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Condensate models for superfluid helium IT with nonlocal potentials are con-
sidered. The potentials are chosen so that the models give a good fit to
the Landau dispersion curve; i.e., the plot of quasi-particle energy E versus
momentum p has the correct slope at the origin (giving the correct sound
velocity) and the roton minimum is close to that experimentally observed. It
is shown that for any such potential the condensate model has non-physical
features, specifically the development of catastrophic singularities and un-
physical mass concentrations. Two numerical examples are considered: the
evolution of a radially symmetric mass disturbance and the flow around a
solid sphere moving with constant velocity, both using the nonlocal Ginsburg-
Pitaevskii model. During the evolution of the solution in time, mass concen-
trations develop at the origin in the radially symmetric case and along the
axis of symmetry for the motion of the sphere.

1. INTRODUCTION

One of the most useful ways of describing superfluid helium at zero
temperature begins with Schrodinger’s equation for the one-particle wave
function 1. Since liquid helium is a strongly correlated system dominated
by collective effects, the form of the Hamiltonian in Schrodinger’s equation
cannot be derived starting from the first principles. At zero temperature *He
has large interatomic spacing and low density, which suggests a description
in terms of a weakly interacting Bose gas for which such a derivation can be
made rigorous. Continuum mechanical equations for *He are usually built
on the assumption that a Bose condensate gives the exact description at zero
temperature.

The imperfect Bose condensate in the Hartree approximation is gov-
erned by equations that were derived by Gross and by Ginsburg and Pitaevskii.
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In terms of the single-particle wavefunction 1 (x,t) for the N bosons of
mass m the time-dependent self-consistent field equation is

2
it = 5+ [ [, 0T (x - x]) dx, )

where U(|x — x'|) is the potential of the two-body interactions between
bosons. The normalization condition is

[ 192 ax=N. (2)
1%

For a weakly interacting Bose system this ‘nonlocal model’ (as we shall
call it) is simplified by replacing U(|x — x'|) with a ¢ - function repulsive
potential of strength Wj. This does not alter the nature of the results since
the characteristic length of the weakly interacting Bose gas is larger than
the range of the force [Gross (1963)]. Equation (1) for the “local model” is

h2

ihipy = —%V%ﬁ + Wo|y|*. (3)

If F, is the average energy level per unit mass of a boson, we write
U = exp(imE,t/h)y, (4)

so that (3) becomes

h2
ihW; = —%VZII/—I—WOWF\I!—mE,,\I!. (5)

This model enjoys not only the advantage of comparative simplicity but
also describes qualitatively correct superfluid behaviors. We may mention
the annihilation of vortex rings [ Jones and Roberts (1982) ], the nucleation of
vortices [ Frisch et al. (1992) ], vortex line reconnection [ Koplik and Levine
(1993, 1996) |, and studies of superfluid turbulence [ Nore et al. (1997) ].
At the same time several aspects of the local model (5) are qualitatively
or quantitatively unrealistic for superfluid helium. The dispersion relation
between the frequency, w, and wave number, &, of sound waves according to
(5) is
B\ 2
w? = 2k? + (—) k2, (6)

2m
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where
1
c= (Wopx)?/m, Poc = mE, [Wo. (7)

This shows1 that the velocity, ¢, of long wavelength sound waves is propor-
tional to p2 (here we have replaced the bulk density, p, by the total den-
sity, p). That this is unrealistic is seen from the experiments on Griineisen
constant Ug = (pdc/cdp)r, which shows that, in the bulk (i.e., on length-
scales long compared with the healing length, x/c), the fluid behaves as a
barotropic fluid (p  p?) with v = 2.8 [ see Brooks and Donnelly (1977) and
references therein |. Also, the dispersion curve (6) has no roton minimum.
At best, (6) describes the phonon branch of the excitation spectrum. The
healing length and correlation length in real helium are known to be quite
different, so making the local model (5) quantitatively inaccurate, and less
satisfactory than its counterpart for superconductivity, the Ginsburg-Landau
equation.

For some time there has been a belief that, as soon as the nonlocal
model (1) with a realistic two-particle potential, U, that leads to phonon-
roton-like spectra is solved, the properties of superfluid helium will be well
represented [see, for example, Bogoliubov (1947), Gross (1963), Pomeau and
Rica (1993), Lifshits and Pitaevskii (1978) ]. The minimum requirements
on such a potential would be the correct position of the roton minimum and
the correct bulk normalization, [U(|x — x'|) dx' = mE,/ps- Actually such
a fit can be obtained with a variety of potentials, and in Sec. 2 we describe
some general properties of these.

Our goal is to investigate the applicability of (1) with a potential that
adequately represents the dispersion curve. We shall show that, for liquid
helium having the correct Landau dispersion curve, solutions of equation (1)
develop non-physical mass concentrations. This indicates that the assump-
tions underlying the derivation of the equation break down and that higher
order nonlinearities must be introduced. A new equation that lacks this
shortcoming of model (1) will be considered in a subsequent paper [ Berloff
and Roberts (1999)].

2. NONLOCAL POTENTIALS

Equation (1) transformed by (4) and the scaling

x — h t—>Lt (8)

(2m2E,)12 ™ omE,
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has the dimensionless form

_22-%_‘1’ — vt u(1- / [9(x') U ([x — x]) dc). 9)

The bulk normalization condition is

/U(|x—x'|)dx' —1, (10)

or

4 [ U(r)r? dr =1, (11)
/

because U(|x—x'|) = U(r). We get the dispersion curve by linearizing about
the uniform state. We write ¥ = 1+ ¥’ and consider the plane waves of the
form ¥’ = expi(wt — kz). Then the dispersion relation can be written as

o_ 1,4 1
w = 4k + 2kF(k), (12)
where
o
F(k) = 4n / sin(kr)U (r)r dr. (13)
0
We require
w,(krot) =0, w(krot) = Wrot, (14)

where (krot, wrot) is the position of the roton minimum on the k—w dispersion
curve, which in dimensional units is found from experiments [ Donnelly et
al., 1981 ] to be kyo; = 1.926A ", and w = 8.62K°kg/h. By taking the limit
of (12) for £k — 0 and using the normalization condition (11) the sound speed
is found to be 1/4/2 as in the local model. By relating the known value of
the sound speed at low k£ in He II, 238 m/s, to its nondimensional value
the healing length of the model (9) is fixed as [L] = 0.471A, and therefore
krot = 0.907 and wyo; = 0.158.
Jones (1993) considered the potential of the form

U(x—x|) =U(r) = (a+ BA*r? + fyA4r4) exp(—A?r?), (15)
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where A, a, 3, and -y are parameters that could be chosen to give excel-
lent agreement with the experimentally determined dispersion curve. The
structure and dynamics of the vortices of such a nonlocal model differ con-
siderably from those predicted by the local model (5). The approach of the
fluid density [see (20) below] for a rectilinear vortex to the uniform state
is oscillatory rather than monotonic, similar to the observations of Sadd et
al. (1997). The energy per unit length is considerably reduced compared
with that of the local model, and is in better agreement with the results
of experiments [ Jones (1993)]. Less satisfactory is the behavior at small
k. The controversy in the literature [ see Brooks and Donnelly (1977) and
references therein | about the form of the dispersion curve at low momenta
has by now been settled, and it is generally accepted that the dispersion
relation has a positive k® term (the curve at the origin is concave up) until
the pressure reaches some threshold at which the second derivative of w at
the origin changes sign. The potential (15) implies a negative k% term. This
can be remedied if the term 7 exp(—B?r?) is added to the expression (15) for
U. The coefficients  and B can be chosen so that the resulting dispersion
relation has, for instance, the same k3 term as the Bogoliubov spectrum (6).
At the same time, to obtain the roton minimum, B must be much smaller
than A, and this makes the potential more nonlocal and less amenable for
numerical work.

The undoubted advantage of nonlocal models such as (9) over the local
model of liquid helium is their ability to achieve a good fit to the measured
dispersion curve. But a serious question arises: “Can such nonlocal model
be used for practical purposes?” For example, can it model flow created
by a positive ion (modeled as a solid sphere) moving in superfluid at zero
temperature? Unfortunately the answer is, “No,” as will be demonstrated
below.

By examining (12), (13), and (14) it is straightforward to see that F'(k)
increases from zero with the slope 1 and becomes negative after reaching a
zero at the point where the dispersion curve crosses the free particle spectrum
w = $k?. Note, that from (12), (13), and (14), F (ko) < 0 and F’ (ko) < O.
This means that it is possible to find nonnegative functions f(r), such that
JsC f(r)U(r)r?dr < 0, and others for which this integral is positive. For
example, consider f(r,k) = 1+ cos kr. Then by (11) and (13)

o0
47r/f(7‘, E)U(r)r?dr =1+ F'(k). (16)
0
Obviously F'(k) > 0, for sufficiently small k, and by differentiating (12) we

can show that
F'(kpot) = —(3kigy + 4w?,,) /2k2,, < —1. (17)

rot rot
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More generally, there exists a continuous nonnegative function f(x'), such
that

/f(x’)U(|x—x’|)dx' <0 (18)

in some finite volume for any nonlocal potential that produces a dispersion
relationship that has a roton minimum close to that experimentally observed.
Also notice (18) implies that U(r) must take negative values on some interval.
Therefore, for some separations particles are attracted to each other. The
conditions we imposed on the potential do not guarantee that for small
distances r U(r) is positive (particles repel each other) as is observed in
experiments. For example, the family of potentials given by (15) is repulsive
at small distances if A > 0.58 and is attractive otherwise. In what follows
we consider only realistic potentials with repulsion at small distances.

3. MASS CONCENTRATIONS

The nonlocal model (9) can be cast into hydrodynamic form through
the Madelung transformation [e.g. Donnelly 1991, Jones and Roberts 1982]

U (x,t) = R(x,t)e ), (19)
If we introduce the fluid density p and velocity u by
p= R2(X, t)a u= V¢(X,t), (20)

the transformation (19) in (9) gives the continuity equation

dp
Lt . = 21
T +V.(pu) =0 (21)
and the Bernoulli equation
op 1 ,
- = 22
ot ) =0, (22)

where the chemical potential p(p) is given by

: VP, (23)
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The first term on the right hand side corresponds to the “mechanical chem-
ical potential” and the second term to the “quantum chemical potential”
that has no analog in standard fluid mechanics. Notice that the expression
for the chemical potential (23) can be determined as a variational derivative
of the internal energy per unit volume

2
wip) =24 L[ [ ot oute-xhax 1] ey

from the total energy W of the system,

W:/'wdx, 5W:/,u5pdx,

so that
= dw/dp. (25)

Using (23), (24), and (25) we can find the variational derivative of the me-
chanical pressure in the “semiclassical limit” (kA — 0) as

6_p_ 5_”_1/ ! _ ! !
=g = [ P~ ' (26)

This means that if integral on the right hand side of (26) is negative the
pressure p decreases when the mass density increases, this phenomenon leads
to the development of mass concentrations.

If, as it should, the Bernoulli equation (22) is a genuine momentum
equation, then it will imply

p((‘m _8%')_ op Ol (27)

Bt " Yoz;) T Tow T oa;

Although it seems hard to achieve this for (23), we show in the appendix
that (27) is true for a nonlocal potential that is a sum of §—functions and
their derivatives. In (27), p is the thermodynamic pressure and II;; are the
remaining stresses. Notice that for (27) to be hyperbolic the pressure p must
be a strictly increasing function of p, which is not the case if (18) can hold
true in some volume.

The virial theorem proved to be useful in establishing the blow-up of the
solutions of the focusing nonlinear Schrédinger equation with zero boundary
conditions [Zakharov, 1976]. Next we demonstrate that the virial theorem is
illuminating in analyzing the nonlocal model. Equation (9) is a Hamiltonian
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system with the following integrals being conserved: mass excess
M= (P -1ax (28)

momentum

P- 2%/[(\1;* _ 1)V — (T — 1)V dx, (29)

and energy
1 1
E= §/|V\If|2dx+1/(1— [0?) [1—/|\IJIQU(IX—X’I)dX’ dx.  (30)

The derivation of (29) and (30) for the local model is given in [Jones and
Roberts, 1982]. The expression for the energy depends on the normaliza-
tion condition (10). For unbounded volume the first two integrals although
convergent are improper integrals meaning that their values depend on the
shape of the volume of integration even as that volume tends to infinity.
Without loss of generality we shall assume that the initial disturbance only
displaces mass so that M = 0, otherwise we can make an adjustment in the
transformation to dimensionless variables to make the change in mass zero.
We consider the virial tensor

() = /XQ(\W —1)dx, (31)

in D dimensions. It can be shown using the original equation (9) and M =0
that

% =4F + %(D —2) /(1 — [T(x)|?) [1 — / | O [2U(|x — x'|) dx'| dx.
(32)

We integrate this equation twice to obtain:

¢ ¢
I=2Et>+Bt+ A+ / dt'/E(t") dt’ (33)
0 0
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where we have written

€)= 50 ~2) [0~ 1060 [1— [106)0(x - <) ] dx.

A =1(0), B =T'(0). (34)
In the case D = 2,

I = A+ Bt +2FEt?. (35)

If the energy is negative then the right-hand side of (35) will become arbi-
trarily large and negative in a finite time. But if we consider the solution
of (9) in a finite container of volume V' with specified boundary conditions
then I is bounded from below by — [;, x? dx. This contradiction establishes
the possibility of collapse of the solution of (9) in two dimensions. For D # 2
collapse in the finite container can only be assured if {(¢) < 0 and in addition
one of the following conditions is satisfied:

(1) E < 0,
(2) E = 0 and B<0, (36)

3 E > 0 and B§—4\/E(A+/x2dx).
1%

The virial theorem does not establish that catastrophic singularities must
occur, but it explains why, in the course of numerical calculations, persistent
mass concentrations develop in regions where (9) loses its hyperbolicity in
accordance with (18).

4. NUMERICAL EVIDENCE

To illustrate the development of mass concentrations, we solved (9)
numerically in two cases. The first is the propagation of a spherically sym-
metric disturbance in density; the second is the flow round a moving sphere.
The potential was taken in the form (15) with A = 0.9,a = 3.9762,5 =~
—6.2501,7 ~ 1.4746, so that the potential gives a good fit to the dis-
persion curve and at the same time is strongly repulsive at small particle
separations. One of the main considerations in choosing the integration
scheme was that outgoing sound waves should escape from the integration
box. We used finite differences and the Raymond-Kuo radiation bound-
ary condition [ Raymond and Kuo (1986) ]. In time stepping the leap-frog
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scheme was implemented with a backward Euler step every 100 steps to pre-
vent the even-odd instability. In space we used a 4th order finite difference
scheme together with a 2nd order scheme close to the boundary. The Ray-
mond - Kuo method uses the three previous time steps near the boundary
to predict the direction of wave propagation. In two dimensions the value of
1 on the boundary depends on the phase velocity C = (Cy, Cy) through

oy oY o
5+ Crg +Cy 3y = (37)

Assuming that the phase velocity does not change rapidly in At,C, and Cy
are approximated by using the earlier interior values of :

oU 9 O\ 2 o\ 2]
Cw—‘aa—x/ (a?) *(a—y) ! (38)

av T oU\2 /00 \?]
Cy—‘a@/ (5) +(@) - (39)

All derivatives are approximated by leap-frog differences unless points on
the boundary must be included, in which case the scheme must be changed
[Kreiss, 1966]. On the right boundary (say) we have

or 1

ey G s Uy 2000 ). (40)

After the phase velocity is calculated we exclude the inwardly moving waves
by setting the corresponding component of phase velocity equal to zero.
Then we predict the value on the boundary from (38). On the right boundary
(38) becomes

1 1= CpAt/Ax g1 20,At/ Az
N+Li ™ 1 4+ CpAt/Az NTLI T 1 — CoAt/ Az N

At/ AyCy . .
“ T Goagar Wi~ Tvig)- (4D

The numerical scheme used does not conserve energy but the induced dis-
sipation of energy is very small. When the reflective boundary conditions
were used instead of the radiative ones, the energy loss due to the dissipative
character of the scheme did not exceed 1075% per 1000 time steps.
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Nore et al. (1993) studied the acoustic behavior of the local model and
demonstrated that the dispersive effects due to the quantum stress tensor
become noticeable for some range of the width-to-height ratio of the trav-
eling pulse. Similar dispersion takes place in the nonlocal model (9). To
minimize such a dispersion we introduce a small dissipation into equation
(9). The most physically relevant way of doing this for the local model was
suggested by Carlson (1996). In real helium, even in the low temperature
range, normal fluid is present that is coupled to the superfluid and, through
its viscosity, provides a high wavenumber sink. When modified to include
mutual friction with the normal fluid, the superfluid Euler equation becomes
(e.g., Khalatnikov, 1965)

2
Vo V2 = V(1= GV (= pva) =GV - va), (42)

where j = pv is the mass current, y is the chemical potential, v,, is the ve-
locity of the normal fluid, and (3 and (4 are the coefficients of bulk viscosity.
When the first dissipative term of (42) is introduced into the model (9) via
the Madelung transform the nonlocal model with dissipation becomes

—2z'88—f = V20 + T (1 — / W (x) U (|x - x'|) dX'>

— 265+ vn V) 9P (13)

We will assume that the normal fluid is at rest, v,, = 0. The kinetic co-
efficients of the nonideal degenerate Bose-system at low temperature were
calculated by Tserkovnikov (1995) using method of collective variables and
by Kirkpatrick and Dorfman (1985) using the Chapman-Engskog expansion.
In the nondimensional units of our model, the dissipative parameter (3 is
about 2.6 x 107573, where T is temperature. In our calculations (3 was
taken to be of order 1073. First, the initial field was evolved according
to the dissipative model (43) which sufficiently minimizes the dispersive ef-
fects. After that, (3 was set zero and the calculations were continued using
the nondissipative model (9). We emphasize that the solution we present
below satisfy the non-dissipative Hamiltonian system.

The code was tested towards the vortex solutions of the local model
found in [ Jones and Roberts (1982) ] and towards the large vortex rings of
the nonlocal model [ Jones (1993) .
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Spherically symmetric solutions of (9) obey

ov  0*T 207 Vi
%oy T oty TV IVOF = 14
"ot + a2 + - + O/| (s)] UQ(T,S)dS] 0, (44)
\Pr(Oat) =0, |\If|2(oo’t) =1,

where (7,0, ¢) are spherical coordinates. We performed the integration of
the nonlocal potential over # and ¢, so that

1
Us(r, s) = 27r/ U(y/72 + 52 — 2rsp)s? du
1

= T (A [k fby + BAYr — 8 + (1 + A2 — )]

— e MO o By BA(r +5)? (1 + A2 +5)7)]). (45)

To approximate the integral in (44) we notice the rapid decay of the integrand
to zero as s departs from r. In the calculations we took A = 0.9 and it was
sufficient to set

[e’s) r+6
/|\IJ(3)|2U2(7",5) ds — / U () 2Ua(r, s) ds. (46)
0 max {0,r—6}

The integral on the right-hand side of (46) is approximated using the four-
point linear quadrature rule for |¥(s)|? on a uniform mesh (that coincides
with the mesh of the equation) with weight Ua(r, s). The general scheme for
deriving such a quadrature rule is to write down the four linear equations
that must be satisfied so that the quadrature is exact for polynomials of
degree < 3, and then to solve these equations for the coefficients. To do that
we need to know the moments of the weight function

. (k+3)h
Wi (r) = i / s"Us(r, s) ds, n=0,..,3. (47)
kh

Such moments can be calculated very accurately on a highly refined grid
since it needs to be done just once. For each r on the grid we calculate the
corresponding weights of the integration scheme once and for all. During
the numerical iteration of (44) the integral (46) is calculated as the sum of
weights multiplied by the function |¥|2.
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Fig. 1. The result of numerical integration of (44). The amplitude
of the solution |¥| as a function of r, the distance from the center
of symmetry. At t = 0, ¥(r) = 1+ 0.3exp[—4(r — 15)*] (solid
line), at ¢ = 200 (dashed line) the mass excess is concentrated at
r=0.

Figure 1 displays the results of the numerical integration of (44) from
an initial perturbation of the form

T(r,t=0)=1+0.3exp [—4(7" - 15)2] (48)

on the interval [0,60] with 601 grid points. The right boundary is open

according to the one-dimensional version of (37). The excess mass of this
system,

M(r,t) = 47r/r [lw)? — 1] s ds (49)
0

contained in a sphere of radius 7 is conserved for r = oo [see (28)] but,
for small r it initially increases with ¢, corresponding to a concentration of
mass at the origin. At time ¢ =~ 35 the density, |¥|?, at the origin is about
20 times larger than the density of the far field. Figure 2 shows how the
amplitude, |¥| = ,/p, of the solution at the origin changes with time. After
initial saturation, the amplitude at » = 0 starts to vary periodically between
4.45 and 5.03. The integral (26) at 7 = 0 becomes negative as the periodic
solution is reached. Figure 3 is a plot of the pressure variation (26) at r = 0.
The oscillations in the pressure variation, dp/dp, are in antiphase with the
oscillations in the density, p. Since at small distances particles repel each
other the mass concentrations that form do not lead to wave collapse.
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s 200 400 - e 1000

t
Fig. 2. The amplitude of the solution of (44) at the origin » = 0 as a function
of time, ¢, from ¢t = 30 to ¢ = 1000.

as I
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Fig. 3. The pressure variation, §p/dp at the origin as defined by (26) as function of time, t.

At the same time the presence of the attractive region does not allow the
mass concentrations to disperse.
In our calculations we took (3 to be much larger than the calculated
kinetic value (0.001 and 0.005). Even for such large values of the dissipation
parameter no significant damping of the oscillations was observed, so
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we may conclude, that those mass concentrations cannot be destroyed by
coupling to normal fluid.

Mass concentrations appear in the regions where the density distribution
leads to negativity of the integral (26). Not every initial configuration will
evolve into persistent mass concentrations. It is easy to construct an example
of an initial density profile, so that (26) is negative and the equation of
motion is not hyperbolic in some parts of computational box. For example,
p(r) = 140.17exp(—4(r — 3/2)?), that represents a sound wave with density
up to 17% larger than the mean condensate density. Then integral (26)
is negative at the center of symmetry. It is realistic to have deviations in
density of the condensate as large as this. For example, the density of the
straight line vortex calculated by Jones(1993) and observed experimentally
can be as high as 120% of the density of the far field. As vortices interact,
waves of even higher amplitude will be generated.

The next example is the flow around a sphere moving with a constant
speed along the z-axis. We solve (8) in axisymmetric 3D case

=240y + 2:Us V¥,

00 00 27
=0, + - \If+\Ifzz+\I! ///|‘Ifrz
0—000

X U(\/?"2 + 112 — 2rr' cos(6 — 0') + (z — 2')2)r' d9'dz'dr')), (50)

where Ug is the velocity of the sphere. The coordinate frame moves with the
sphere, so that the center of the sphere remains at the center of the com-
putational box. The integral over 6’ in the nonlinear term can be evaluated
exactly for the potential (15) in terms of the modified Bessel functions, I
and I, of order 0 and 1

/Urdﬂ' Us(r,z;r', 2')

= 217" exp(—A2s) ((a + A?Bs + A'y(s? + 4r%r"*)) Iy (o)
= (B +7(1+24%))11(0)), (51)
where 0 = 24%r1" and s = 2 + 12 + (z — 2')?. Again A = 0.9 in (15) was

taken in the calculations, so that

/ / TZlU(’I"Z’I" 2') d7' dr'

z+6
= / [T (r', 22U, (r, 237, 2') d2 dr'. (52)
max {0,r—6} 6
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We now write

Us(r,z;7',2") = Z1(z — 2')Ri(r,7") + Z2(z — 2') Ry (r,7')
+ Z3(z - Z,)Rg(’l‘, ’rl)a (53)

where

Zy(€) = 212 *Vexp[-A%€%],  k=1,2,3, (54)

Ri(r,r") =1 exp[—AQ(r2 + ’7"2)] (Io(a)(a + AQB(?"2 + r'2)
A (1 )2 ) < L) (B + )

+24%(r% +12)), (55)

Ry(r,7') = 1’ exp[—A2(r? + r'?)]|(Io(0) (A%B + 2A4%(r? + 1'2))
— 211 (0) A%y0), (56)
R3(r,r") = r' exp[— A%(r? + 7"2)]IO(J)A47. (57)

Next we develop six four-point linear quadrature rules with weights Z(z—2')
and Ri(r,r") (k=1,2,3) so that

[ 162z~ )i = T A (), (58)
J
and
[ o) Bty d = 3 BE)g(r). (59)

For each point (7, z) of our computational grid we calculate a matrix £ with
elements

lij(r,z) = 3 Bf(r) A} (z) (60)
k=1

just once. During the numerical iteration of (50) the integral on the right-
hand side of (52) is calculated as
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3 3
//|\If(r',z')|22Zkdez'dr' :/ZRk(/PIJ\QZk d') dr'
k=1 k=1
3
~ /ZRk(ZAj(z)m(r',z;)F) dr'
k=1 j

3
~ DY BENAS(2)U(r, 7))

k=1 i j

=222 bis(r 2)[ W (i, ). (61)
i

Three sides of the computational box [—80,80] x [0,40] were taken to be
open and the r = 0 side was reflective. We also took Ar = Az = 0.4
and compared the results with the calculations for Ar = Az = 0.2. The
corresponding time step was chosen as At = 0.1/(Ar~2 + Az~2). Figure 4
presents the results of the calculation for the flow around a sphere of radius
10 moving to the right with velocity 0.1. The biggest mass concentrations
develop along the axis of symmetry. After initial saturation, the density at
the centers of the mass concentrations reach values about 20 times larger
that the density of the far field.

5. CONCLUSIONS

Wave collapse, or wave energy/density concentrations in a decreasing
volume, appear in many cases where their nonlinear effects dominate the
linear effects of dispersion. All known types of the collapse in a wide variety
of physical examples arise from the nonlinear Schrédinger equation (NSE):

Wy + AT+ f(|T*)T = 0; (62)

[ see Kosmatov (1991) and references therein |. If f(u) > Cu?P and C > 0,
the NSE develops an explosive singularity in a finite time. The perturbation
leading to the collapse must exceed some threshold, below which the medium
is stable.

If C < 0 (62) is “defocusing”, meaning that no collapse occurs. The
local Gross-Ginsburg-Pitaevskii model (5) is one such example. But this
model cannot be considered as realistic for superfluid helium since the
roton minimum is missing from the dispersion curve and the properties of su-
perfluid helium depend crucially on the existence of such a minimum. There
is a significant interest attached to the question of whether the
Gross-Ginsburg-Pitaevskii model with a nonlocal potential that incorpo-
rates the correct dispersion curve for “He will adequately represent the
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Fig. 4. The solution of (50) for the flow around a sphere of radius 10 moving
to the right with velocity 0.1 at (a) ¢t = 40, and (b) ¢t = 120.

properties of this fluid. The fit to the dispersion curve can be obtained
with a variety of nonlocal potentials, but as soon as we require both the
position of the roton minimum to be correct and the sound velocity to be
correct these nonlocal models lose the advantage of being of “defocusing”
type. This changes the properties of the model drastically. The “Kule-
rian part” of the momentum equation (27) (without the quantum stress
tensor) may become no longer hyperbolic in some parts of the integration
volume and nondissipative mass concentrations may develop. Such an un-
physical behavior indicates that assumptions made in the derivation of the
equation must be unjustified. This difficulty could be overcome by introduc-
ing into the weakly nonlinear theory dissipation or higher order nonlinear
terms. But we would like to preserve the Hamiltonian character of the Gins-
burg - Pitaevskii model. Instead, we will take the density - functional ap-
proach [ Dupont-Roc et al. and Dalfovo et al. |, which tries to introduce an
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Fig.4. Continued.

accurate microscopic picture of liquid helium. We shall elaborate more on
this subject in a subsequent paper.

APPENDIX: EQUATION OF MOTION OF THE FLUID
MECHANICAL FORMULATION OF THE NONLOCAL MODEL

The derivation of pressure and stress tensor expressions in the fluid
mechanical formulation of the local model was obtained by Grant (1973)
using a variational principle. We will use this method to find an equation of
motion for the nonlocal model. The Lagrangian of the nonlocal model (9) is
given by

9p\? 1 /[9p\? 1 : 1 st 1 2
L=§<a—i) +%(a—m’:) +Z;0(X)/p(X)U(|x—xI)dx +P6—fa (A1)
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where, as for |¥|? previously, the t—dependence of p is implied. Using (21)
and (22) we can show that

ox;

+8i<1p+ p/p U(lx — '|)dx’)

—5 [ oo [pU(x— . (42)

After eliminating 0¢/0t using (22) in (A1) and substituting the resulting
expression for L into the left-hand side of (A2) we obtain the equation

oL _ 0,90)
ot sz axj 4p Oz; Oz

3¢ (9d) 1 9p 0
ox; 8;5,& < £ p)

%(puz) + 6% (puiuJ- - agj)

J

o (30 [ P (x = ) )

1 9p r_
m,/f’ U(x —x')dx’ =0,  (A3)

where the quantum stress tensor is

q_l( 0?p 1 9p Bp).
O0z;0r; pOx; Ox;

b7 n (A4)

In order to get hydrodynamical equation of motion we must be able to write

0 /1
2 <§p/p(xl)U(|x — x’|)dx')
1 ap/ Op 30’%7'
— 222 [y YU (x —x!)) dx! = , (45)
2 Ox; dz; 0z

where the pressure, p, and the anisotropic mechanical stress tensor (we use
the term ‘mechanical’ to distinguish this part of the stress tensor from the
quantum stress tensor (A4)), o, are functions (functionals) of the density,
p, and derivatives of p.

In order to accomplish this task we need to make some simplifying
assumptions about the potential U(|x — x'|). We will assume that U can be
written as a sum of j—functions and their derivatives:

Z]’

U(jx = %) = [Ag + AV + AV + A4sV0 + - 6(x —x),  (46)



Motions in Superfluid 379

where the A; are constants with Ag = 1, as follows from the normalization
condition (10). In fact, a very good fit to the Landau dispersion curve can
be obtained by taking only the first three terms in the expression (A6) for
the potential U. The integral in (A5) becomes

[ o) U1~ ) C oS ATy (A7)
=1

Next we write the left hand side of (A5) as

ax, p/p U(lx —x|)d )

1 8,0 ' !
+[8—wz Zp/p(x) x—x|dx - /p U(x —x'|)dx'|. (A8)
Let

]‘ ! !
p =10 [ o)V (x — 1) dx, (49)
and expand the term in the square brackets as
1 dp ’ ' '
Em( p [ o)V (1x XD ) 35 | PV~ ) dx
0 op 0 op
) Y2, YF o2 A I v/ P i v 2
4( Q(p&viv p Bac-v p) + 4(p8;viv p &Uiv p)
0 op dom
Ag(p=—V®p 6 =2 Al
+ A6(p5,- V0~ 5 V) +- ) v (A10)
where

aiL'Za{E] Ox; Oz

dp 0 Op 0O 0?%p
v2) 2 2
laxz oz, t o Oz B:BZ] Vip 6:L‘Z'3:ij p)

0%p dp Op )

op 0 dp 0
vip— |22 9 4
(9:518:1:] laxi 0z t o oz, B:BZ] Ve

2 o ]
2 R v 2] 2
Gl p] Vip—V2p) + -1,

Az p
+A4(
+4o(p

+ V4p+ Vp

0z;0z; 0z; 6

(A11)
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4

and, like 0}, is symmetric. Finally the equation of motion (A3) becomes

%(puz) + % (puiuj +p(5ij - O'gj - UZL) = O, (A12)

where p, 0;;, and o]} are defined by (A9), (A4), and (A11) respectively.

g
17’
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