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Abstract

An algorithm for clustering gene expression data based on a network of
interacting genes is suggested and analysed. Transcriptional controls in gene
regulatory networks are modelled by deterministic nonlinear differential equa-
tions that take into account nonlinear gene activation and natural degradation
of gene product. We suggest a similarity measure between two gene expression
profiles based on the underlying biological models.

Keywords: gene expression data, clustering algorithm, transcriptional control, gene

regulatory networks.

1 Introduction

As the technologies for DNA expression become more reliable and accessible there is
a need for efficient data processing, storing and retrieving information and efficient
mathematical analysis of these results. Temporal gene expression patterns are now
being obtained for many cell types in response to specific stimuli, or during execution
of developmental programs (Wen et al., 1998; Iyer et al., 1999). Such data can help
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in understanding of how groups of genes control cellular responses to environmental
stimuli (Edwards, 1994), and execute stored programs governing the cell cycle. Bas-
set et al. (1999) suggested that the greatest intellectual challenges in this area lie in
devising ways to extract the full meaning and implications of the data stored in large
gene expression libraries. Different statistical and mathematical techniques are being
developed and applied to detect the internal structure in the data. Current efforts
have focused on identifying underlying patterns in complex data using techniques of
clustering points or vectors in multidimensional space, where n points (vectors) in
k—dimensional space correspond to the quantitative expression level of n genes in k
samples. The assumption is that genes with similar expression patterns are likely to
be involved in the same regulatory process. But the clustering results can be very
different for various measures of similarity that we adopt. The most typically used
measures are the Euclidean distance between points or linear correlation coefficient,
which is related to the angle between the two k—dimensional vectors. Some other
distance measures, including rank correlation coefficient and mutual information-
based measures, are proposed in D’haeseleer et al. (1998). So far there is no theory
how to choose the best similarity measure and there is a vast evidence that different
measures produce different clusters.

To achieve a more reliable clustering results, it is necessary to develop a frame-
work for integrating data and gaining insights into the static and dynamic behavior
of complex biological systems such as networks of interacting genes. Specific groups
of genes may be activated by particular signals and, once activated, regulate a com-
mon process and each other’s transcription. Such groups are called genetic regula-
tory systems. Genetic regulatory systems are often activated by signal-transduction
pathways in which stimuli lead to second-messenger generation and to activation
of transcription factors, often via phosphorylation. Activated transcription factors
then bind to DNA sequences known as enhancers and repressors and thereby regu-
late the transcription of specific nearby genes. Enhancers and repressors affect the
transcription of genes for transcription factors, and some transcription factors acti-

vate (Jun, myogenin) or repress (Fos) their own transcription. It has become evident



(see Smolen et al., 2000 for a review) that nonlinear interactions, positive and neg-
ative feedback within signaling pathways, and time delays which may result from
mRNA or protein transport, all need to be considered when modeling the operation
of genetic regulatory systems.

Two key approximations have been used to model genetic regulatory network: 1)
control is exercised at the transcriptional level, and 2) the production of gene product
is a continuous process, with the rate determined by the balance of gene activation
vs. repression and natural degradation (Rosen, 1968; Smolen et al., 2000).

Modeling gene networks using a system of coupled nonlinear differential equa-
tions for a purpose of reverse engineering, is a popular way to capture signaling
pathways since such models include reasonable (though somewhat simplified) as-
sumptions about the interactions between genes and natural degradation of gene
product. But because of their complexity it seemed impractical to use these mod-
els for large number of genes directly and it was therefore necessary to construct
a coarse-grained description of the system in order to reduce the number of model
parameters significantly. Mjolsness et al. (1999) used simulated annealing to fit a
recurrent neural network with weight decay to four clusters of yeast genes. Wahde
and Hertz (1999) used a genetic algorithm to solve reverse engineering problem on
four clusters of genes identified in rat CNS development (Wen et al., 1998).

In this paper we shall develop a similarity measure substantiated by the underly-
ing genetic network of a very general form that includes nonlinear effects and natural
degradation of gene product. The suggested algorithm can be used to determine sim-
ple regulatory signals and to estimate whether the similarity measure is reliable for a
given pair of genes. In Section 2 we introduce the nonlinear neural type network that
models the transcriptional controls in the system. In Section 3 we consider a simple
network of four interacting genes and demonstrate that the linear correlation coeffi-
cient (Pearson’s r) is a very poor prognosticator of gene interactions. Indeed, in the
examples considered the conclusions one would draw by using the linear correlation
as measure of similarity are exactly opposite to the actual interactions. We present

the details of a new similarity measure based on underlying transcriptional control



network in Section 4. We apply this algorithm to rat CNS gene expression data by

Wen et al. (1998) in Section 5. We conclude in Section 6 with some discussions.

2 Nonlinear model of transcriptional control

Following other authors (Smolen et al., 2000; Tyson and Othmer, 1978; Mjolsness
et al., 1991; Reinitz and Sharp, 1995; Wahde and Hertz, 2000) we choose to model
gene interactions using a set of coupled nonlinear differential equations.

We shall, therefore, assume that genes regulate one another via the neural network

of a general form:

diE,'
dt

= )\Zg (Fi(ailxl,...,aijx]-,...,amxn,bi)) —Ti(,u,)l'i, 1= 1,...,n, (1)

where z; are the expression levels (concentrations of gene product 7). 7;(u) are
natural gene product degradation rate functions; in what follows we shall assume
that 7;(u) = 7;, although vector p can express hyperbolic or sigmoidal kinetics of
gene product degradation. \; are the asymptotic maximum expression levels, defined
as

—00

when g = 1 during the entire time. The matrix A = [a;;] represents the regulatory
connection between genes. A positive [negative| value of a;; indicates that the jth
gene enhances [represses| the gene i. The parameters b; correspond to some bias
present in the system. The function g is a nonlinear monotonic sigmoidal activation

function. In what follows we use

g@) =1/(1+exp(-2)). 3)

Different choices of the signaling function produce qualitatively similar results since
the correct slope of the signaling function at its inflection point is achieved by rescal-

ing the function F', which represents the mechanism of gene activation (repression).



Under the assumption of cumulative action of the gene products of other genes for

activation and repression, we can assume (e.g. Smolen et al., 2000) that

E = Zaijxj + bz (4)
j=1
Under the assumption that gene activation (repression) occurs when one of the

gene product levels reaches a certain threshold, we can let

M; it |M; ils
E:{ if [M;] > my )

m; otherwise,

where M; = max(aj121, ..., T}, ..., AinTyp) and m; = min(a;1 1, ..., @5, ..., GinTy).
The specific form of function F' is not important for the clustering algorithm, but
would be crucial for finding genetic regulatory systems via reverse engineering.

So far the model considered is quite general except for the fact that compart-
mentalization and transport of macromolecules is not included within this simplified
model framework. In the analysis and algorithm below we shall also assume that
the time interval during which a gene is activated/repressed (the continuous interval
on which 0 < g(F;) < 1) is no longer than a typical time interval between gene

expression measurements.

3 Linear correlation measure for gene networks

In this section we consider the system (1) with a cumulative action (4) and show
that even in a very simple gene regulatory network the linear correlation measure is
misleading.

We assume that there are four genes in the system. Gene 3 acts as an enhancer
of both Gene 1 and Gene 2 and Gene 4 suppresses the transcription of both Genes
1 and 2. We shall explicitly specify the expressions of control Genes 3 and 4. We
assume that Gene 3 expression profile is given by z3(¢) = sint and Gene 4 profile is
x4(t) = sin((t — 1)/2) + 1 on the interval [0,15]. The expression profiles of Gene 1



and 2 obey (1) with (4), so that
A(t) = Alg(algxg(t) + avza(t) + bl) —nai(t), (6)
Ta(t) = Aog (6123$3(t) + a4 (t) + 52) — Ta2(1), (7)
where the parameters are given in Table 1.

Table 1. The parameters of the gene transcriptional control of (6) -(7). Gene 3 acts as an enhancer

of Genes 1 and 2; Gene 4 acts as a repressor of Genes 1 and 2.

ol A | Giz | Qia b; Ti
1140 |-40|-101]0.1
214 1|40 |-40|-1010.9

We integrate system (6)-(7) forward in time with initial conditions z; (¢t = 0) = 0.8
and z2(t = 0) = 0.1. Following Mohamad and Gopalsamy (2000) we discretized (1)
so that it has the same equilibria as the continuous equation.

We assume the uniform discretization with step h and rewrite (1) with (4) for
t € [mh,(m + 1)h] as

d . -
pr (:m (t)e Zt> = \iTie"lg (Z ;T + bi) (8)

J

Next we integrate (8) on [mh,t) and let ¢ — (m + 1)h. As the result we obtain the

discrete version of (1)

2™ = ¢y (h)z™ + (1 — qbz(h))g (Z a;; T + b,) , (9)

where ¢;(h) = e”"ih 2™ = z;(t = mh).
Mohamad and Gopalsamy (2000) noted that stability conditions and sufficient

conditions for exponential convergence of the solutions of (9) and (1) to equilibrium



are independent of . Such preservation of dynamics is lacking in standard numerical
methods. In integration we used A = 0.1, m = 1, M, M = 150 and then sampled
the resulting solution at £ = 15 equidistant points, which leads to the discrete time
series z1(t;) and z5(t;), j = 1, k. The resulting time series are shown on Figure 1a.
Figure 1b plots the time series for Gene 1 and Gene 2 normalized by their standard

deviation:
i(ty) — L (10)
where o; = 7 (2(t;) — Ti)?/k. The linear correlation coefficient r, calculated as

- Z?:o(ml(tj) — T7) (22(t;) — T3)
\/Ej(ﬂh(tj) —T1)? ) (22(t)) — T2)?

yields 7 = 0.12, which would be taken as the indication that the time series are

: (11)

uncorrelated, if the linear correlation were taken as a measure of similarity; whereas
according to the transcriptional model they are fully co-regulated (see also the sig-
nalling function g(F;) = g(F5) plotted in Figure 1b).

In the next example, Genes 1 and 2 have a very distinct regulation: Gene 3 acts
as an enhancer of Gene 1 only; Gene 4 acts as an enhancer of Gene 2 only. Table 2

represents the value of our test parameters in the system (6)-(7).

Table 2. The parameters of the gene transcriptional control in (6)-(7). Gene 3 acts as an enhancer

of Gene 1; Gene 4 acts as an enhancer of Gene 2.

il A | ais Qg bi T;
1111100 0 -10 | 0.1
21| 4 0 100 | -10 | 0.1

The initial values were chosen as z1(0) = z2(0) = 0.1. The time integration and
sampling were performed similarly to the previous example. The linear correlation

coefficient between the time series corresponding to Gene 1 and 2 is r = 0.98 showing
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Figure 1: Plots of the gene expression profiles of Genes 1, 2 3, and 4. The dynamics of gene
expression is governed by (6)-(7) with the parameters given in Table 1. The expression levels of
Gene 3 and Gene 4 are set to be sint and sin(t — 1)/2 + 1 correspondingly. Gene 3 acts as an
enhancer of Genes 1 and 2; Gene 4 acts as a repressor of Genes 1 and 2.

4 T T 2

T
e——e normalized Gene 1
————————— = normalized Gene 2
control M

Gene 3 ' “

that if the linear correlation were chosen as a similarity measure, Genes 1 and 2 would

be decided to be co-expressed. Figure 2 plots the resulting series and the signalling
functions g(F}) and g(F3). Notice, that there are time intervals where Genes 1 and
2 are oppositely regulated: Gene 1 is “down” while gene 2 is “up” on [4.3,5.1] and
the opposite is true on the interval [9.5,10.5]. In spite of such a different behaviour,
these two genes will be clustered together according to a similarity measure that

ignores the underlying transcription mechanism.

4 Similarity measure and clustering algorithm
based on change in transcriptional control

Under the assumption that the transcriptional control in gene networks obeys (1) we
can devise an algorithms for detecting co-expressed genes based on the similarity of

patterns of activation and repression that are represented by the signalling function



Figure 2: Plots of the gene expression profiles of Genes 1, 2 3, and 4. The dynamics of gene
expression is governed by (6)-(7) with the parameters given in Table 2. The expression levels of
Gene 3 and Gene 4 are set to be sint and sin(t — 1)/2 + 1 correspondingly. Gene 3 acts as an
enhancer of Gene 1; Gene 4 acts as an enhancer of Gene 2.
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g. The model (1) offers a natural similarity measure D between genes m and [

o %Z (fbm(tz) —;;mftm(tz) B xi(t;) “;\;’M(h)) _ (12)

Close to zero D indicates that two genes are co-expressed and D which is close to 1
indicates that two genes are oppositely expressed. Since the values of the natural gene
degradation rates 7; and the maximum expression levels ); are not known in advance,
it is not feasible to use (12) directly. Instead we suggest to use the properties of the
solutions of (1). The ith equation of the system (1) has simple analytical solution if

ether gene i is fully activated (g ~ 1) or repressed (g = 0):
zi(t) =~ z;(t,) exp(—7i(t — 1)), t>t,, (13)
where ¢, is the moment of gene suppression (g takes on values close to 0) and
zi(t) = A + (xi(te) — ) exp(—7;(t — t4)), t > t,, (14)

where t, is the moment of gene activation (g takes on values close to 1). The solution

between adjacent ¢, and t, can be found by smooth matching between z;(¢,) and
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z;(t,). Notice that the highest negative rate of change in gene product concentration
occurs at t = t,: min4;(t) = —7;x;(t,) and the highest positive rate of change occurs
at t = t,: max@;(t) = \(1 +7;) — z;(t,). Such maximum values of gene expression
rate of change identify the change in control and, therefore, in order to identify the
co-regulated genes we should compare moments of time when these changes take
place. Because of the discrete nature of data, the co-regulated genes can have the
highest expression rates shifted by one time interval with respect to one another.

The algorithm for determining such co-regulated genes becomes as follows:

1. Calculate the time derivatives for each of the gene expression time series using

forward or centered differences, e.g.

1i(t;) =~ (iltjn) —zi(ty)/ (G — ), i=1,k—1, (15)
Zi(te) = (@i(te) — zi(te—1))/(tk — te-1) (16)

Notice that by these definitions, if the forward differences are used for all j
except for j = k where the backward difference is used, we will always have
Z;(ty) = Z;(tg—1). This implies that the last approximation for the derivative
should be discarded as it carries no additional information. If the central
differences are used for all internal nodes with forward difference for the first
node and the backward difference for the last node, then the derivatives at all
nodes can be used. At the same time it is better to use forward (or backward)
differences for internal nodes if data is sparse (as in case of rat CNS development
data of Wen et al. (1998); see Sections 5 and 6 for further discussions).

2. Represent the expression control experienced by gene ¢ by a vector q' =

(40 - 4> ---q1,) such that
1 if Iz(t]) > max(:ii(tj_l), O)’ ;L'Z(tj) > -Z.'i(tj—{—l),
q; = —1 if 2;(t;) < min(z;(t;_1),0), Z(t;) < Zitj4a), (17)
0 otherwise

In the definition (17) we set Z;(ty) = #;(tx+1) = 0 in order for it to be applicable

for the values of ¢} and g;. The non-strict inequality for the node z;(t;41) takes
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care of a situation when several nodes are lying on the straight line of the local
maximum slope. In this case the definition (17) implies that the moment of

activation [repression| takes place at the leftmost point.

. Two genes m and [ are decided to be co-expressed if either ¢* = q;- for any
j = 1,k, or for any j such that q" # qj- either ¢/, = q;-,q;” = qé-ﬂ =0or
gt = q;-,q;-“ = qé-,l = 0. Similarly, two genes m and [ are decided to be
oppositely expressed if either ¢* = —qé- for any j = 1, k, or for any j such
that ¢* # —gj either ¢fiy = —q},¢" = ¢,y =0 or ¢ = ¢, ¢ = ¢j_; =
0. Table 3 gives the examples of co-expressed Genes 1 and 2, 2 and 4 and

oppositely expressed Genes 1 and 3 (also 2 and 3).

Table 3. Examples of ¢g-vectors for Genes 1, 2, 3 and 4. Genes 1 and 2 are co-expressed
and oppositely expressed with Gene 3. Gene 4 is co-expressed with Gene 2, but not with

Gene 1.

Gene | qo | q1 |92 | 93| s | 5 | 96 | 97| 98 | @ | Qo | Q1 | 12
1 o(,170)j]0(0j0}0|-1{0O0]0]| O 1 0
2 Oj1(0y0]0]0]|-1]0]07]0 1 0 0
3 0o(of-ry0jo0{o0j0}j1;0(00|-1 0
4 O(1(0,0]0|-1]0]0]0{|1 0 0 0

Our algorithm correctly recognizes the co-regulation of Genes 1 and 2 in the first

example of the previous section and detects the difference in the expression control

mechanisms in the second example. It is necessary to emphasize several points.

Firstly, as it follows from Table 3, it is feasible to have a situation when gene 7 is

co-expressed with gene j, gene k is co-expressed with gene 7, but not with gene j.

This drawback also occurs with other similarity measures (e.g. Euclidean norm or

linear correlation etc.) that define pairwise “distance” between expression patterns.

Such a situation implies that either link between 7 and j or between 7 and k is

accidental. It is easy to trace such a case with our algorithm. Secondly, additional
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sources of unpredictability may include external noise or errors in measured data
which lead to even less accurate derivative approximations (17). Notice that a small
error in data measurements may shift the maximum derivative value by one time
interval — this shift is already taken into account by our algorithm. If there is a
reason to believe that data is more significantly corrupted, a low-pass filter for data
smoothing (e.g. Savitzky-Golay filter (Savitzky and Golay, 1964)) could be applied
before clustering is attempted. Recently the singular value decomposition technique
has been successfully applied to eliminate noise and experimental artifacts from the
gene expression data (Alter et al., 2001)

One of the advantages of the suggested algorithm in comparison with other clus-
tering techniques is that it allows to distinguish between “co-expressed” and “co-
regulated” genes. These two terms are often used interchangeably, but there is a sig-
nificant difference between them. “Co-expressed” genes are activated or suppressed
at the same time; “co-regulated” genes have the same transcription factors acting as
enhancers or silencers. Two genes can be fully activated during the entire time span
of the experiment. We should consider them to be “co-expressed,” but there is not
enough evidence to judge that they have the same enhancers. On the other hand if
two genes were turned on and off simultaneously several times during the experiment,
we should assume that they are “co-regulated”. Since non-zero entries of q vector
represent the moments of time the genes in the cluster were switched on and off, we
can use it as the measure of whether the genes in that cluster are co-regulated. At
the same time too many nonzero entries in q may signal that the data is too erratic
(too noisy) to be analysed (the time series representing the gene expression changes
the sign of the slope between nodes at almost every time step). Heuristically, we
suggest to use the measure Q =) . |¢;| in a following way: (1) if @ < 3, then there
is not enough information to judge whether the genes in the corresponding cluster
are co-regulated; (2) if Q/k > 1/2, then the data are too corrupted to draw any
meaningful comparison. Otherwise, the genes in the same cluster can be assumed to

be co-regulated.
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5 Rat CNS development data

Wen et al. (1998) used reverse transcription-coupled PCR to produce a high-resolution
temporal map of fluctuations in mRNA expression of 112 genes during rat CNS de-

velopment in the cervical spinal cord. Many researches have used these data to

elucidate gene interactions (D‘haeseleer et al., 1999, 2000; Wahde and Hertz, 2000)

by clustering or reverse engineering techniques.

We applied our algorithm to the time series of all 112 genes. The tabulated values

of gene expression data consist of 9 time points: embryonic days 11, 13, 15, 18, 21,

and post-natal days 0, 7, and 14; and adult day 9. The complete set of genes that

are suggested to be co-expressed, oppositely expressed, co-regulated, or too noisy to

draw any conclusion are given on the web page
www. damtp.cam. ac.uk/people/ngb23/bio/cluster.html.

Our knowledge of the underlying biological system is insufficient to judge whether
the majority of the suggested interactions are meaningful. Figure 3 plots two gene
clusters where a co-regulation is suggested (Q = 4). Figure 4 plots two gene ex-
pression time series where the opposite regulation is suggested (Q = 4) and Figure
5 shows two co-expressed gene profiles where our analysis suggests that too much

noise is present (Q = 6). On these figures each gene expression profile is normalized
by (10).

6 Conclusions and discussions

D’haeseleer et al. (1998) compared different similarity measures used in clustering al-
gorithms. Linear correlation coefficient (Pearson’s r) detects only linear relationships
between genes and is a rather poor statistic for deciding whether an observed corre-
lation is statistically significant, or whether one correlation is significantly stronger
than another, since there is no universal way of computing the distribution of the ex-
pression levels. Non-parametric or rank correlation coefficient allows one to interpret

the significance of the observed correlation and generally is more robust than linear
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Figure 3: Clusters of co-regulated genes from rat CNS gene expression data (Wen et al., 1998)
normalized by (10).
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Figure 4: Pair of oppositely expressed genes from rat CNS gene expression data (Wen et al., 1998)
normalized by (10).
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Figure 5: Pair of co-expressed but noisy gene expression profiles from rat CNS gene expression
data (Wen et al., 1998) normalized by (10).

2
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correlation coefficient, but it uses only monotonic ordering of the expression levels,
which results in information loss. Mutual information based measure uses bins to
classify expression patterns, but that makes it inapplicable to continuous time series.
So far there is no theory how to choose the “best” similarity measure. Any attempt
to introduce such a measure without taking into account the underlying biology of
regulatory network will lead to clusters without clear biological significance attached.

We suggested a clustering algorithm based on the network of interacting genes
where transcriptional control is modelled by nonlinear differential equations taking
into account the signalling network and natural gene product degradation. Our
algorithm allows us to filter out the most essential feature of gene interactions that
is characterized by the pattern of gene activation/repression. Two genes are assumed
to be co-regulated if they are switched on and off simultaneously several times during
the experiment.

We demonstrated that the linear correlation measure fails to recognize co-regulated
gene patterns or detects similarity in uncorrelated gene expression data in a simple
model network of four interacting genes. We applied our algorithm to gene expres-

sion data on rat CNS development (Wen et al., 1998) and classified pairs of genes
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into several categories: co-regulated genes (genes with a similar activation/repression
that occurs several times during the experiment, such repeated simultaneous acti-
vation/repression can be taken as an indication of similar regulatory mechanisms),
co-expressed genes (genes with just a few but similar activations/repressions during
the experiment), oppositely expressed genes, and genes with expression levels too
noisy to draw any meaningful conclusion. One drawback of our method is the use of
approximated derivatives, that are more influenced by the noise in the system than
the gene expression data itself. As we already discussed, the method determines some
irregularities in the data, so that the noisy data can be discarded. In addition some
preliminary low-pass filtering can be used to smooth out the time series before clus-
tering is attempted. There is also some uncertainty which derivative approximation
to use: backward, centered or forward difference. For smooth enough data, where
measurements of gene expression are taken at small time steps it should not matter
which approximation is used. Otherwise, it is better to use forward (or backward)
differences, as they represent the slopes between successive data points.

Finally, it may appear that the replacement of the gene expression time series with
their q vectors, whose coordinates are mostly zeros, leads to a loss of information.
We would like to emphasise that while a particular gene 7 remains fully activated
(9(F;) ~ 1) or repressed (g(F;) ~ 0) its time development depends on the inherent
features of this particular gene defined by 7; and A; and not on other transcriptional
controls or products of gene expression in the system, therefore, in order to detect
the similarities in the control mechanisms between different genes, we need to be able

to separate them from other elements specific to a dynamics of a particular gene.
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