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We consider the evolution and dissipation of vortex rings in a condensate at non-zero temperatures,
in the context of the classical field approximation, based on the defocusing nonlinear Schrödinger
equation. The temperature in such a system is fully determined by the total number density and
the number density of the condensate. The collisions with non-condensed particles reduce the radius
of a vortex ring until it competely disappears. We obtain a universal decay law for a vortex line
length and relate it to mutual friction coefficients in the fundamental equation of vortex motion in
superfluids.
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The processes of self-organization, formation of large-
scale coherent localized structures and interactions of
these structures with small-scale fluctuations are at the
heart of nonlinear sciences, ranging from classical tur-
bulence, superfluids, ultracold gases and Bose–Einstein
Condensates (BECs), to the formation of the early Uni-
verse. The key to our understanding of turbulence is
to elucidate physics of interactions between large scales
(eg. large eddies) and small scales (eg. turbulent fluctua-
tions), and to develop mathematical models that account
for the effects of small scales without actually solving for
them. According to the Landau description, superfluid
4He consists of the ground state and the excitations —
quasiparticles drifting on top of the ground state. In the
language of relativistic quantum fields this corresponds
to vacuum and matter (eg. gravity waves interacting
with a vacuum). Indeed, there is a close relationship
between superfluid hydrodynamics and quantum grav-
ity, so that at some level of hierarchy of parameters the
interactions of the quantum vacuum and matter can be
described by the defocusing nonlinear Schrödinger (NLS)
equation [1]. The dynamics of Bose condensates depends
on the energy exchange between the condensed and non-
condensed parts of the gas. Again, the NLS equation
(reformulated as the Gross–Pitaevskii (GP) equation [2])
describes equilibrium and dynamical properties of BEC
as well as the formation of BEC from a strongly degener-
ate gas of weakly interacting bosons [3, 4]. The formation
of the large-scale coherent localized ground state (con-
densate) from a non-equilibrium initial state has been
studied in a number of papers addressing different stages
of the formation: weak turbulence [5, 6], strong turbu-
lence in the long-wavelength region of energy space [7],
and finally, the formation of a genuine condensate [8, 9].
The related question about the effect of finite tempera-
ture on the BEC dynamics has also been addressed re-
cently [10].

The problem of a vortex tangle interacting with the
normal fluid (thermal cloud) is the key question in su-
perfluid turbulence. The Landau two-fluid theory of su-

perfluidity pre-dated the discovery of quantised vortex
lines and therefore omitted significant dynamical effects.
This was remedied— in the limit in which the mean spac-
ing between the vortex lines is small compared with any
other length scale of interest — by HVBK theory [11, 12].
In this limit, the superfluid vorticity is treated as a con-
tinuum, but the discrete nature of the vorticity gives rise
to an extra force on the superfluid component, arising
from the tension in the vortex lines. This term is absent
from the classical Euler equation of motion for an inviscid
fluid. The vortex lines also create a force of mutual fric-
tion between superfluid and normal fluid in addition to
the mutual friction included by Landau in his equations,
and represents the effects of collisions of the quasiparti-
cles with the vortex cores. Such forces were introduced
into the Landau model in an ad hoc way. This Letter
is the first attempt to study the effect of these collisions
quantitatively: we shall find the vortex line decay law

at non-zero temperature in the context of the defocus-

ing NLS equation. The NLS equation is a good starting
point, as the non-dissipative Landau two-fluid model can
be obtained from the equations of conservation of mass
and momentum for a one-component barotropic fluid us-
ing a general expression for the internal energy functional
of the density [13]. Through the Madelung transforma-
tion the NLS equation can be written in that form. Anal-
ogously, the transport coefficients in the Landau model
have been obtained directly from the NLS equation by
following the Chapman–Engskog expansion [14]. Note
that the separation of scales needed to carry out the
derivation of the Landau two-fluid model from the NLS
equation does not allow the inclusion of vortices as part
of the ground state. It is natural, therefore, to attempt
to derive the corresponding effects of the interactions of
vortices with the quasiparticles directly from the NLS
equation.

We consider the normalised defocusing NLS equation
for the complex function ψ [2]:

i∂tψ = −∇2ψ + |ψ|2ψ. (1)



The dynamics conserves the total number of parti-
cles N =

∫
|ψ|2dx, and the total energy E =∫ (

|∇ψ|2 + 1
2
|ψ|4

)
dx. We consider the uniform discrete

system of volume V = N 3, which is a periodic box on a
computational grid with 1283 discrete points.

Our goal is to determine the universal decay law for
the vortex line density in the entire range of tempera-
tures from 0 to the critical temperature of condensation,
Tλ. Our approach consists of three essential steps. We
aimed to: (1) achieve the thermal equilibrium state for
the given number of particles and given energy, starting
from a non-equilibrium stochastic initial condition for the
wavefunction ψ; (2) introduce a vortex ring into this state
and follow its decay via interactions with non-condensed
quasiparticles; (3) relate the decay rate to the tempera-
ture at equilibrium, where we derive the expression for
the relative temperature, T/Tλ, as a function of the total
number density, ρ = N/V , and the number density of
the condensate, ρ0.

We performed large scale numerical simulations of
Eq. (1) starting from a strongly non-equilibrium initial
condition[7], where the phases of the complex Fourier am-
plitudes ak(t) =

∫
ψ(x, t)e−ip·x dx are distributed ran-

domly at t = 0. Here the momentum p takes quantised
values p = (2π/N )n with n = (0, 0, 0), (±1, 0, 0), · · ·.
The time evolution consists of thermal equilibrium with
a quasiparticle cascade from high energies to low ener-
gies in the wave number space until the thermadynamical
equilibrium is reached with some portion (ρ0 ≡ |a0|2/V )
of particles occupying the zero momentum state (gen-
uine condensate) and the rest of the non-condensed par-
ticles being distributed according to the Rayleigh–Jeans
equilibrium distribution [16], modified by the presence of
nonlinear interactions with the condensate [9]:

|aeq
p 6=0|2 =

T

ωB(p)
, (2)

where T is the temperature and ωB(p) is the Bogoli-
ubov dispersion relation (see below). An ultraviolet cut-
off for this distribution appears naturally through the
spatial discretization of the NLS equation. The nu-
merical scheme consists of fourth-order finite difference
discretization in space and fourth-order Runge–Kutta
in time, so it is globally fourth-order accurate. This
scheme corresponds to the Hamiltonian system in the
discrete variables ψjkn, such that iψ̇jkn = ∂H/∂ψ∗

jkn,

for j, k, n = 1, ...,N and where H =
∑

jkn

(
ψ∗

jkn[ 1
12

Ψ2 −
4
3
Ψ1+

15
2
ψjkn]+ 1

2
|ψjkn|4

)
with Ψ2 = ψj+2,k,n+ψj−2,k,n+

ψj,k+2,n + ψj,k−2,n + ψj,k,n+2 + ψj,k,n−2 and Ψ1 =
ψj+1,k,n + ψj−1,k,n + ψj,k+1,n + ψj,k−1,n + ψj,k,n+1 +
ψj,k,n−1.

The thermodynamic description of the condensation
process has been obtained in [9] by adapting the Bo-
goliubov theory of a weakly interacting Bose gas [17] to
the classical system (1). We follow the same basic idea

to derive expressions for the energy and non-condensed
number density from the discretised energy, H , written
in terms of the Fourier amplitudes ap as

H =
∑

p

K2(p)a
∗
pap +

1

2V

∑

p1,p2,p3,p4

a∗p1
a∗p2

ap3
ap4

δp1+p2−p3−p4
,

(3)
where δp is the Kronecker delta symbol and

K2(p) =
2

3

3∑

i=1

sin2(pi/2)(7 − cos(pi)). (4)

The Bogoliubov transformation bp = upap − vpa
∗
−p,

such that up = 1/
√

1 −Q2
p and vp = Qp/

√
1 −Q2

p with

Qp = [−K2−2ρ0+ωB(p)]/ρ0 diagonalises the term in (3),
which is quadratic in a0, to

∑
p

′
ωB(p) b∗pbp, where

∑′
p

excludes the p = 0 mode. Here ωB(p) =
√
K2

2 + 2ρ0K2

is the Bogoliubov-type dispersion relation.
Using the equilibrium distribution of the non-

condensed particles (2) (here we neglect the effects of the
anisotropy introduced by our finite-differences scheme)
the non-condensed number density can then be expressed
in terms of the basis used in this diagonalisation as

ρ− ρ0 =
T

V

∑

p

′K2(p) + ρ0

ω2
B(p)

. (5)

The discretised energy density H/V in the new basis
takes the form

H

V
=

1

2

[
ρ2 + (ρ− ρ0)

2
]
+
T

V

∑

p

′
1. (6)

The Eqs. (5)–(6) are analogous to Eqs. (8)–(9) of [9] but
modified for the discrete Hamiltonian, H . Given the en-
ergy density, H/V , and the total number density, ρ, one
can determine the temperature, T , at equilibrium and the
number density of the condensed particles, ρ0, from Eqs.
(5) and (6). The condensate fraction ρ0/ρ as a function
of the energy density H/V is shown in FIG.1. This figure
can be compared with FIG.2 of [9] for the spectral rep-
resentation of the total energy. The analytical formulae
(5)–(6) predict the subcritical behaviour of condensation,
whereas the numerics does not support this conclusion,
as shown in the insert of FIG.1. We use a linear approx-
imation for small ρ0 to determine the critical maximum
energy for condensation as shown in the insert. This en-
ergy is then used to determine the critical temperature
for condensation Tλ (= T for minH/V for which ρ0 = 0)
from (5)–(6). We found a phenomenological formula that
determines T/Tλ as a function of ρ0 and ρ as

T

Tλ

= 1−
(
1 − α

√
ρ
)ρ0

ρ
− α

√
ρ
(ρ0

ρ

)2

, (7)

where α is the only fitting parameter that we found as
α = 0.227538. The insert in FIG.1 shows the graph of



FIG. 1: (colour online) Condensate fraction, ρ0/ρ, as a func-
tion of the energy density as obtained from the numerical
simulations (points) and from the analytical expressions (5)–
(6) (solid line). The inserts show (a) the plot of T/Tλ as
a function of ρ0/ρ, obtained using Eqs. (5)–(6) or Eq. (7)
and (b) subcritical condensation predicted by Eqs. (5)–(6)
(black line), the linear approximation used to obtain the crit-
ical temperature of condensation (gray (red) line), and nu-
merical calculations (blue dots). The total number density is
ρ = 1/2.
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T/Tλ as a function of ρ0/ρ for ρ = 1/2. Eq. (7) gives an
excellent fit to the values computed from (5)–(6) across
all the values of ρ0 and ρ.

In order to analyze the decay of the vortex line length
at non-zero temperatures, we insert a vortex ring into a
state of thermal equilibrium and follow its decay due to
the interactions with the non-condensed particles. The
condensate healing length, which determines the size
of the vortex core, is calculated based on the density
of the condensate, and in our non-dimensional units is
ξ = 1/

√
ρ0. In healing lengths, the radius of the ring

is set to R0 = 10. The new initial state is ψv(t =
0) = ψeq ∗ ψvortex, where ψeq is the equilibrium state
and ψvortex is a wavefunction of the vortex ring. The
vortex line length, L, is calculated as a function of time
with high frequencies being filtered out from the field ψ,
according to ãp = ap ∗ max(

√
1 − p2/p2

c, 0), where the
cut-off wavenumber is chosen as pc = 10(2π/N ). The
first important conclusion of our numerical simulations
is that at all temperatures, the square of the vortex line
length decays linearly with time,

dL2

dt
= −γ(ρ, T/Tλ), (8)

where γ does not depend on t. FIG. 2 shows this depen-
dence for various temperatures. The actual isosurfaces
of the decaying vortex line are shown in the inserts.

This result agrees with predictions of the HVBK theory
for superfluid helium [11] according to which the funda-
mental equation of the motion of a vortex line, vL, is

FIG. 2: (colour online) The decay of the square of the vortex
line length as a function of time for various T indicated next
to the graphs. The fit to the linear function is shown by
the gray (red) lines. The inserts show isosurface plots of the
vortex line (for filtered fields ψ; see text) for T = 0.52Tλ at
time=130 (left) and time=1300 (right); between these two
times the vortex line length is reduced by a factor of 2. The
perturbations to the vortex line due to collisions with non-
condensed particles are clearly seen on the left insert. These
collisions generate Kelvin waves that also radiate energy to
sound. The total number density is ρ = 1/2.
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given by (see also page 90, Eq. (3.17) of [18])

vL = vsl +αs′× (vn − vsl)−α′s′× [s′× (vn − vsl)], (9)

where vsl is the local superfluid velocity that consists of
the ambient superfluid flow velocity and the self-induced
vortex velocity ui, vn is the normal fluid velocity, s is
a position vector of a point on the vortex and s′ is the
unit tangent at that point. Mutual friction parameters
α and α′ are ad hoc coefficients in the HVBK theory
that are functions of ρn, ρ, and T only. Eq. (9) is a gen-
eral and universal equation used to follow the evolution
of three-dimensional vortex motion in an arbitrary flow.
When formulated for a single vortex ring Eq. (9) reads
dR/dt = −αui, where ui = κ[log(8R/ξ) − δ + 1]/(4πR)
and δ is the vortex core parameter. For the GP vortices
δ ≈ 0.38 [2]. In dimensionless units used in our paper
ui = [log(8R) − δ + 1]/R. After integration of the equa-

tion for Ṙ we get αt = (R2
0 − R2)/[2(log(8R̂) + δ − 1)],

where R̂ is the mean radius of the ring. When this is com-
pared with (8) we get the following relationship between

γ and α: γ = 8π2(log(8R̂) + δ − 1)α. From our numer-
ics we obtained a general result valid across all ranges
of temperatures and total densities: γ ≈ Kρ(T/Tλ)2,
where K ≈ 68, see FIG.3. Note that for a GP condensate
T/Tλ ≈ ρn/ρ to the first order (see insert (a) of FIG.1),
so alternatively, we can write γ ≈ K1ρn(T/Tλ) Thus, we
found that the mutual friction coefficient in condensate
superfluids is given by α ≈ K2ρn(T/Tλ).

The existence of the transverse force on superfluid vor-
tices which is parametrised by α′ has been a subject of



FIG. 3: (Color online) Values of γ/ρ as a function of tempera-
ture T/Tλ for various values of the total number density ρ de-
picted in various shades of gray (in various colours): ρ = 1/2
(dark (red)), ρ = 1/4 (light (green)) and ρ = 3/4 (medium
(blue)). The plot of the quadratic fit γ/ρ = 68(T/Tλ)2 is
given by the dashed line. The relative temperature is calcu-
lated using Eq. (7). The insert shows the distance travelled
by a vortex ring as a function of time for T/Tλ = 0.27 (red
dots – distances calculated using dz/dt = ui, black line us-
ing numerics). Curves depart when the vortex ring becomes
small in radius and the analytical formula is no longer accu-
rate approximation of the vortex velocity.
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much debate in mid-1990s, when calculations of the clas-
sical Magnus force applied to superfluid vortices have
been offered and argued about [19]. The criticism is
based on the observation that the classical hydrodynamic
equations are inapplicable in the vortex core. Whether or
not the details of the non-classical vortex dynamics are
crucial to the existence of the transverse force is still an
open question. The estimate of α′ can be obtained from
our numerical procedure as following. Eq. (9) written
for a distance travelled by a single vortex ring takes form
(see Eq. (3.53) on page 107 of [18]) dz/dt = (1 − α′)ui.
We compared the distances travelled by a vortex ring
at various temperatures obtained numerically with the
distances travelled by a vortex ring in the absence of
the transverse force according to the analytical formula
dz/dt = ui, where ui = ui(R(t)) and R(t) varies with
time according to (8). The insert of FIG.3 shows these
distances for T/Tλ = 0.27. Our calculations fail to de-
tect any significant presence of the transverse force for
any temperature considered: the deviation from the an-
alytical curve is insignificant within the accuracy of (8).
We plan to perform a more thorough analytical and nu-
merical study of transverse force from a single phonon
acting on a single vortex in context of the GP model in
future.

In summary, we considered the effect of temperature
on the decay of vortex line length via interactions with
non-condensed particles in the context of the defocusing
NLS equation. We related the obtained decay law to
the mutual friction coefficients in the HVBK theory. It

has been suggested that the emission of sound by vor-
tex reconnections and vortex motion is the only active
dissipation mechanism responsible for the decay of su-
perfluid turbulence. The decay of superfluid turbulence
via Kelvin wave radiation and vortex reconnections was
studied in the framework of the GP equation [20] at near
zero temperature, via collision of two vortex rings, and
confirmed that in the Kelvin wave cascade, where en-
ergy is transferred to much shorter wavelengths with a
cut-off below a critical wavelength, the vortex line den-
sity can be described by the famous Vinen equation [21]

d(L/V )/dt = −χ(L/V )2. It has also been shown [22] that
the presence of localized finite amplitude sound waves
greatly enhances the dissipation of the vortex tangle, es-
sentially changing the decay law to exponential decay.
This Letter complements the existing Kelvin wave cas-
cade scenario by considering an opposite limit when there
are no reconnections, and the decay mechanism depends
only on the energy exchange with non-condensed parti-
cles. This mechanism exceeds the energy transfer via the
Kelvin wave cascade.

Finally, following a referee suggestion, we would like
to emphasise that the effects of finite temperature on
a condensate and on the dynamics of coherent struc-
tures in BECs (such as matter-wave solitons and vor-
tices) have been extensively studied recently (see e.g.
[23]). These studies couple the GP equation (which now
describes only the condensate part) to an equation for
the thermal cloud (a semiclassical kinetic equation, the
Bogoliubov-de Gennes equation, etc.). Our approach is
fundamentally different as we use fully classical and self-
consistent treatment of the interactions in the context of
a single NLS equation with the wavefunction ψ describ-
ing both condensed and non-condensed parts of a super-
fluid. The shortcomings of our approach when applied to
a real bosonic system are in inability of the NLS equa-
tion to describe any effects coming from highly energetic
but scarcely occupied modes and in the replacement of
the Bose distribution of the population of excited modes
by Eq. (2). To which extent these shortcomings change
the quantitative characteristics of interactions in a real
bosonic system remains the subject of further studies.
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