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Motions in a bose condensate: VI. Vortices in a nonlocal model
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Abstract. Nonlocal nonlinear Sclkidinger equations are considered as models of liquid helium

The models contain a nonlocal interaction potential that leads to a phonon-roton-like dispersion
relation. Also, a higher-order term in the local density approximation for the correlation energy

is introduced into the model to overcome nonphysical mass concentrations. These equations are
solved for straight-line vortices. It is demonstrated that the parameters of the equation can be
chosen to bring into agreement the vortex core parameter and the healing length. The structure of
vortex rings of large radius is studied. The family of the vortex rings of different radii propagating
with different velocities is found numerically. As the velocity of the vortex ring reaches the Landau
critical velocity the sequence of rings terminates.

Introduction

This is the sixth in a series of papers devoted to the Bose condensate as applied to superfluid
helium and especially superfluid vortices; see Roberts and Grant (1971), Grant (1973), Grant
and Roberts (1974), Jones and Roberts (1982), and #0aé€1986). These will be referred

to below, as papers |-V, respectively.

As liquid helium is cooled through 2.17 K it undergoes a phase transition to a superfluid

state and remains in this state downCtK at the wapour pressure. Heliunt 8 K has large
interatomic spacing and is often described in terms of a weakly interacting Bose gas. The
imperfect Bose condensate in the Hartree approximation is governed by equations that were
derived by Gross and by Ginsburg and Pitaevskii. In terms of the single-particle wavefunction
¥ (x, t) for N bosons of masa?, the time-dependent self-consistent field equation is

_ 2
iy, = ——VZI//H///W(m DIV (z — '|) da’ (N

where V(Jx — «’|) is the potential of the two-body interactions between bosons. The
normalization condition is

/V|w|2dw=N. 2

The Madelung transformation for the mass probability density

p=Myy* ®3)

and for the mass flux = pv

j= zw Vi — V) 4)
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converts (1) into equations of continuity and motion. The internal energy per unit vofyme,
at pointz and timer is given by

E(p) = (Vp)? + L / p(@)V(lx —z'|)p(z') da’ (5)
8M2p 2M?
and the total energy, is
EZ
W= /5(,0) de = / M(sz dx + We(p). (6)

The first term on the right-hand side of (6) describes the quantum kinetic energy of a Bose gas
of nonuniform densityW, (p) is a potential or correlation energy that incorporates the effect of
interactions. For a weakly interacting Bose system (1) is simplified by replatifg— x'|)

with aé-function repulsive potential of strengty = [ U da’, since we can consider that the
wavefunction (z, t), changes very slowly on atomic distances:

— 72
ihy, = —WV2¢+Wol/f|l//|2~ (7

Some aspects of superfluid behaviour, such as the annihilation of vortex rings (see
paper V), the nucleation of vortices (Frisehal 1992), and vortex line reconnection (Koplik
and Levine 1993, 1996) are captured by this local model. At the same time the dispersion
relation between the frequeney, and wavenumbek, of sound waves according to (7) is

w? = %k% + <£)2 k* (8)
M
where
¢ = (Wopso) /M. 9)

This dispersion relation has no roton minimum, which is held responsible for many of the
properties of a superfluid. The natural way of incorporating the correct phonon-roton-like
spectrum would be to consider a more general model (1) with a realistic two-particle potential,
V, that leads to a dispersion relation close to experimental reality. Unfortunately, as was
shown by Berloff (1999), under the very minimum requirements on such a potential, such
as the correct position of the roton minimum and the correct bulk normalization, the general
model (1) has nonphysical features, such as the loss of hyperbolicity leading to the creation of
nondissipative mass concentrations.

A more accurate approach in modelling liquid helium is through density-functional
theory (Dalfovoet al 1995), which attempts to give an adequate microscopic description of
interactions. Inthis approach the total energy (6) is still written as a functional of the one-body
density, but it includes short-range correlations (Dupont-&aa 1990). This approach has
provided a quantitatively and qualitatively reliable representation of the superfluid properties
of free surfaces, helium films, and droplets (see Dalfeval 1995 and references therein).

At the same time this approach is phenomenological and results in rather complicated forms
of the energy functionals with many parameters that are chosen to reproduce liquid helium
properties.

Our goal is to modify the nonlocal model (1) in the spirit of a density-functional approach,
but to restrict ourselves to only one additional nonlinear term in the expression for the
correlation energy. This allows us to remedy the nonphysical features of model (1), while not
only retaining an adequate representation of the Landau dispersion relation, but also simplicity
in the analytical and numerical studies. One of the main objectives is to elucidate the properties
of vortex rings.



Motions in a bose condensate: VI 5613
2. Nonlocal model
The correlation energy of the Skyrme interactions in nuclei (Vautherin 1972) is given by

1 Wo » . Wi o, )
= — — + — Y + v
We(p) MZ/[ 27 o, r W2(Vp) (10)

where Wy, W1, Wy andy are phenomenological constants. The first two terms give a local
density approximation, and the gradient term corresponds to finite-range interactions. In
a somewhat similar way to Dupont-Ret al (1990), we add the necessary nonlocality of
interactions directly into the first term of (10) by introducing a two-body interaction potential,
V(lz — 2'|), so that (10) becomes

1

1 1 1%
Weip) = / [5 / p@)V |z — 2/)p(a) da’ + mpz*y] de.  (11)

This incorporates and generalizes flifg interaction term in (10), which has therefore been
abandoned. The differences in our expression for the correlation energy and the one used by
Dupont-Rocet al (1990) and Dalfoveet al (1995) are, first, that we keep the higher-order
term of the local density approximation unchanged and second, that the two-body interaction
potential is not assumed to be the standard Lennard-Jones potential; in&tead, z’'|) will

be chosen so that the implied dispersion relation gives a good fit to the Landau dispersion
curve. Following Jones (1993) we consider a potential of the form

V(i@ —@']) = V(r) = (a + BAPr? + SAY*) exp(— A%r?) (12a)
and the slightly modified potential
V(z — ') = V(r) = (a + BAZr? + 5A%*) exp(— A%r?) + n exp(— B?r?) (120)

whereA, B, «, B, § andn are parameters that can be chosen to give excellent agreement with
the experimentally determined dispersion curve.
On adopting (11), we find that the nonlinear Sidinger equation replacing (1) is

- n? W,
iy, = —szxp + % / [ (', )2V (jz — «'|) dz’ + %WZOW (13)
If E, is the average energy level per unit mass of a boson, we write

W = exp(iME,t/h)y (14)
so that (13) becomes
T EQ 2 v / 2 ’ ’ 2(1+y)
ihy, = —ﬁv v+ i / W (x', )|V (x — x'|) dz’ + W || — ME, |. (15)
Casting this equation into dimensionless form by the transformation

13 h
—_— t t 16

7 om2E,)2" ~ 2ME, (16)

we obtain
NG

—2i—- = Viw + \y[l— / | (2)?V (|l — «'|) da’ — X|\y|2<1+y>} 17)

where the nondimensional parametgris given by y = Wlpigy/MzEU and the

nondimensional constant in front of the integral was absorbedinfthe bulk normalization
condition is

/V(|m—m/|)dm’=1—x (18)
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or
47t/ V(rridr=1-—yx. (29)
0

To determine the dispersion relation we linearize the solutiow about the rest state
¥ =1. We writeW = 1 +¢W, +¢e¥/, where¥, and¥; are real and imaginary parts of,
respectively, and consider plane waves of the fdrin= expi(wt — kx) for e <« 1. Then the
dispersion relation can be written as

o® = 3+ an/SinkrV(r)r dr + 2(1+y)xk°. (20)

The bulk normalization condition (18) gives the slope at the origin (the dimensionless speed
of sound) as/(I +y x)/2. Since the known speed of sound is approximately 238 ntke

unit of length (healing length) of our model i8] = 0.471,/I +y x A and the unit of time is

[1] = 1.4 x 107331 + y x) s. The parametes, 8 ands of the nonlocal potential (12 are
chosen so that the bulk normalization condition (19) is satisfied and the dispersion relation has
the position of the roton minimum close to that experimentally observed at the vapour pressure
kror = 1.926 A1, w,,, = 8.62 Kk /R (Donnellyet al 1981), which in our nondimensional
units is atk,,, = 0.907%/1+y x, w,o = 0.1581 +y x). The free parametet in (12a) is
chosen with three requirements in mind: (i) the entire dispersion curve (20) gives a reasonable
fit to the Landau dispersion curve, (ii) two-particle interactions exhibit a strong repulsion at
close distances, and (iii) the potentiélr) is nonzero on the smallest possible interval, in
order to make the numerics tractable.

The controversy in the literature (see Brooks and Donnelly 1977 and references therein)
about the form of the dispersion curve at low momenta has now been settled, and it is generally
accepted that the dispersion relation has a posifiverm (the dispersion curve at the origin
is concave up) until the pressure reaches some threshold at which the second derivative of
at the origin changes sign. The potential{1Bnplies a negativé® term and the coefficients
n andB in (12b) can be chosen so that the resulting dispersion relation has a pasitasen,
for instance, the same as the Bogoliubov spectrum (8). At the same time, to obtain the roton
minimum, B must be much smaller thaf, and this makes the potential more nonlocal and
less amenable for numerical work. In ()Zor x = 3.5andy = 1, we tookA = 1.6, B = 1,

o ~ 19123,8 ~ —289815,5 ~ 9.5, andn ~ 1. We analysed the problem (17) for two
possible choices of the paramegerFirst, we can view the terriv; p2*” in (10) as the second
term in the nonlinear expansion of the correlation endtgip) the in powers of, and that
yieldsy = 1 (cf the expression for the Hamiltonian in Dalfoeb al (1995)). The second
possible choice is to takg = 2.8, which gives the velocity, of long-wavelength sound
waves proportional tp?€. This brings about agreement with the experimentally determined
Gruneisen constart/; = (pdc/dpc)r ~ 2.8 (Brooks and Donnelly 1977 and references
therein).

3. Rectilinear vortex

Jones (1993) computed the structure and energy per unit length of the straight-line vortex of
the nonlocal model (1) with the potential (@2 The approach of the fluid density (3) to the
uniform state at infinity was shown to be oscillatory rather than monotonic, in a similar way
to the observations (Sadset al 1997). The energy per unit length is considerably reduced
compared with that of the local model (7), and is in better agreement with the results of
experiments on vortex rings of large radius (Rayfield and Reif 1964). Nevertheless, this model
failed to bring the vortex core parameter (see (34) below) and the healing length into agreement.
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In this section we shall conduct an analysis similar to that of Jones but for the straight-line

vortex of the nonlocal model (17) for both= 1 andy = 2.8.
In cylindrical polar coordinateé:, 6, z) the nonlocal model (17) takes the form:

) 1 1 [ [} 2
=200, = W, + W, + S0y +xpzz+xp<1—x|xp|2<1+y> —/ f / (', 0, 7)?
r r 0 J-Jo

xV <\/r2 +r'2 = 2rr'cog0 — 0) + (z — Z/)z) r'do"dz’ dr/>. (21)

The equation for the amplitude of the steady straight-line vaRiey is found by substituting
¥ = R(r) exp ¥ into (21) and integrating the nonlocal potentiabirandz’:

R'(r) + ;1R/(r) - @ +R(r) — x R(r)**™™
_z R(r) f " RE) exp— A2 + ) [golo(0) — i@ A (22)
where i
go=oa+ g + 37? +AZ(B+8)(r2 + 1) + AN (r? + 1D + &r%r'?) (23)
g1=0(B+28) +48A%r (r? +17?) o = 2A%rr. (24)

In (22), I, is the modified Bessel function of order Analysis of (22) shows thak(r) ~
1—1/2r? asr — oo.

Equation (22) was solved iteratively using a finite-difference method. Figure 1 gives plots
of the relative density/po = R? as functions of the distance from the centre of the vortex
for the local model (7), the nonlocal model (17) with the potentiabj¥ar y = 1, x = 3.5,
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Figure 1. The relative density/po as functions of the distance from the centre of the vortex for
the local model (7) (dashed curve), the nonlocal model (17) with the potentig) {a2y = 1,
x = 3.5,8 = 1 (solid curve) and foy = 2.8, x = 1.25,5 = —5 (dotted curve).
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§ =1andfory = 2.8, x = 1.25,8§ = —5. The graph for the nonlocal model (17) with
y = lisin a good agreement with the results of variational Monte Carlo calculations (Sadd
et al1997).

To determine the energy of the vortex in the condensate we restore dimensional units
temporarily. Following Jones and Roberts (paper 1V) we denoté pthe wavefunction of
the undisturbed system of the same mass, so that

/ W2 dx = W2y (25)
\%4

wherev = [, dx, and byw,, the wavefunction of the bulk¥ — W, asr — oco. The energy
of the system is

h? 1
— V\DZ + \IJZ _ "112 _m \1,2 _ \I/ N2 /
g _ZM/V| |* do _ZM/V( o~ VOV (z — 2NV, — ¥ (@) da’ de

I |W |22 dg — w22y | (26)
M u
\%4
The last term on the right-hand side can be written
1 2ty
/V |W 2@ dg — w22y = fv |W|2@) dg — v|:; /V(|x11|2 — W2 de + \1/30} (27)

so that in nondimensional units

£ = %/ |V\Il|2dm+%/(1—|\I-’(w)|2)V(|w—:c/|)(1—|\Il(w’)|2)dw/dw
\4 |4

2+y
X 220 4. (M
+2(2+y)[/v|\v| dx ( . +1 v (28)
where the excess mass(, is given by
M =/(|\y|2— 1) dx. (29)
\’

Fory =1 (27) can be further simplified by writing

6 6 2 2,3 2 2,3
/VI\D| dw—\IJuv=/V(|\IJ| —w2)3de — (W2 — w2)%y

+3\1/§O[/ (W2 — 1w 3H? — (w2 — \Ilf)zv):|. (30)
1%

The terms(¥2 — w2)2y and(W2 — ¥2)3y are Q1/v) and vanish as — oo. In this limit,
the dimensionless energy becomes

&1=13 / V|2 dz + 2 f A— V@ P)V(z -2/ - |¥(z)?) dz’ dz
\4 14

+ﬁ_/<|\v|2—1>2(2+|\P|2)dm]. (31)
61Jv

Expressions (31) and (28) give the energy per unit length of the line vortex in dimensional
units as

2 o [ 2 2 3/2 poo poo
£ = P / ) N PP / / (1— R2(r)) expl-A%(r? + )]
47 0 dr r2 A Jo Jo

x[golo(0) — g1l1(0)] (L — R2(r))rr’ dr' dr + % /OQ(R2 — 1?2 +R>r dr)
0
(32)
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and

szoo 0 dr 2 R2 7T3/2 00 poo ) s 5 "
& = ym (/0 |:<E) +r_2 rdr+T/(; /o (1— R%(r)) exp[—A“(r< +r'9)]

x[golo(0) — g1l1(0)](L — R3(r"))rr’ dr’ dr

X a a 2+y 612 —(1+y)
+ lim / R?*@)ydr — f R?r dr — . (33)
2+ Y a—00 0 0 2

The second term in the first integral in (32) and (33) represents the classical kinetic energy
that diverges. This can be remedied by introducing a cut-off distancerresponding to the
characteristic size of the container, so that the energy per unit length of the line vortex can be
expressed in the form

co 2 [n(2) -] ”

whereL is the healing length and for our modek= 0.471/1 + xy A, andc can be determined
numerically from (32) or (33).

4. Large vortex rings

We consider solitary wave solutions of (17) that correspond to circular vortex rings that
propagate along the-axis with nondimensional velocity/ preserving their forms. The
wavefunction of such solitary waves satisfies the following equation:

0w
20 =~ =vzxpw(l—/|w<w/>|ZV(|w—w/|)dm/—x|\IJ|2<“”). (35)
Z

We can perform a variatior — ¥ +§W in the expressions for momentum

1
p=5 f[(\l/* —1HVV¥ — (Vv —1)VV¥*]dz (36)
and energy (28) and using (35) show thét= Uép, or
d
U = —5 37)
ap

For a vortex ring of large radiuB the results for the straight-line vortex can be used to give
(see papers | and 1V) the energy and momentum of such a ring as

1 8R
£ = Eszmk [m (T) -2 +ci| (38)
and
P = KpsoT R2. (39)

After differentiatingE andp with respect taR and substituting into (37) we get the expression
for the velocity of the large vortex ring as

U= 47’;R [m (%R) —1 +c] . (40)

Glaberson and Donnelly (1986) used the experimental results of Rayfield and Reif (1964)
on the relation between the energy and velocity of large vortex rings to estimate the vortex
core parametel.. These estimates were based on the hollow core vortex modet witl®
and produced. ~ 0.81 A. Jones (1993) did similar calculations for the nonlocal model (1)
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with the potential (12) and foundc = —0.13, so thatl. ~ 0.71 A for the optimal choice

of the parameted. For the local model (7) witle = 0.381 the vortex core parameter is

L ~ 1.19 A. These values df are much larger that the healing length found from the sound
speed, whichis 0.47 A for any of the above models. Jones (1993) posed the question of whether
a self-consistent theory is possible, i.e., one where the vortex core parameter and the healing
length are brought into harmony. The answer is “Yes’. Our model (17) is able to bring about
agreement. Foy =1, x = 35,4 = 1.6, B = 1, andny = 1 we numerically integrated (22)

to find c = 0.1825, so tha. ~ 1 A, which is the healing length of our model. This gives the
energy of a vortex ring travelling at 27 cm’sas 10 eV, which agrees with the experiments of
Rayfield and Reif (1964).

5. Rarefaction waves

Jones and Roberts (paper IV) determined the entire sequence of solitary waves numerically for
the local condensate model (7). They calculated the en2egyd momentunp and showed

how the location of the sequence in ifiep plane relates to the superfluid helium dispersion
curve. They found two branches meeting at a cusp wheaad £ assume their minimum
values,p,, and&,,. As p — oo on each branchk — oo. On the lower branch the solutions

were asymptotic to the large vortex rings of section 4. Since the local model has a healing
length (based on the sound velocity) different from the vortex core parameter there are two
possible ways to introduce dimensional units and to plot the solitary wave sequence next to
the Landau dispersion curve on thep plane. If the dimensional units based on the vortex
core parameter are chosen, the cusp lies just above the Landau dispersion curve; if instead
the healing length (sound speed) is selected the cusp meets the dispersion curve of the local
model, which (we recall) does not have a roton branch.

As & andp decrease from infinity along the lower branch, the solutions begin to lose their
similarity to large vortex rings, and (38)—(40) determ#hep, andU less and less accurately,
although (37) still holds. Eventually, foramomentwgslightly greater thap,,, the rings lose
their vorticity (' loses its zero), and thereafter the solitary solutions may better be described
as ‘rarefaction waves’. The upper branch consists entirely of these apd-aso on this
branch, the solutions asymptotically approach the rational soliton solution of the Kadomtsev—
Petviashvili (KP) equation.

In this section we investigate the rarefaction wave sequence of the nonlocal model (17).
We only consider the limit of small amplitude solitary wavgs- oo). For simplicity we
suppose that = 1. We substitutel = f +ig, where

f=1+ffitelfo+-.
g=e€g1teigt -
into (35) and separate real and imaginary parts. We stretch the independent variables

(41)

£=ex n=ey [ =ez
and expand/ in powers ofe as
U=Uy+eUp+e*Up+---. (42)

Notice that the asymptotics of the integral on the right-hand side of (35) with the potentials
(12a) or (12») can be found as

1 _ £N2 —_ nN2 —_ N2
L g n.ow \/(S EENCEL T ) I
€ € €

4

= Ml‘f’@a 7, é-) + 62#2‘1’{((5’ n, {) (43)
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where

3 15 7 73%2 4o + 108 + 355 ] 7%/2
[ ] Mzz[ s ] (4)

A% 16 A5
From the bulk normalization condition (19%; = 1 — x. To leading order, the real and
imaginary parts of (35) give

0
Zani{l = 1A+)2f1+8D) (45)
9 92
—2008%1 — S5+ @ a0 (46)

so that

Uo=+(L+x)/2 2f1+ 82 = /2(1 + x)dg1/d¢. (47)

To the next order we have
V21 +x)g5+2U1gy = — fI + (L +x)2f2+ 28182+ fD)

+HL+X) [12[A+8D) + n22f1+ 8D + x (2f1 + g2)? (48)
and
—V2A+x) f3 —2U1f{ = —g5 — Vig1+ 821+ x)(2f1 + &%)

+(1+))g1(2f2 + 28182 + f1) + g1i22f1 + 82) + x (2f1 + §2)? (49)

where primes denote the partial derivativezimnd V2 = 32/3£2 + 32/9n2. If we define
D1 =2f>+2g182+ f2andD;, = (g2 — f1 — 1/3¢3)/d¢ then from (45)—(47)

U, i ,, X3+5X2—2X —
UoD1 — Dy = —g1 — -xg181 +
' L 22+ )32

Ug 2
X b 1=2up

+ + 50

V2 T 20w 0™ ©0)

0 X (x —Dx Ux

—(UoD1 — Dp) = Vg1 — ~—g1g, — 2——2 gl

aéQ( oD1 2) n&1 Uoglgl P Uogl
X 2. 1

X 3)
—-= +Up(4+ x)gigl + ———— . 51
28181 0 8181 ﬁmglgl (51)

Consistency of these equations leads to a KP-type equation for the fuggtion

/ d | 1-2u V2B+5x) ., V2
2V2U18] — 1+ xVig + — [ e = X ()2 + T xg?

2
(g1)?

g1(g)? —

3¢ | 20T+ 2(1+x) 2
2X N2 _
- @ =0 (52)

The corresponding equation governigngfor the local model (7) was obtained by Jones
and Roberts (paper V) and can be recovered from (52) by takieg 0, u, = 0. The KP
equation usually arises in studies of the propagation of sound waves in a weakly dispersive
medium (for discussion and references see Kuznetsov and Musher 1986). Two types of the
KP equations are distinguished. If the expansion of the dispersion law in the long-wave region
is convex (" (k) > 0 for smallk) the dispersion is positive and the coefficients of the highest
order term and th&?% term have opposite signs; this corresponds to the KP | equation. If the
dispersion relation is concave at smiathe dispersion is called negative and the coefficients
have the same sign; this leads to the KP Il equation.
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Superfluid*He has positive dispersion if the pressure lies below some threshold, and
has negative dispersion above that threshold. This difference changes the wave dynamics
dramatically. The most important change is that the KP Il equation has no multidimensional
solitons, while the KP | equation possesses such solutions, although they are unstable in three
dimensions, as can be shown from Lyapunov’s theorem (Kuznetsov and Musher 1986). The
nonlocal model (17) with the potential (ARhas negative dispersion at low momenta and (52)
is a KP Il equation g, > %), which does not have a solitary wave solution in the limit of
U — Up. At low pressures the potential (A2can be used and (52) becomes a KP | equation
with an upper branch of solutions similar to the local model.

6. Stretched dipole moment, impulse and energy for solitary waves

Inthis section we define the stretched dipole moment and impulse for the solitary wave solution
of (35) and obtain some integral properties of (35), that will be used as a check on numerical
accuracy in section 7. To accomplish this we follow similar derivations of Jones and Roberts
(paper 1V) for the local model.
The flow at large distances from a classical vortex ring is dipolar; similarly, the solutions
of (35) as|xz| — oo has the form
imz +

22+ —202r232
wherem is called ‘the stretched dipole moment’ of the wave. We relate the momentum,
p, given in (36) by

dom = p+ U/ |:1_ |\IJ|2 _ RE(\I/)<1 _ / |‘~IJ(w’)|2V(|a3 _ mll) dx’ — X|\D|2(l+y)):| de.
(54)

Next we may replac® by W — 1 in the first integral of (28), integrate by parts discarding
the vanishing surface integral, and obtain

E=pU +§f <1— / W (z))?V(|x — 2'|) dz’ — X|\IJ|2(1+V)>|1— U2 de. (55)

VENE (53)

7. Vortex rings of small radius

In this section we address the problem of numerically finding the sequence of vortex rings of
small radius. This research has been motivated by the famous conjecture of Onsager (Donnelly
1974) that the roton can be pictured as ‘the ghost of a vanished vortex ring’. So we would
like to know theE—p configuration of the sequence of such vortex rings and, starting from
the moment the circulation disappears, the configuration of rarefaction pulses. We solved (17)
numerically in the three-dimensional axisymmetric case in a frame of reference moving with
the velocityUr:

1 00 o) 2
2w, + 25w, =wrr+—wr+wu+W<1—x|\IJ|2<“y>—/ / / W, )P
r 0 —o00 JO

xU <\/r2 +7r'2 — 2rr'cogf — ') + (z — z’)2> r'do’ dz’ dr“). (56)

The velocity Ur is chosen to retain the minimum ¢¥| at the centre of the frame. We
used finite differences and the Raymond—Kuo radiation boundary condition (Raymond and
Kuo 1986) allowing the outgoing radiation to escape from the integration box. Details of the
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numerics are discussed by Berloff (1999). We started our calculations from the large vortex
ring (R = 20) with the core of the rectilinear vortex found in section 3, so that the initial
configuration is close to the exact solution.

Noreet al (1993) studied the acoustic behaviour of the local model and demonstrated that
the dispersive effects due to the quantum stress tensor become noticeable for some range of
the width-to-height ratio of the travelling pulse. Similar dispersion takes place in the nonlocal
model (56). To minimize this, we introduce a small dissipation into equation (56). The most
physically relevant way of doing this for the local model was suggested by Carlson (1996).
In real helium, even in the low-temperature range, normal fluid is present that is coupled to
the superfluid and, through its viscosity, provides a high wavenumber sink. When modified
to include mutual friction with the normal fluid, the superfluid Euler equation becomes (e.g.,
Khalatnikov 1965)

2
b+ VS = V(= GV - (= pv) — GV - uy) (57)

wherej = pv is the mass current, is the chemical potentialy, is the velocity of the normal
fluid, and¢z and ¢4 are the coefficients of bulk viscosity. When the first dissipative term of
(57) is introduced into the model (56) via the Madelung transform the nonlocal model with
dissipation becomes

1 00 o) 2
—2iW, + 2iUp v, =wr,+—wr+wu+W<1—x|\D|z<w>—f / / W, 7))
r 0 —00 J0

xU <\/r2 +r'%2 = 2rr'coq6 — 0") + (z — z’)z) r' do’ dz’ dr’)

—203W (% +v, - v) |W)2. (58)

We assume that the normal fluid is at rest in the reference frame moving with the ring. In our
calculations;; was taken to be of order 18. First, the initial field was evolved according to

the dissipative model (58) until the dispersive effects were sufficiently minimized. After that,
f3was set as zero and the calculations were continued using the nondissipative model (56). We
emphasize that the solutions we present below satisfy the non-dissipative Hamiltonian system.
After the emission of acoustic waves the system settles down to a solitary solution travelling
with constant speed. The fact that the system reached the solution of (35) is also confirmed by
the equality of two expressions (28) and (55) for the energy.

After the solitary wave solution is reached and the values of the stretched momentum,
impulse, radius, and energy are recorded, we use this solution as the initial condition for the
equation with dissipation (58). Dissipation slows down the motion of the vortex ring and
reduces its radius. After that, we again set the dissipative parameter to zero and continue
calculations for that new starting radius, thereby obtaining another solution on the vortex ring
sequence.

In table 1 we showg as calculated from (32)p from (36), andm from (54), for
equation (17) with the potential (22 The values of parameters in @)2were taken as
x =02,A=07,B=05a~ 1185398 ~ —10.5595,5§ ~ 4.7217, andh ~ —4.9824,
so that in (34)x ~ 0.009 close to the hollow core vortex. The valueppfvas checked by
computing (55). Figure 2 gives the plot of the ring with radRis= 12.6 in terms of the
densityp. As the speed of the vortex ring approaches the Landau critical velocity, defined as
U, = wr/k;, where(k., w;) are the points on the dispersion curve wheygk = dw/dk,
and which in our units i€/; ~ 0.19 (which corresponds to 58.4 m'3, it apparently loses
its stability and evanesces into sound waves. In figure 3 we show the time evolution of the
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Table 1.
U & P m R

0.14 690 3390 270 131

0.15 646 3056 248 12.58
0.16 589 2685 218 11.89
0.167 521 2260 181 10.74
0.174 474 1990 159 9.93
0.189 417 1657 132 8.64

Figure 2. The density plot of the cross section of the axisymmetric vortex ring with ratlizsl2.6.
The darker regions correspond to an increase in density.

momentum and energy of an axisymmetric solution of equation (17) with the potental (12
havingp = 1424.£ = 373, so that the starting velocity of the ring is slightly above the Landau
critical velocity. The total momentum and energy in the system are conserved, so the observed
decay inp and¢ is balanced by energy radiated out of the computational boxes by sound
waves. In figure 4, we show the time evolution of the same initial state by means of contour
plots of the scaled density |2.

To understand this instability better, let us first imagine that normal fluid is present, and
is at rest in the computational frame in which the vortex is stationary. Therefore, at infinity
there is a uniform counterfloW’ (= v, — v,) between normal and superfluid components,
whereU = Ul, is the velocity of the vortex in the laboratory frame. In the absence of friction
the dispersion relationship for the superfluid at infinity is merely Doppler shifted, i.e., the
frequency (in the computational frame) for the wave with wavevektsrop = o — U - k,
wherew (k) is given by the dispersion relation for stagnant superfluid. # U; , thenwp < 0
for all k in some neighbourhood d&f;, = k;1,. Let us now recognize the existence of the
friction between components that always exists at finite temperature. Let us model that friction
using (58) and suppose that < w./k3. Itis easily shown from (58) that, ¥ = 1 +ey
wheree « 1 and Rgy) = exp[i(@t — k - )], then
ig3k?

It is clear that, ifU > U, thenIm(®) < 0 in the neighbourhood ot = k; in which
wp < 0, so that those modes are unstable. It should also be remarked that, evegsighen

o~ wp+
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Figure 3. Time evolution of energyd) and momentumb) of an axisymmetric solution of
equation (17) with the potential (22havingp = 1424, = 373 the starting velocity is slightly
above the Landau critical velocity.

zero, numerical dissipation will play its role in creating instability whién> U,. So our
vortex sequence necessarily terminates at the point where the speed of the vortex becomes the
Landau critical velocity.

8. Conclusion

We derived a new model of superfluid helidhe with a realistic phonon—roton-like spectrum.

Our strategy was to introduce as few phenomenological parameters as possible, so that the
modifications made to the Ginsburg—Pitaevskii local model (7) are minimal. First, as was
shown by Berloff (1999), if thé-function potential is simply replaced by a nonlocal potential

the resulting model possesses nonphysical mass concentrations, so that higher-order nonlinear
terms have to be introduced to prevent the creation of such concentrations and the formation
of catastrophic singularities. Such a higher-order nonlinearity was added following the ideas
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t=16 t =80

Figure 4. Time evolution of the initial state witlp = 1424, = 373, with the starting velocity
slightly above the Landau critical velocity as equidensity surfaces of the scaled dansity

of density-functional theory. For this model we showed that the vortex core parameter and
the healing length can be brought into agreement, so that the energy of the large vortex rings
coincides with experimental observations.

Axisymmetric solutions for the resulting nonlocal Sgtiinger-type equation (17) were
analysed analytically and numerically. A family of axisymmetric solitary vortex rings has been
derived numerically. An interesting result emerged from these numerical calculations: when
the velocity of the vortex ring reaches the Landau critical velocity the ring becomes unstable and
evanesces into sound waves. For any ring travelling with speed greater than the Landau critical
velocity, the amplitude of the far-field solution will not decay exponentially at infinity, which
makes the existence of such a ring impossible. One question that remains open is whether there
is a cusp in the energy—momentum plane as occurs in the Ginzburg—Pitaevskii local model
(7). The existence of an upper branch of rarefaction pulses having velocities that approach the
velocity of sound was established for the potential that gives positive dispersion forksmall
As these axisymmetric solutions are unstable, it is most probable that the entire upper branch
of these solutions cannot be calculated by a time-stepping scheme. The alternative would be
to solve the discretized equation (35) for specified valuds by Newton—Raphson iteration,
and that requires matrix inversion at each iterative step. Because of the nonlocality of the
potential in (35) the resulting matrices are not sparse, and this will lead to severe numerical
difficulties. Also, the fate of the vortex ring as we proceed by increasing the velocity past the
Landau critical velocity is not completely clear at the moment.

One of the goals of this paper is the same as that of an earlier paper in this sequence
(paper IV): to clarify Onsager’s concept of the roton as ‘the ghost of a vanished vortex ring’.
We hoped that the transition from the vortex ring to the sound pulse and the concomitant loss
of vorticity would occur close to the roton minimum in energy—momentum space, or, possibly,
close to the point where the group velocity and the phase velocity are equal (the Landau critical
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velocity U;). Our calculations show that, indeed, there is a point orpthplane where the

ring ceases to exist and whelilg = 9£/dp, but this point lies far from the roton minimum.
Finally, we make a speculative remark on how the idea of the roton as a ghostly vortex

ring might be vindicated. As we have a great variety of potentials that lead to the Landau

dispersion curve we can tune the parameters so that th€ kad/, p, meets thep—€ curve

for the family of the vortex rings, to allow this sequence of vortex rings to be terminated at

a lower energy and momentum level. Whether this process will lead to coalescence with the

roton minimum is the subject of our future investigations.
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