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Abstract
The Gross–Pitaevskii (GP) equation admits a two-dimensional solitary wave
solution representing two mutually self-propelled, antiparallel straight line
vortices. The complete sequence of such solitary wave solutions has been
computed by Jones and Roberts (Jones C A and Roberts P H 1982 J. Phys.
A: Math. Gen. 15 2599). These solutions are unstable with respect to three-
dimensional perturbations (the Crow instability). The most unstable mode has
a wavelength along the direction of the vortices of the same order as their
separation. The growth rate associated with this mode is evaluated here and
it is found to increase very rapidly with decreasing separation. It is shown,
through numerical integrations of the GP equation that, as the perturbations
grow to finite amplitude, the lines reconnect to produce a sequence of almost
circular vortex rings.

PACS numbers: 03.75.Fi, 47.37.+q

1. Introduction

The experimental realization of the Bose–Einstein condensation in trapped alkali-metal gases
at ultralow temperatures has stimulated a tremendous interest in the production of vortices and
vortex arrays and theoretical investigations of their structure, energy, dynamics and stability
(for a comprehensive review see [4]). The main theoretical tool for these studies is the
Gross–Pitaevskii (GP) model which represents the so-called mean-field limit of quantum field
theories. The same equation has been the subject of extensive studies also in the framework
of superfluid helium at very low temperature. In this case the GP model is assumed to be
linked to the condensate fraction of the superfluid, although the resulting theory is at best a
qualitative description of superfluid helium.

This is the ninth in a series of papers devoted to modelling flows in a Bose condensate.
Reference will be made to the fourth and fifth papers in the sequence [6, 7]. In contrast to
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the atomic condensates, where the material lies in a trap and is significantly non-uniform, this
sequence of papers, including the present paper, considers only uniform backgrounds.

Superfluid turbulence is the focus of many experimental and theoretical studies [3]. This
manifests itself as a tangle of quantized vortex lines. The dynamics of the tangle depends
crucially on the interactions of the vortex filaments. These have been studied by using
the classical model of vortices in an incompressible Euler fluid. This omits, however, two
mechanisms that are very relevant to the superfluid tangle.

First, as Vinen [21] argues, emission of sound by a vortex tangle is very significant in
superfluid turbulence. This process is completely removed by the main assumption of classical
vortex theory: ∇ · v = 0, where v is the superfluid velocity. The dynamics of vortex filaments
in a compressible fluid is not understood as well as that for the incompressible case. The
scattering of sound by compressible Euler fluids has, however, been the subject of several
recent investigations (see e.g. [5]).

Second, the processes of severance and coalescence of vortex lines are centrally important
for the study of superfluid turbulence, but these are expressly forbidden by the Kelvin–
Helmholtz theorem, according to which vortex lines are frozen to an Euler fluid and cannot
change their topology. In an Euler fluid, the processes have been successfully simulated
numerically by restoring viscosity. This step is disallowed in a superfluid and the only way to
defeat the theorem is through ad hoc procedures. For example, it was supposed by Schwarz
[20] that, whenever one vortex filament comes within a distance � of another filament,
reconnection will always occur and that otherwise reconnection will not happen. A precise
way of determining � is not known, but its value can greatly affect the reconnection rate in
a vortex tangle. Moreover, the angle at which the vortex filaments approach one another is
undoubtedly an important factor in determining whether they reconnect or not; a clear set of
reconnection rules is lacking.

The advantage of GP theory in comparison with the classical approach is that it gives
superfluid vortex lines their own unique core structure. At the same time, it provides a
mechanism for the severance and coalescence of vortex lines, and includes sound propagation,
so that the acoustic emission from a vortex tangle can be evaluated. Koplik and Levine [8, 9]
used numerical simulations of the GP model to study the reconnection of, and the interaction
between, straight-line vortices and vortex rings. In particular, they witnessed the annihilation
of vortex rings of similar radii. Recently Leadbeater et al [12] elucidated the loss of energy
to sound emission during vortex ring collisions. Their calculations suggested that the sound
emitted during reconnections is a significant decay mechanism for superfluid turbulence.

In this paper, we first study the linear stability of a vortex pair. This is a two-dimensional
(2D) structure that can, in GP theory, be represented by a wavefunction ψ0(x, y, t) which
is independent of the coordinate z and has two zeros at y = ± 1

2h, representing vortices
separated by a distance h. The phase of ψ0 increases by 2π round one zero and decreases
by 2π round the other corresponding, in the hydrodynamic interpretation of ψ0, to a pair of
antiparallel vortices (sometimes called ‘point vortices’) that move uniformly with speed U in
the x-direction as a solitary wave, i.e., ψ0 = ψ0(x − Ut, y), where U is obtained by solving
the GP equation in 2D:

2iU
∂ψ0

∂x
= ∂2ψ0

∂x2
+
∂2ψ0

∂y2
+

(
1 − |ψ0|2

)
ψ0. (1)

(Here, and frequently in what follows, we use dimensionless variables such that the unit length
corresponds to the healing length a, the speed of sound is c = 1/

√
2 and the density at infinity

is ρ∞ = 1. Later we shall write ψ0 = u0 + iv0, where u0 and v0 are real.) Solutions of this
form were first reported by Jones and Roberts [6] who determined the entire sequence of such
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solutions and their associated energy per unit length E and momentum per unit length P , both
of which decrease to zero as h → 0:

E = 1

2

∫
|∇ψ0|2 dV +

1

4

∫ (
1 − |ψ0|2

)2
dV (2)

P = 1

2i

∫
[(ψ∗

0 − 1)∇ψ0 − (ψ0 − 1)∇ψ∗
0 ] dV. (3)

Multiplying (1) by x∂ψ∗
0 /∂x and integrating by parts, Jones et al [7] showed that

E = 1

2

∫ ∣∣∣∣∂ψ0

∂x

∣∣∣∣
2

dV. (4)

They located a critical value hc ≈ 1.7 of h, at which the sequence lost or gained vorticity. For
h < hc, the sequence has no vorticity, although solitary disturbances exist as finite amplitude
sound waves in which the two minima of |ψ0| are no longer zero. As h → 0, U approaches the
speed of sound c and the acoustic solutions merge with the phonon branch of the dispersion
curve.

Jones and Roberts did not examine the stability of their 2D solitary waves. It is known
that the vortex pair in an incompressible Euler fluid is prone to the so-called ‘Crow instability’
[2]. Kuznetsov and Rasmussen [10] proved that in the long-wavelength limit, where k is small
compared with h, both the vortex pair and solitary acoustic solutions are unstable, but they
determined neither the boundaries of instability nor the wavelength at which the growth rate
is maximal. In this paper we first solve the linear stability problem for all h with the particular
aim of finding the growth rate of the Crow instabilities as a function of the separation h. We
study the subsequent evolution of the instabilities to finite amplitude by integrating the GP
equations in 3D. This parallels the corresponding analysis by Moore [13] for a classical fluid,
but differs in that healing becomes important as the instability brings one vortex core close to
the other. Unlike the classical case, reconnection can, and does, occur so that the final result
is a sequence of almost circular vortex rings.

2. Linear stability of the vortex pair

We return to the GP equation in the reference frame moving with the vortex pair

−2i
∂ψ

∂t
+ 2iU

∂ψ

∂x
= ∇2ψ + (1 − |ψ|2)ψ. (5)

We seek solutions of (5) in the form ψ(x, y, z, t) = ψ0(x, y) + ψ̂(x, y, z, t) where ψ̂ is
infinitesimal. The resulting linearized GP equation determines the stability of the vortex pair.
We separate ψ̂ into real and imaginary parts, û and v̂, and focus on separable solutions of the
form

û = u(x, y) exp[σ t − ikz] + u∗(x, y) exp[σ t + ikz] (6)

and similarly for v̂, where ∗ stands for complex conjugation; the functions u and v are governed
by

∇2
xyu + 2U

∂v

∂x
+

(
1 − 3u2

0 − v2
0 − k2

)
u− 2u0v0v = 2σv (7)

∇2
xyv − 2U

∂u

∂x
+

(
1 − u2

0 − 3v2
0 − k2

)
v − 2u0v0u = −2σu (8)

and, since the perturbation must vanish at great distances from the vortex pair, we have

u→ 0 v → 0 for s ≡
√
x2 + y2 → ∞. (9)
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The linear stability problem posed by (7)–(9) has features in common with the
corresponding classical stability problem analysed by Crow [2]. In particular, it follows
from (7)–(9) that σ 2 is real. This may be demonstrated by introducing adjoint variables ū and
v̄ that obey (9) and share the same eigenvalue spectrum. We multiply (7) by ū, (8) by v̄, add
corresponding sides, integrate over the interior of the cylinder s = S, apply the divergence
theorem, discarding the resulting surface integrals for S → ∞ by an appeal to (9). We then
find that ū and v̄ must obey (7)–(9), but with σ replaced by −σ . In short, if σ is an eigenvalue
of (7)–(9), so is −σ . Since all the coefficients in (7) and (8) are real, σ and σ ∗ are both
eigenvalues. Thus in all cases σ 2 is real.

The eigenvalues of (7)–(9) belong to two distinct types of instability, termed the symmetric
and the antisymmetric modes:

symmetric : u(−x, y) = −u(x, y) v(−x, y) = v(x, y)
antisymmetric : u(−x, y) = u(x, y) v(−x, y) = −v(x, y).

Kuznetsov and Rasmussen [10] demonstrated that all long-wavelength antisymmetric modes
are stable and all long-wavelength symmetric modes are unstable. In fact, they showed that
the dispersion relation for the antisymmetric perturbation is

σ 2 = (kU)2
(

1 − E
PU

)
< 0 k → 0 (10)

and the growth rate of symmetric perturbation is given by

σ 2 = − E
∂P/∂U k

2 > 0 k → 0 (11)

where E and P are the energy and momentum per unit length of the vortex pair; see (2) and
(3). These have been evaluated by Jones and Roberts [6] and Jones et al [7] for the entire
vortex sequence, from the KP1-soliton for P → 0 to a widely separated pair of vortices for
P → ∞. In the latter case it was found that, in dimensional units,

E ∼ ρ∞κ2

2π

[
ln
h

a
+ α

]
(12)

P ∼ ρκh U ∼ κ

2πh
(13)

where a is the healing length and α is the vortex core parameter determined numerically by
Pitaevskii as α ≈ 0.38 [14]. To compare (11) with the result obtained by Crow [2] we rewrite
(12) using the cut-off method [19]. According to this method we estimate the vortex cut-off
parameter δ by comparing the velocity of a ring of radius R given by the cut-off formula

U = κ

16πR

∫ 2π−aδ/R

aδ/R

1

sin 1
2θ

dθ = κ

4πR
ln

4R

aδ
(14)

with the analytical result [18]

U = κ

4πR

(
ln

8R

a
− 1 + α

)
. (15)

This comparison gives us

ln 2δ = 1 − α. (16)

Using (16) as a definition of the cut-off parameter for the GP model we can write (12) as

E ∼ ρ∞κ2

2π

[
ln
h

2aδ
+ 1

]
(17)
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which together with (13) and (11) implies that, for symmetric modes,

σ 2 ∼
(
κ

2πh

)2

k2

[
ln
h

2aδ
+ 1

]
k → 0. (18)

This establishes that they are unstable for all sufficiently large wavelengths.
It is possible here to compare (18) with the classical theory of Crow [2], in which δ is the

cut-off employed when vorticity is assumed to be confined to filaments. Crow assumed the
uniform core vortex model, but his derivation is easily adapted to a vortex pair with other core
structures. He found that, provided ka � 1, where a is the core radius,

σ 2 =
( κ

2πh2

)2 [
1 + khK1(kh) + 1

2 (kh)
2ω(akδ)

]
× [

1 − khK1(kh)− (kh)2K0(kh)− 1
2 (kh)

2ω(akδ)
]

(19)

where K0 and K1 are modified Bessel functions, and

ω(akδ) = −2
∫ ∞

akδ

(cosu + u sinu− 1)
du

u3
∼ ln(akδ) + γ − 1

2 + O(akδ)2. (20)

Here γ ≈ 0.577216 · · · is Euler’s constant. When we approximate (19) for kh � 1, we obtain
(18).

Now we address the question of whether the expression (11) has a more general meaning
and is valid for the classical core models, so that we can adopt (18) as the general expression
for the growth rate of large wavelength perturbations. For the uniform core model we relate
(14) to the analytical expression for the velocity of a vortex ring of radius R � a:

U = κ

4πR

(
ln

8R

a
− 1

4

)
. (21)

This comparison defines the cut-off parameter as 2δ = e1/4. The energy of two antiparallel
uniform core vortices is

E ∼ ρ∞κ2

2π

[
ln
h

a
+

1

4

]
(22)

which, when written using the cut-off parameter, becomes

E ∼ ρ∞κ2

2π

[
ln
h

2aδ
+

1

2

]
. (23)

The momentum and velocity of the vortex pair are given by (13). When the right-hand side of
the expression (11) is evaluated using expressions (13) and (23) the result becomes

− E
∂P/∂U k

2 =
(
κ

2πh

)2

k2

[
ln
h

2aδ
+

1

2

]
(24)

which differs from (18) by 1
2 . The nature of this difference together with a brief description

of the cut-off method are given in the appendix.
The linear stability problem (7)–(9) was solved numerically for various h. The region of

instability and the maximum growth rate were determined in the kh-plane (see figure 1). The
stability boundary for the classical hollow core vortices is depicted in figure 1 as well.

3. Nonlinear evolution of the instability

As the unstable perturbation grows in amplitude, it can no longer be described by linear
equations such as (7)–(9). To determine its subsequent evolution it is necessary to undertake
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Figure 1. Stability boundary (dots and solid lines—for superfluid solitary waves, bold solid
line—for classical hollow-core vortices) and maximum growth rate (dashed line) for (7)–(9).

direct numerical integrations of the GP equation. One can then understand the evolution in
the following way. As the instability grows, it brings some segments of one line into closer
proximity with corresponding segments of the other line, until the minimum distance between
the lines reaches a critical value, approximately equal to the critical value (h = hc) at which
vorticity is lost on the solitary wave sequence (see section 2). At this moment, the Kelvin–
Helmholtz theorem is inapplicable and reconnection occurs; curves of zero ψ on one line join
with the curves of zero ψ on the other to form closed elongated vortex rings that later relax
to become approximately circular. Before doing so, each ring oscillates in its fundamental
mode, being alternatively prolate and oblate; the amplitude of this oscillation diminishes as it
radiates acoustic waves.

This scenario is supported by direct numerical simulations, performed with the same
numerical method as in our previous work [1]. In these computations we follow the evolution
of a vortex pair moving in the x-direction in a computational box of dimensions Dx = 60,
Dy = 60,Dz = 120. The xy-faces of the box are open to allow sound waves to escape;
this is achieved numerically by applying the Raymond–Kuo technique [15]. The faces
z = 0 and z = Dz are reflective. To introduce an initial perturbation that does not favour
any particular wavelength we start with the initial condition

ψ(x, y, z, t = 0) = ψ0(x, y − 3) ∗ ψ0(x, y + 3) (25)

where

ψ0(x, y) = [1 − exp(−0.7r1.15)] exp(iθ) (26)

is an approximation for the rectilinear vortex and r and θ are polar coordinates, such that
x = r cos θ and y = r sin θ . The wavelength of the instability for h = 6 was about 30,
corresponding to k ≈ 0.2, in good agreement with the result of the linear stability analysis,
which gave k ≈ 0.19. This wavelength determines where the vortex filaments approach each
other and reconnect as vortex rings (see figure 2).

The reconnections are accompanied by the emission of sound waves and rarefaction
pulses, resulting in line loss that is approximately one fourth of the total vortex line length,
thus confirming that acoustic losses are significant and should be taken into account when
modelling superfluid turbulence.

The results of our computations for other h are summarized in table 1 which gives energy,
momentum and wavelength % of the perturbation for the initial field and energy, momentum,
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Figure 2. The isosurface ρ/ρ∞ = 0.2 for two antiparallel vortices, initially distance h = 6 apart,
which propel each other away from the viewer. An instability develops along the axes of these
vortex lines and the lines reconnect to form circular vortex rings.

Table 1.

h % Einit Pinit Ering Pring Rring % of line lost

8 53 819 2664 663 2612 11.5 32
6 33 450 1244 393 1204 7.8 26
3.6 16 167 362 125 228 3.3 35
2.2 14.6 107 201 – – – 100

and radius of the resulting vortex ring and the amount of vortex line lost as a percentage of
the initial vortex line length. To reduce the time taken by an initial perturbation to grow,
we took the initial ψ to be ψ0(x, y+ + h/2) ∗ ψ0(x, y− − h/2) where ψ0 is given by (26),
y± = y ± 0.1 cos kz andψ0 and k is the wavenumber for which the growth rate is a maximum
according to the linear theory of section 2. Note that if h is small (though larger than the
critical distance for the 2D vortex pair) the vortices annihilate each other and the energy is
carried away as sound waves with the intermediate formation of 3D rarefaction pulses.

The increase in the percentage of line lost with h seen in the first two entries of table 1
may be explained by the following heuristic argument. If segments of length % from the vortex
pair are used to create a ring of radius R, the momentum ρκπ% of the segments must exceed
the momentum ρκπR2 of the ring, the difference being the momentum of the acoustic waves
radiated during the reconnection process. Taking % = 2π/k where k is the wavenumber of the
fastest growing Crow instability for given h, we see therefore that

2h/k � R2. (27)

The line loss by the vortex pair is 2% = 4π/k of which 2πR is recovered by the ring. The
fractional line loss is therefore 1−Rk/2, and is smallest when equality holds in (27). Therefore

minimum fractional line loss = 1 −
√
kh/2. (28)

This simple formula for k found by maximizing (19) gives 35% for h = 8, which is in good
agreement with the 32% given in table 1. The minimum fractional line loss increases with
h if ka � 1.

4. Conclusions

We studied the Crow instability for two antiparallel vortex lines obeying the GP equation.
Linear stability analysis was used to determine the maximum growth rate of the instability and
the region of instability. Through numerical simulations of the GP equation, we showed that
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as perturbations grow to finite amplitude the lines reconnect to produce a sequence of almost
circular vortex rings. We evaluated the resulting line loss.
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Appendix. Classical Crow instability

Crow used the cut-off method to determine the growth rate, σ , of the instability in an
incompressible fluid, for all kh and for ka � 1, where a is the radius of the vortex core
[2]. This approximate method is based on the Biot–Savart law determining the fluid velocity,
v(x), in an incompressible fluid from an assigned vorticity ω(x):

v(x) = 1

4π

∫
ω(x′)× (x − x′)

|x − x′|3 dx′. (29)

It is supposed that the vorticity is confined to filaments of infinitesimal cross section so that
(29) reduces to a line integral

v(x) = κ

4π

∫
ds′ × (x − x(s ′))

|x − x(s ′)|3 (30)

where s is the arc length on a filament and κ is the vorticity contained within it.
To determine the velocity, U(x), of the filament it is necessary to evaluate (30) for each

point on the filament x(s), but the resulting integral (30) diverges. In the cut-off method the
offending segment |s − s′| < aδ of the integral is arbitrarily removed, where δ is the cut-off
parameter, the value of which depends on the core structure. This step is denoted by [δ]:

U(s) = κ

4π

∫
[δ]

ds′ × (x(s)− x(s ′))
|x(s)− x(s ′)|3 . (31)

We give two examples. First, for our vortex pair, no divergence arises because ds′ and
x(s)− x(s ′) are parallel when s′ and s are on the same line. Thus

U = κh

4π

∫ ∞

−∞

ds

(h2 + s2)3/2
= κ

2πh
. (32)

In the second case, a vortex ring of radius R (�a), (31) gives (14).
An alternative way of defining a cut-off is through the expression for the energy of a

vortex line assembly. This is most conveniently expressed as in section 153 of [11] as

E = ρ

8π

∫ ∫
ω(x) ·ω(x′)

|x − x′| dx dx′ (33)

which, when the vorticity is concentrated into filaments is

E = ρκκ ′

8π

∫
[δ̄]

∫
[δ̄]

dx · ds′

|x(s)− x(s ′)| dx dx′ (34)

and [δ̄] signifies that the segment |s′ − s| < aδ̄ is removed. Returning to our two examples,
(34) gives

E = ρκ2

2π
ln
h

2aδ̄
(35)
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for the vortex pair and

E = 1

2
ρκ2R

(
ln

4R

aδ̄
− 2

)
(36)

for the thin-cored ring.
The cut-offs δ and δ̄ must be chosen differently. In order that the Hamiltonian relation

U = ∂E/∂P (37)

is obeyed by the ring, where P = ρκπR2 is its momentum (impulse), it is necessary to hold
the volume 2π2Ra2 of the ring constant in the differentiation (37) [16, 17]. This requirement,
which implies that

ln(δ/δ̄) = 1
2 (38)

is relevant even for the hollow core vortex, since any change in volume would imply that p dV
work is done on the system at infinity, with a concomitant change in E that would cause (37)
to fail. Relations (35), (36) and (38) show that

E = ρκ2

2π

(
ln
h

2aδ̄
+

1

2

)
(39)

E = 1

2
ρκ2R

(
ln

4R

aδ̄
− 3

2

)
. (40)

Result (40) agrees with known facts for the uniform-core
(
ln 2δ = 1

4

)
and hollow-core(

ln 2δ = 1
2

)
rings [11, 19]. (The uniform-core vortex is one in which ω/* is constant

where ω1φ is the vorticity and 1φ is the unit vector in the direction of increasing φ and (* ,
φ, z) are cylindrical coordinates; see section 165 of [11].) Similarly, for the vortex pair,
U = ∂E/∂P , where

P = ρκh (41)

is the momentum per unit length.
The expressions of Crow for the growth rates of his antisymmetric and symmetric modes

of instability reduce, in the limit kh→ 0, to (10) and (11) above, but not with the expression
(39) for E . In its place stands

Ê = ρκ2

2π

(
ln
h

2aδ̄
+ 1

)
. (42)

It seems to us that this puzzling difference may be connected to the different frame of reference
used in deriving (42). Crow used the co-moving frame, in which (42) translates to the energy
Ẽ = Ê − PU :

Ẽ = ρκ2

2π
ln
h

2aδ̄
. (43)

For the reason why this does not coincide with (39) we offer the following speculation.
In the laboratory frame (the frame in which the fluid is at rest at infinity) the streamfunction

ψ(x, y) for a hollow core vortex pair is

ψ = κ

2π
ln
r2

r1
(44)

where r1(r2) is a distance from
(
0, 1

2h
) (

from
(
0,− 1

2h
)); since these distances change with

time,ψ is implicitly a function of t. The streaklines, i.e. the curves parallel to the instantaneous
direction of the velocity v = ∇ × (ψ1z) are coaxial circles surrounding the cores, the surfaces
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of which are (for a � h) r1 = a and r2 = a. The energy per unit length is (see section 157
of [11])

E = 1
2ρ

∫
v2 d3x = 1

2ρκ(ψs1 − ψs2) = ρκψs1 (45)

where ψs1(ψs2) is the value of ψ on the core surface, r1 = a (r2 = a). This correctly reduces
to (39) for ln 2δ = 1

2 .
Consider now the flow as seen in the co-moving frame. This consists of two parts: an

interior region composed of (non-circular) streamlines surrounding the vortices and an exterior
region where the steamlines start and finish at ∞, where v = −U1x . The two regions are
separated by an oblate dividing streamline, x = ± [

tanh(y/h)− y2 − 1
4h

2
]1/2

, on which
ψ̃ = 0 (see the figure on p 221 of [11]). Here

ψ̃ = −Uy + ψ = − κ

2π

(
y

h
+ ln

r1

r2

)
(46)

is the streamfunction in the co-moving frame.
Since the interior fluid is, as seen in the laboratory frame, perpetually carried along by the

vortex in its motion, it has a special significance. Its energy is (cf (45))

ρκψ̃s1 = ρκ2

2π

(
ln
h

a
− 1

2

)
= ρκ2

2π
ln
h

2aδ
= Ẽ . (47)

The same argument applies with minor modifications to vortices with other internal structure.
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