4 6e s coth jd csch jd q csch jd ,Ž . Ž . Ž .Ýž /169 2 8
js1

q`2840 3 12 4 6A s coth jd csch jd q csch jd ,Ž . Ž . Ž .Ýž /169 4 2
js1

4.15Ž .

q`2840 1 33 4 6B s coth jd csch jd j q coth jd csch jd j,Ž . Ž . Ž . Ž .Ýž /169 8 8
js1

Ž . q` Ž . Ž . Ž kj 3kj . Ž kj .4and g j sÝ g j y2md with g j s e q e r 1q e , whichmsy` s s
Ž .is the solitary wave of amplitude 0.125. So the term e g j gets exponentially

Ž .small as d gets large and u j approximates the exact solution. The
comparison of the approximate periodic solution with the exact one indi-
cates that these two solutions are very close to each other even for not very
large values of d .



Nonlinear Nonintegrable Equations 13

5. Exact periodic solutions of the GKSE

Ž . Ž .The presence of the u yj term in 3.19 suggests a possible correction to
Ž .the solitary pulse that can lead to the exact periodic pulse solution of 3.1 .

Ž .We can seek the solution of 3.3 in the form

q`

u j s u j y2md , 5.1Ž . Ž . Ž .Ý s
msy`

where

b eaj q b e2 aj
1 2u j s A . 5.2Ž . Ž .s 3aj1q eŽ .

Ž . Ž .u j satisfies 3.3 if we can find constants c, d , and B such that

2q` q`
Z Y Xu q4u qu ycu q u s B , 5.3Ž . Ž .Ý Ýs s s s sž /

msy` msy`

which can be written as

q`
Z Y X 2u q4u qu ycu quŽ .Ý s s s s s

msy`

q` q`

q2 u j y2md u j y2 mq j d s B. 5.4Ž . Ž . Ž .Ž .Ý Ýs s
msy` js1

Using the substitution zs eya j and ws ey2 d a the last term on the left-hand
side of the previous expression can be written as

q` q`

2 u j y2md u j y2 mq j dŽ . Ž .Ž .Ý Ýs s
msy` js1

q` q` m 2 2 m mqj 2 2 mq2 jb w z q b w z b w z q b w zŽ . Ž .1 2 1 22s 2 A .Ý Ý 33m mqjzqw zqwŽ . Ž .msy` js1

5.5Ž .



N. G. Berloff and L. N. Howard14

The partial fraction decomposition along with the principles outlined in
previous sections gives the following expression for this term

q` q`2 j 2 m6w z w2 22 A b Ý Ý1 4 3mjž zqwŽ .1ywŽ . msy`js1

q` q` q` 2 j jj 2 j 3 j 2 m 3w 1qww q4w qw zw Ž .2 2q b y b jÝ Ý Ý1 14 3 5mj jzqwŽ .1yw 1ywŽ . Ž .msy`js1 js1

q` q`j 2 j 3 j 2 m3 w q2w qw z wŽ .y b b Ý Ý1 2 4 3mj zqwŽ .1ywŽ . msy`js1

q` q`j 2 j 3 j 2 m3 w q2w qw zwŽ .y b b Ý Ý1 2 4 3mj zqwŽ .1ywŽ . msy`js1

q` j 2 j 3 j 4 jw q5w q5w qwq b b jÝ1 2 5j1ywŽ .js1

q` q`j 2 j 3 j 2 mw q4w qw z w2q b Ý Ý2 4 3mj zqwŽ .1ywŽ . msy`js1

q` q` q` 2 j j2 j 2 m 3w 1qw6w zw Ž .2 2q b y b j . 5.6Ž .Ý Ý Ý2 24 3 5mj j /zqwŽ .1yw 1ywŽ . Ž .msy`js1 js1

So that

q` q`

2 u j y2md u j y2 mq j dŽ . Ž .Ž .Ý Ýs s
msy` js1

q` ajy2 amd 2 ajy4 amdP a, d e q P a, d eŽ . Ž .1 22 2s 2 A q2 A C a, d ,Ž .Ý 3ajy2 amd1q eŽ .msy`

5.7Ž .

where we used the notation

P a, d s b 2 r q b b r q b 2 r , 5.8Ž . Ž .1 1 1 1 2 2 2 3

P a, d s b 2 g q b b g q b 2 g , 5.9Ž . Ž .2 1 1 1 2 2 2 3

q` 2 j j3w 1qwŽ .2 2C a, d s y b q b jŽ . Ž . Ý1 2 5j1ywŽ .js1

q` j 2 j 3 j 4 jw q5w q5w qwq b b j, 5.10Ž .Ý1 2 5j1ywŽ .js1
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q` 2 j6w
r s g s , 5.11Ž .Ý1 3 4j1ywŽ .js1

q` j 2 j 3 j3 w q2w qwŽ .
r s g s g y3g s y , 5.12Ž .Ý2 2 3 1 4j1ywŽ .js1

q` j 2 j 3 jw q4w qw
r s g s . 5.13Ž .Ý3 1 4j1ywŽ .js1

Ž . Ž .The substitution of 5.7 into 5.4 indicates that the constant of integra-
tion B must be chosen as

B s 2 A2 C a, d , 5.14Ž . Ž .

and then we also get the identity that must be satisfied for some values of
parameters a, d , and c. By equating the coefficients of equal powers of
eajy2 m ad to zero we get a system of five algebraic equations, compatible if
b s1q a and b s1y a, so that the velocity of propagation c and the1 2

amplitude A can be expressed in terms of a, r , g , g :1 1 3

A s 30a2 , 5.15Ž .

2 a2 y1q11a4 q240a4 g3c s , 5.16Ž .22 a

and a must satisfy

a4 y1q240a4 g s 0. 5.17Ž .1

The latter can be written as

1r4
d s ad 1q240 g . 5.18Ž . Ž . Ž .1

The coefficients g and g depend on a and d in the following way:1 3

q` 6 a jd 4 a jd 2 a jde q4e q e
g s , 5.19Ž .Ý1 42 a jde y1Ž .js1

q` 4 a jd6e
g s . 5.20Ž .Ý3 42 a jde y1Ž .js1
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Table 1

ad d a c A

10 10.00000124 0.999999876 5.999998516 29.999999
8 8.00054016 0.99999325 5.999918976 29.9996
6 6.0022108 0.9996316 5.99558056 29.9779
4 4.078418 0.9807724339 5.7708114825 28.8574
3 3.37840207 0.88799645759 4.7063654137 23.656
2 3.15130168 0.63465837 2.0788004 12.0837
1.5 3.14195585 0.477409635 0.55978631 6.8376
1.3 3.1416462 0.413796534 y0.04841128 5.13683
1 3.141593157 0.318309835 y0.96036354 3.3963

y110.1 p q2=10 0.031831 y3.6960364 0.3039
y120.01 p q10 0.0031831 y3.969603 0.000303
y14 y60.001 p q10 0.000318 y3.99696 3.039=10

Ž .Therefore, we can fix the product ad , calculate d using 5.18 , and find a;
Ž . Ž .then the expressions 5.15 and 5.16 give the corresponding values for the

amplitude and velocity. The sketch of the dependence of the left-hand side
Ž . Ž . Ž .of 5.17 on a for different values of d and the form of 5.18 and 5.19

Ž .suggest that a increases with d and approaches 1, so that each function 5.2
Ž . Ž .in superposition 5.1 approaches the one-soliton solution of 3.7 .

Table 1 and Figures 1]3 give the values of a, velocity c, and amplitude A
for different values of d .

Figure 1. The dependence of the correction of the traveling variable a on the half period d
of the exact periodic solution of the GKSE.
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Figure 2. The dependence of the velocity of propagation c on the half period d of the exact
periodic solution of the GKSE.

For the specific value of d f3.14165 one of the periodic solutionsst

represents a wave that propagates with zero velocity. This wave has the
amplitude Af5.26340267 and af0.418863648911. We can see from the
results of the calculations that as aª0, cªy4 and amplitude Aª0.

Figure 3. The dependence of the amplitude of the single solitary wave in the superposition
on the half period d of the exact periodic solution of the GKSE.



N. G. Berloff and L. N. Howard18

6. Exact periodic solutions of the Kawahara equation

The traveling wave ODE for the Kawahara equation has form

u00 y uY y u2 q c u s B. 6.1Ž .0

We look for a solution of the form

q`

u j s u j y2md , 6.2Ž . Ž . Ž .Ý s
msy`

where

b eaj q b e2 aj q b e3aj
1 2 3u j s . 6.3Ž . Ž .s 4aj1q eŽ .

Ž . Ž .The periodic pulse train 6.2 satisfies 6.1 if the following identity is true:

q`
Y 2u00 yu qc u yuŽ .Ý s s 0 s s

msy`

q` q`

y2 u j y2md u j y2 mq j d s B. 6.4Ž . Ž . Ž .Ž .Ý Ýs s
msy` js1

The partial fraction decomposition yields

q` q`

2 u j y2md u j y2 mq j dŽ . Ž .Ž .Ý Ýs s
msy` js1

b w mz 3 q b w2 mz 2 q b w3mzŽ .1 2 3
mqj 3 2 mq2 j 2 3mq2q` q` = b w z q b w z q b w zŽ .1 2 3s 2 Ý Ý 44m mqjzqw zqwŽ . Ž .msy` js1

q` ajy2 amd 2 ajy4 amd 3ajy6 amdQ a, d e qQ a, d e qQ a, d eŽ . Ž . Ž .1 2 3s 2 Ý 4ajy2 amd1q eŽ .msy`

q2C a, d , 6.5Ž . Ž .

with

Q a, d s b 2 r q b 2 r q b 2 r q b b r q b b r q b b r ,Ž .1 1 1 2 2 3 3 1 2 12 1 3 13 2 3 23

Q a, d s b 2 g q b 2 g q b 2 g q b b g q b b g q b b g ,Ž .2 1 1 2 2 3 3 1 2 12 1 3 13 2 3 23 6.6Ž .

Q a, d s b 2 p q b 2 p q b 2 p q b b p q b b p q b b p ,Ž .3 1 1 2 2 3 3 1 2 12 1 3 13 2 3 23
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where we used the notation

q`
3 j 4 j 2 2 2 j 3 j 4 j 5 j 2C a , d s j 10 w qw b q b q w q9w q9w qw bŽ . Ž . Ž .Ž .ŽŽÝ 1 3 2

js1

y4w2 j 1q4w jq4w2 jqw3 j b b q b bŽ . Ž .1 2 2 3

7j 2 j 3 j 4 j 5 j 6 j jy w q9w q10w q10w q9w qw b b r 1yw ,Ž . Ž .. .1 3

q` 3 j20w
r s y Ý1 6j1ywŽ .js1

q` j 2 j 3 j 4 j 5 jw y6w y30w y6w qw
g s ,Ý1 6j1ywŽ .js1

q` 2 j 3 j 4 j4w q12w q4w
p s y ,Ý1 6j1ywŽ .js1

and identities

3 1r s p , g s p q r , p s p , r s p , g s g , p s r2 1 2 1 1 2 1 3 1 3 1 3 12 2

5 1r s y p q r , g s 2 r , p s g y4 p , r s y4 g q9p q r ,12 1 1 12 12 12 1 1 13 1 1 12 2

g s y6 g q16 p , p s r , r s p , g s g , p s r .13 1 1 13 13 23 12 23 12 23 12

The constant of integration B must be chosen as

B s 2C a, d .Ž .

Ž . Ž .If we substitute 6.5 into 6.4 we get the identity that must be satisfied for
some values of parameters a, d , and c . By equating the coefficients of0

equal powers of eajy2 m ad to zero we get a system of seven algebraic
Ž 2 .Ž 2 .equations, compatible if b s b s 140 a r13 1 y 13a and b s1 3 2

Ž 2 .Ž 2 .280a r13 1q26a , so that the velocity of propagation c can be ex-0

pressed in terms of a, r , g , p :1 1 1

c s y31q4836a2 q145509a4Ž0

q206518a6 q5110560a4 r y2555280a4 g q33218640a6 g r79092 a2.1 1 1
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Table 2

d a c0

18.0277 0.277351 0.213018
14.4208 0.277377 0.213052
10.7456 0.279185 0.215457
9.9198594 0.282262 0.21971
8.0085 0.319056 0.278046
5.452220 0.513552 0.803223
3.51689867 0.853024 3.27584

and a must satisfy

y31q3549a4 q21970a6 y1703520a4 p1

q88583040a6 p q851760a4 g y11072880a6 g s 0. 6.7Ž .1 1 1

6 Ž .Or, if we multiply by d , 6.7 can be written as

46 2y31d q 3549y1703520 p q851760 g ad dŽ . Ž .1 1

6q 21970q88583040 p y11072880 g ad s 0, 6.8Ž . Ž . Ž .1 1

which is a cubic equation in d 2 for any fixed value of ad . The numerical
Ž . Ž .analysis of 6.8 shows that 6.8 has a real solution only if ad G2.5551572.

Table 2 and Figures 4]6 give the parameters of the different periodic
Ž .solutions of 6.1 .

Figure 4. The dependence of the correction of the traveling variable a on the half period d
of the exact periodic solution of the Kawahara equation.
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Figure 5. The dependence of the velocity of propagation c on the half period d of the exact
periodic solution of the Kawahara equation.

As one can see, as the half period d gets larger each function of the
Ž . Ž .superposition 6.2 approaches the one-soliton solution of 6.1 given by

'Ž .4.9 , since c approaches 36r169s0.213018, a approaches 1r 13 f0

0.27735, b approaches 840r169s4.97041, and b s b approaches zero.2 1 3

Figure 6. The dependence of the amplitude of the single solitary wave in the superposition
on the half period d of the exact periodic solution of the Kawahara equation.
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7. Discussion

The application of the truncated Painleve expansion to an integrable equa-´
tion leads to the Hirota bilinear form as a special case of the ‘‘multilinear’’
equation that we obtained for nonintegrable PDEs. In the proposed ap-
proach the Painleve expansion has been used to find only the solitary and´
traveling wave front solutions. After such solutions are found the periodic
pulse train solutions are the result of superposition and partial fraction
decompositions. Surprisingly, the Painleve expansion bears information about´
such solutions as well. Let us illustrate this idea. The exact periodic solution
for the generalized Kuramoto]Sivashinsky equation

u q2uu q u q4u q u s 0 7.1Ž .t x x x x x x x x x x

was found as
q`

u j s u j y2md 7.2Ž . Ž . Ž .Ý s
msy`

with

1q a eaj q 1y a e2 ajŽ . Ž .2u j s 30a . 7.3Ž . Ž .s 3aj1q eŽ .

The Painleve expansion has the form´

u s 30 ln F q30 ln F , 7.4Ž . Ž . Ž .x x x x x

Ž . ajwhich coincides with 7.3 if we take F s1q e , j s xyct. Also, in view of
Ž .7.2

` `
ajy2 amd yajy2 amdF s 1q e 1q e 7.5Ž . Ž . Ž .Ł Ł

ms 0 ms1

Ž .is the solution of the trilinear equation 2.5 .
A similar result is obtained for the Kawahara equation with Painlevé

expansion

140
u s ln F y13 ln F , 7.6Ž . Ž . Ž .Ž .x x x x x x13

Ž .which takes the form of the exact function in the superposition u j s
q` Ž .Ý u j y2md ,msy` s

2 1y13a2 eaj q2 1q26a2 e2 aj q 1y13a2 e3aj140a Ž . Ž . Ž .
u j s 7.7Ž . Ž .s 413 aj1q eŽ .

if we let F s1q eaj.
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The second comment that we make is on the representation of the
periodic solutions in terms of cnoidal waves. By finding the exact periodic
solution of the KdV equation as a superposition of the solitary waves

w xWhitham 3, 4 showed that this result leads to a known representation of
elliptic functions in terms of an infinite sum of sech2. The building blocks of
the periodic solution that we were able to find also can be written in terms
of sech2 and their derivatives, therefore, in terms of elliptic functions and
their derivatives.

Ž . Ž . 2 Ž 2 Ž .Equation 7.3 can be written as u j s 30 a sech aj r2 qs
Ž 2Ž ..X . Ž .sech aj r2 , so the solution of 7.1 can be represented as

d2 2u s C q C cn bj , m q C cn bj , m . 7.8Ž . Ž . Ž .1 2 2 dj

Ž . Ž . Ž 2 .Ž 2Ž .Equation 7.6 can be written as u j s 140a r13 sech axr2 ys
Ž 2Ž ..Y .13 sech axr2 , so the solution of the Kawahara equation can be repre-

sented by

d2
2 2u s C q C cn bj , m q C cn bj , m . 7.9Ž . Ž . Ž .1 2 3 2dj

w xThe solutions of this form were obtained in 9, 12 .

8. Conclusion

An algorithm allowing one to find the exact solutions of some nonlinear
nonintegrable PDEs by means of the Painleve expansion even in the case´
when the leading-order term is noninteger has been introduced. The use of
the Painleve expansion truncated before the ‘‘constant term’’ level leads to a´
multilinear equation as a constraint on the arbitrary function in this expan-
sion. This multilinear equation can be solved for some special cases and
specific form of the function. The sum of equally spaced solitons is shown to
be an approximation of the exact periodic wave train. The partial fraction
decomposition allows one to find the relation of the period of the solution
and the speed of the propagation. The sum of the equally spaced solitons
exactly satisfies the given equations with the correction term. The exact
periodic solution can be obtained introducing this correction term into the
sum and a correction on the traveling wave variable of the exact solitary
wave solution.
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