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Abstract
The Bose condensate model is used to elucidate the motion of the electron
bubble in superfluids. An asymptotic expansion is developed for steady
subcritical flow. Numerical integration of the coupled nonlinear Schrödinger
equations, that describe the evolution of the wavefunctions of the Bose
condensate and the impurity, is used to study the nucleation and capture of
vortex rings. Because an electron bubble is made oblate by its motion relative
to the condensate, the critical velocity for the vortex nucleation is reduced by
about 20%, in agreement with experiments.

PACS number: 0375F

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

This paper continues a series of papers devoted to the Bose condensate as applied to superfluid
helium; see Roberts and Grant (1971), Grant (1971), Grant and Roberts (1974), Jones and
Roberts (1982), Jones et al (1986) and Berloff and Roberts (1999, 2000a). These papers will
be referred to as I–VII respectively.

The deliberately introduced impurities can be fruitful experimental probes of the structure
and dynamics of superfluid helium. Of particular interest is the negative ion which consists
of an electron that, through its zero-point motion, carves out a soft bubble of about 16 Å in
radius in the surrounding fluid. Careri et al (1962) first suggested this form for the negative
ion in helium. The induced hydrodynamic mass of such a large structure greatly exceeds its
physical mass, and it therefore responds to applied forces as a much more massive ion would.
The surrounding helium exerts a net inward pressure across the surface, which is balanced by
the zero-point pressure of the electron.

Rayfield and Reif (1964) used an ion time-of-flight spectrometer to determine the dynamics
of ion-quantized vortex ring complexes. They observed that above some critical velocity, vc,
the ideal superflow around the ion breaks down, and the moving ions produce vortex rings
that then get trapped in their cores. The most extensive set of measurements of the nucleation
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of vortices by negative ions at elevated pressures came from McClintock group in Lancaster
University (see for instance Hendry et al 1988).

In spite of such extensive studies the mechanism of vortex nucleation is still not properly
understood. The main reason is that there is no truly microscopic picture of superfluid helium
available, so the appearance of the vortices ‘from nothing’, or intrinsic nucleation cannot be
derived from first principles. In the absence of such theory the dynamics of the vortices are
quite often derived from the Gross–Pitaevskii (GP) model which is assumed to be linked to
the condensate fraction of the superfluid. This model has been extensively studied particularly
for the motion of ions in a dilute Bose condensate. The condensate is a weakly interacting
Bose gas that, in the Hartree approximation, is governed by an equation for the single particle
wavefunction ψ(x, t) that was first derived by Ginsburg and Pitaevskii (1958) and Gross
(1963); see (1) below. Frisch et al (1992) were the first to suggest that the nucleation of
vortices takes place when the flow velocity around a moving object exceeds the local speed of
sound.

In paper VII, an asymptotic expansion was developed for the flow u round a positive ion
moving steadily with a velocity v that is subcritical, i.e., less than the velocity vc at which
the ion begins to nucleate vorticity; the expansion parameter was ε ≡ a/b → 0, where b is
the radius of the ion and a is the healing length (defined in section 2). Because vc is, for the
GP model, comparable with the velocity of sound, c, the effects of compressibility cannot be
ignored, and it was therefore necessary to generate many terms in this expansion. To observe
nucleation, numerical solutions of the condensate equations were derived. These elucidated
the underlying processes of boundary layer separation, through which the vortices emerged
from the healing layer surrounding the ion.

To study nucleation by the positive ion, it is necessary to model the ion in an ad hoc way,
by assuming that it is an infinite potential barrier, or by specifying an interaction potential that
makes the ion penetrable by the condensate to some degree (Winiecki et al 2000). There is no
such ambiguity in modelling the negative ion.

In this paper, we generalize paper VII to the more complicated problem of nucleation
by a moving electron bubble. By employing a series expansion suitable for u = O(c), we
determine vc in the limit ε → 0. We show that a moving bubble is oblate, and that this has
the effect of decreasing the critical velocity vc for vortex nucleation, below what it is for a
spherical ion. As the velocity of the electron increases, the shedding of vortex rings becomes
more and more frequent and irregular. The close proximity of some of the emitted rings allows
them to interact with one other and with the bubble. When a ring becomes smaller as a result
of this interaction, its velocity increases and it may catch up with the moving bubble. Since,
however, the radius of such a ring is less than the radius of the bubble and also because of
the axisymmetry of the system, the bubble does not capture the vortex. To observe a capture
event, we carried out two 3D numerical integrations. In the first the vortex ring approaches
a motionless electron and captures it; in the second a moving ion overtakes a vortex ring of
larger radius and is captured by it. In both cases the electron and vortex eventually start moving
together as a single ‘complex’.

2. The governing equations

In the Hartree approximation, the equations governing the one particle wavefunction of the
condensate, ψ , and the wavefunction of the impurity, φ, are a pair of coupled equations
suggested by Gross (1963) and Clark (1966):

ih̄
∂ψ

∂t
= − h̄2

2M
∇2ψ + (U0|φ|2 + V0|ψ |2 − E)ψ (1)
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ih̄
∂φ

∂t
= − h̄2

2µ
∇2φ + (U0|ψ |2 − Ee)φ (2)

where M and E are the mass and single particle energy for the bosons; µ and Ee are the
mass and energy of the electron. The interaction potentials between boson and electron and
between bosons are here assumed to be of δ-function form U0δ(x − x′) and V0δ(x − x′),
respectively. To lowest order, perturbation theory predicts such interaction potentials to be
U0 = 2πlh̄2/µ and V0 = 4πdh̄2/M , where l is the boson-impurity scattering length, and d is
the boson diameter. The normalization conditions on the wavefunctions are∫

|ψ |2 dV = N

∫
|φ|2 dV = 1 (3)

where N is the total number of bosons in the system. The healing length is defined by
a = h̄(2ρsV0)

−1/2 = (8π dψ2
∞)−1/2, where ρs = Mψ2

s = EM/V0 is the mean condensate
mass density.

Using the system (1), (2), Grant and Roberts (paper III) studied the motion of a negative ion
moving with speed v using an asymptotic expansion in v/c, where c is the speed of sound, so
that their leading order flow is incompressible. Treating ε ≡ (aµ/lM)1/5 as a small parameter
they calculated the effective (hydrodynamic) radius and effective mass of the electron bubble.

In this paper we shall suppose that the speed v of the electron is comparable with the
speed of sound c, so that effects of compressibility are retained. We shall rewrite (1), (2) in the
electron reference frame, in which the electron is at rest. We therefore replace E by E + 1

2Mv2

in (1) and Ee by Ee + 1
2µv

2 in (2). Also, in the electron frame, the fluid at infinity moves with
velocity v in the negative z-direction and we must therefore require that

ψ → ψ∞ exp

[
− iMvz

h̄

]
for x → ∞. (4)

The appropriate nondimensional forms of (1) and (2) are therefore

x → a

ε
x t →

(
a2M

h̄ε

)
t

v →
(

h̄

aM

)
U ψ → ψ∞ψ φ →

(
ε3

4πa3

)1/2

φ.

(5)

The nondimensional equations (1) and (2) may be reduced to fluid mechanical form by
the Madelung transformation ψ = R exp(iS/ε). Equations (1), (2) become

ε2∇2R − R(∇S)2 = (R2 + ε−2|φ|2 − 1 − U 2) + 2R∂S/∂t (6)

R∇2S + 2∇R · ∇S + 2∂R/∂t = 0 (7)

ε2∇2φ = (q2R2 − ε2k2
M − δ2U 2)φ − 2iδ∂φ/∂t (8)

solutions to which must satisfy

ψ → 1 for r → ∞
∫
V

|φ|2 dV = 4π. (9)

We do not apply the Madelung transformation to φ, because δ = µ/M is very small
(≈1.4 × 10−4), and can usually be neglected, whereupon, without loss of generality, φ may be
assumed to be real; we shall obviously discard the δ2U 2 term in (8). The other nondimensional
constants appearing in (6)–(8) are

q2 = µU0

MV0
= l

2d
εkM =

(
µEe

ME

)1/2

. (10)
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Taking ρ∞ = 145.2 kg m−3 (Donnelly 1991), we see that ψ∞ ≈ 1.48 Å−3/2, E/V0 ≈
2.18 Å−3. If a = 1 Å, then V0 ≈ 0.024 eV Å3 and d ≈ 1.82 Å and E ≈ 5.22 × 10−4 eV.
Assuming l = 0.6 Å (Burdick 1965), we find that ε = 0.187, q = 0.41 and U0 ≈ 2.87 eV Å3.
Since Ee ≈ 0.13 eV, kM ≈ 1.

3. The subcritical solution

The nondimensionalization of (1) and (2) highlights the parameter ε, which is fairly small and
which enters (6) and (8) as a square. This suggests that (1) and (2) may be solved to good
accuracy by an asymptotic solution in which we distinguish between three distinct regimes
of the solution: a ‘mainstream condensate’, a ‘mainstream electron’, and a ‘healing layer’
between them. After the solution in the mainstream condensate and the mainstream electron
have been found, the solution in a boundary layer can be used to match them. The thickness
of this healing layer at the bubble surface is of order a = O(ε). The success of the asymptotic
solution depends less on the smallness of a than on the smallness of a/b, where b is the bubble
radius. It is easy to estimate b. In the mainstream bubble, R in (8) can be neglected to leading
order, and (since δ � 1) this equation reduces to the Helmholtz equation ∇2φ + k2

Mφ = 0,
which in spherical coordinates (r, θ, χ) possesses the solution

φ = (k3
M/π)1/2 sin(kr)/kr. (11)

This solution is appropriate for a motionless bubble. It shows that the dimensionless radius,
b, of that bubble is b = π/kM ≈ π , (or 17 Å in physical units).

Subcritical flow is steady in the ion reference frame, and the Madelung equations are
therefore

ε2∇2R − R(∇S)2 = (R2 + ε−2φ2 − 1 − U 2)R (12)

R∇2S + 2∇R · ∇S = 0 (13)

ε2∇2φ = (q2R2 − ε2k2
M)φ. (14)

We seek solutions valid for small U and expand the mainstream functions as

R(r, θ) = R0(r) +
∞∑
i=1

U 2i
i∑

j=0

R2i,2j (r)P2j (cos θ) (15)

S(r, θ) =
∞∑
i=1

U 2i−1
i∑

j=1

S2i−1,2j−1(r)P2j−1(cos θ) (16)

φ = φ0(r) +
∞∑
i=1

U 2i
i∑

j=0

φ2i,2j (r)P2j (cos θ) (17)

where Pn(x) denotes the Legendre polynomial of order n.

The mainstream condensate. In the mainstream

φ0 = φ2i,2j = 0. (18)

To the leading order in ε, the mainstream flow is classical inviscid compressible flow, and is
governed by

R2 = 1 + U 2 − (∇S)2 R2∇2S + ∇R2 · ∇S = 0. (19)

We substitute the first equation of this system into the second to obtain an equation for S alone.
We then expand S in powers of U as in (16) to the U 11 term to get an estimate for the critical
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velocity of nucleation, Uc, at which the velocity on the equator exceeds the local speed of
sound. The first few terms in (16) become

S11 = −r − C11

r2
S31 = −2C3

11

3r8
+

8C2
11

5r5
+
C31

r2
(20)

S33 = −3C3
11

11r8
+

12C2
11

5r5
+

6C11

5r2
+
C33

r4
(21)

where Cij are constants of integration.

The mainstream electron. In the mainstream

R0 = R2i,2j = 0. (22)

The equations governingφ0 andφ2i,2j reduce in leading order to Helmholtz equations, to which
the physically acceptable solutions are

φ0 = a0j0(kMr) φ2i,2l = ailjl(kMr) (23)

where a0 and ail are constants, jν(z) is the spherical Bessel function (π/2z)1/2Jν+1/2(z), and
Jν(z) is the Bessel function of the first kind, of order ν and argument z. We define the edge
of the impurity bubble to be the locus, r(θ), of the smallest value of r for that θ at which φ

vanishes. We determine r(θ) as an expansion in powers of U

r(θ) = r0 +
∞∑
i=1

U 2i
i∑

j=0

(r2i,2jP2j (cos θ)) (24)

and we set each term of the Taylor expansion of φ(r(θ), θ) in U equal to zero. This determines
the coefficients in (24) in terms of kM, a0 and ail . The first few terms in the expansion (24) are

r(θ) = π

kM

(
1 + U 2 3a22

a0π2
P2(cos θ) + U 4

(
3a2

22(π
2 − 6)

5a2
0π

4

+
−21a20a22π

2 + 21a0a42π
2 + 6a2

22(π
2 − 6)

7a2
0π

4
P2(cos θ)

+
175a0a44(21 − 2π2) + 54a2

22(π
2 − 6)

35a2
0π

4
P4(cos θ)

))
+ · · · . (25)

This shows that the bubble surface is slightly flattened into a roughly oblate spheroidal form
during its motion.

The healing layer; matching the mainstream solutions. The boundary layer equations can
only be solved numerically, but we can deduce from them conditions sufficient to match the
mainstream solutions. To leading order, in expansions of the form

R = R0 + εR1 + · · · S = S0 + εS1 + · · · φ = εφ1 + · · · (26)

equation (13) gives

d

dξ

(
R2

0
dS0

dξ

)
= 0 (27)

where ξ is a scaled coordinate from, and normal to, the bubble surface: r ≈ r(θ) + εξ .
Equation (27) shows that R2

0 dS0/dξ is constant through the boundary layer and, since R0 → 0
for ξ → −∞, that constant is zero. Therefore, S0 = S0(τ ), where τ is a coordinate tangential
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to the bubble surface in the plane of symmetry, and increasing with θ , which it replaces because
of the non-sphericity of the bubble. The result applies at the next order, so that

S0 = S0(τ ) S1 = S1(τ ). (28)

This justifies applying the condition

∂S

∂n
= 0 on r = r(θ) (29)

to the leading order mainstream condensate. Here n is the outward normal to the surface (24)
of the electron.

Equations (28) show that, at the leading order in the boundary layer form of (12),
R(∇S)2 = R0(∂S0/∂τ)

2, so that, on omitting the suffices 0 on R0 and S0 and the suffix
1, on φ1, we have

d2R

dξ 2
− R

(
∂S

∂τ

)2

= (R2 + φ2 − 1 − U 2)R (30)

d2φ

dξ 2
= q2R2φ (31)

the latter equation being the leading order form of (14).
Condition (29) determines the integration constants C11, C31, C33, . . . of the mainstream

condensate (20), (21) in terms of kM, a0 and ail as

C11 = π3

2k3
M

C31 = −π(20a0π
2 − 27a22)

30a0k
3
M

C33 = −27π3(11a22 + 4a0π
2)

110a0k
5
M

. (32)

Multiplying (30) by dR/dξ , (31) by q−2 dφ/dξ adding and integrating, we obtain

1

2q2

(
dφ

dξ

)2

+
1

2

(
dR

dξ

)2

− 1

4
R4 +

1

2
R2(1 + U 2 − S ′(τ )2 − φ2) = constant. (33)

Strictly speaking partial derivatives should be used in (33) since φ and R depend on both ξ and
τ , but the τ dependence is purely parametric, through S. By applying (33) at ξ = +∞, where
R2 = 1 + U 2 − S ′(τ )2 according to (19) and at ξ = −∞, where R = 0, we obtain another
matching condition between the electron and condensate mainstreams:

1

2q2

(
∂φ

∂n

)2

= 1

4
R4 on r = r(θ). (34)

This condition is tantamount to the condition that the normal stress across the healing layer is
continuous; it defines coefficients a0 and ail :

a0 = πq√
2kM

a20 = − πq

2
√

2kM
a22 = − 3π3q

2
√

2(π2 − 3)kM
· · · . (35)

Finally, we can obtain an expansion of kM in powers of U from the normalization
condition (3) in the form∫ π

0

∫ r(θ)

0
φ2r2 sin θ dr dθ = 2 (36)

so that

k5
M = π3q2

4

(
1 − U 2 +

2061 + 3π2 − 14π4

20(π2 − 3)2
U 4 + · · ·

)
. (37)
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The maximum flow velocity is attained on the equator (r = r(π/2), θ = π/2) and to
leading order is

umax = f (U)

g(U)
(38)

where

f (U) = 1.5U + 1.706 98U 3 + 8.947 175U 5 + 56.220 32U 7 + 390.161U 9 + 2953.94U 11 + · · ·
(39)

and

g(U) = 1 + 0.327 5298U 2 + 1.544 062U 4 + 7.503 81U 6 + 36.2519U 8 + 181.9392U 10 + · · · .
(40)

The series (39) and (40) appear to converge, though very slowly. We may however regard them
as being asymptotic expansions in which the error made in retaining only the terms displayed
is less than the last term retained. Van Dyke (1975) has discussed in detail series of this type,
and Rica (1999) has employed them for the flow round a circular cylinder in the GP model. If
we set

umax = c(ρ) (41)

we obtain the critical velocity Uc ≈ 0.34. Our numerical calculations for ε = 0.18 give the
critical velocity Uc ≈ 0.32. (For other definitions of the critical velocity, see the appendix.)

4. Vortex nucleation

In this section we present results from numerical calculations for the axisymmetric, time-
dependent flow around the electron and the nucleation of vortex rings from it. We used a
different non-dimensionalization of (1), (2):

x → ax t → (a2M/h̄)t φ → (ε3/4πa3)1/2φ

v → (h̄/aM)U ψ → ψ∞ψ.
(42)

To keep the ion in the center of the computational box, we transform z to z − Ut .
Equations (1), (2) become

2i

(
∂ψ

∂t
− U

∂ψ

∂z

)
= −∇2ψ + (|ψ |2 + f |φ|2 − 1)ψ (43)

2iδ

(
∂φ

∂t
− U

∂φ

∂z

)
= −∇2φ + (q2|ψ |2 − k2)φ (44)

where k = εkM ≈ 0.185 and f = 1/ε2. The normalization condition (9) on φ becomes∫
|φ|2 dV = 4π/ε3. (45)

To observe and elucidate the process of emission of the vortex rings by the electron we
solved (43), (44) by adapting our finite-differences code previously used to solve the GP model
of the flow around a moving positive ion (paper VII). On the boundaries for the condensate
equation we used the Raymond–Kuo (1984) boundary conditions that allow sound ways to
escape. In time stepping, the leap-frog scheme was implemented with a backward Euler step
every 100 steps to prevent the even–odd instability. In space we used a fourth order finite
difference scheme together with a second order scheme close to the open boundary for both
condensate and electron wavefunctions. Because of the smallness of δ, 50 time steps were taken
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in advancing φ before the next time step for ψ was performed. A numerical integration with a
larger number of time steps in the impurity equation produced the same result. To minimize the
numerical dispersion and to account for a small amount of normal fluid present in superfluid
even at very low temperature a small dissipative term was added to (43); see Berloff (1999)
for details. The initial condition was chosen as ψ(x, t = 0) = 0 for |x − xB| < b but
ψ = tanh(|x − xB|/√2) otherwise. The initial condition for the impurity wavefunction was
taken as in (11) centered at xB. The size of the computation box for axisymmetric problem
in cylindrical coordinates (s, z) was [−50, 50] × [−100, 100] with a computational grid of
400 × 800 points. For the axisymmetric problem the electron wavefunction equation was
integrated in imaginary time (with leap-frog replaced by forward difference) and normalized
according to (45) before advancing the condensate equation. The code was tested against the
asymptotic solutions found in section 2.

As the velocity, U , increases, but stays subcritical no vortex rings are nucleated. The
bubble surface is flattened in accordance with (25). As U becomes supercritical the vortex
ring starts to form downstream of the equator on the surface of the bubble. The vortex ring
emission follows the same scenario as that observed by Berloff and Roberts (2000a) (paper VII)
for the positive ion. After the electron bubble emits a vortex ring, the flow associated with
the ring at first makes the mainstream velocity round the ion subcritical everywhere. The self-
induced velocity of the ring is less than the velocity of the electron, so that the ring gradually
falls astern of the electron and the total fluid velocity builds up until it again reaches criticality
on the surface of the impurity; see figure 1.

5. Vortex capture

Rayfield and Reif (1964) observed that, after the moving impurity produced vortex rings, it
becomes trapped in one of them. To simulate this process we performed full 3D integrations
of (43), (44) for the following configuration: the ion is at rest (U = 0) and the vortex ring moves
towards the impurity with its own self-induced velocity. The axis of the ring does not coincide
with the axis of the impurity. Such a condition is necessary to destroy the axisymmetry of the
system. Figure 2 shows the process of capture of the impurity by the vortex ring. Initially,
vortex ring of radius 25 and center at (−25, 5, 0) moves with velocity U ≈ 0.09 (paper IV)
towards the stationary negative ion situated at the origin. The Bernoulli effect of the flow
created by the moving vortex ring propels the ion and vortex towards one another with a force
approximately proportional to s−3, where s is the closest distance between them, similarly to
the process of capture of the ion by a straight line vortex (Berloff and Roberts 2000b). As
the electron becomes trapped in the vortex core, the flow round the electron bubble acquires
circulation that it previously could not possess. When an ion is captured by a straight-line
vortex, Kelvin waves are excited that travel along the vortex in each direction away from the ion.
In a similar way, we see from figure 2 that waves are set up on a circular ring as it captures the ion.

A similar capture process occurs in another configuration: an ion moving with velocity
0.25 catches up with a vortex ring of radius 30 moving in the same direction with velocity
0.073. The calculations were performed in two stages. First is to prepare the flow round
the ion (with a remote vortex ring); this is carried out in the ion reference frame. Since it is
moving subcritically, the ion experiences no drag. This solution is used as the initial condition
for the second phase, in which the interaction of the ion with the vortex is studied in the
laboratory frame, where the fluid at infinity is at rest. The results are shown in figure 3. It
can be seen that, as ion approaches the ring, they are attracted to each other and their motions
change. The capture process follows in a similar way to that shown for the stationary ion in
figure 2.
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(a) (b)

(c) (d)

Figure 1. The density plot in a cross-section of the solution of (43), (44) for the flow of the
condensate around a negative ion moving to the right with velocity 0.33. The dynamics of the
turbulent wake is shown through time snapshots (a) t = 80, (b) t = 230, (c) t = 334, and
(d) t = 440. The initial condition was taken as the subcritical flow with the velocity 0.28.

Figure 2. Capture of the stationary ion by the vortex ring: the results of numerical integration
of (43), (44) for the isosurface ρ = 0.2.
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Figure 3. Capture of the moving ion by the vortex ring: the results of numerical integration
of (1), (2) for the isosurface ρ = 0.2.

Figures 2 and 3 depict only the capture of the ion by a large ring which, we envisage,
may have been created by a different ion, moving supercritically in another part of the system.
Although it would not have been difficult to do so, we did not study ion capture by smaller
rings, a process relevant to situation in which an ion first nucleates a ring and is then swallowed
by it. This has been simulated for a positive ion, modeled as a penetrable sphere, by Winiecki
and Adams (2000) through the numerical integration of the GP equation, supplemented with
the calculation of the drag on the surface of the sphere. In our computations, the ion and
condensate are governed by their coupled equations, and no separate calculation of the drag is
required.

6. Conclusions

We have studied the motion of the negative ion through the Bose condensate using the Gross–
Clark model of the electron bubble. We have established by asymptotic analysis, similarly
to the case of the positive ion considered in paper VII, a critical velocity vc exists; the ion
generates vortex rings if its velocity v exceeds vc.

We have shown that vc for the negative ion is about 20% less than vc for the positive ion,
in agreement with the experimental findings of Zoll (1976); see also table 8.2 of Donnelly
(1991). This reduction may be attributed to the flattening of the electron bubble by its motion
through the condensate, as demonstrated in section 3 and by figure 1. The ‘equatorial bulge’ is
created by the difference in pressure between the poles and equator associated with the greater
condensate velocity at the latter than at the former. The existence of the bulge also enhances
these differences in velocity (and pressure), as compared with a spherical impurity, with the
result that, if v is gradually increased from zero, the flow ue on the equator of the electron
bubble attains the velocity of sound before ue does for the positive ion.

We numerically integrated the Gross–Clark model to demonstrate the nucleation of
vortices when v > vc. We also simulated the capture of the negative ion by a vortex ring.
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Appendix. Different criteria for criticality

In paper VII, we proposed that superfluidity is destroyed when

umax = c (46)

and if we used this criterion in place of (41) we would find Uc ≈ 0.35. Conversely, if
in paper VII the criterion (41) had been used for the positive ion we would have obtained
Uc ≈ 0.38 instead of the value Uc ≈ 0.41 quoted in paper VII for ε = 0, which was based
on (46). The corresponding result for flow past a cylinder (see section 4 of paper VII) would
then coincide with that of Rica (1999). It was pointed out to us by W F Vinen (private
communication) that the breakdown of superfluidity should also depend on the mass mion,
and that local criteria such as (41) or (46) are tenable only if mion = ∞. It is not clear (to
us) how a criterion dependent on mion could emerge from anything as simple as the GP or
Gross–Clark models. It should however be pointed out that, because in paper VII we specified
the velocity of the ion rather than the force on it, we were effectively assuming that mion = ∞.
Moreover, the induced hydrodynamic mass on the negative ion is so large that Uc should not
differ significantly from its value for mion = ∞.
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