
Nonlinear Wave Interactions in
Nonlinear Nonintegrable Systems

By Natalia G. Berloff and Louis N. Howard

The main goal of this article is to understand the qualitative appearances of
regular arrays of pulses that come up in nonintegrable systems in a variety of
contexts, particularly in fluid dynamics. It is shown that even nonintegrable
systems have a kind of particle dynamics made up of solitary waves. But the
interaction of these solitary waves is not absolutely ‘‘clean’’ as in the case of
the KdV and other integrable equations.

1. Introduction

The main advances in the theory of integrable equations are due to the fact
that such nonlinear problems have a simple underlying structure and the
general solution of an appropriate initial value problem can be obtained by
the inverse scattering transform. To describe the dynamics of interacting
localized structures the particle approach may also be used, and then we are
primarily interested in special solutions, such as solitons, rather than in the
general solution of an initial value problem. But then the description of the
dynamics in terms of the solitons has some linear properties. Whitham

Ž . w xshowed for the Korteweg]de Vries KdV and some other equations 1 that
an infinite superposition of the solitons in a periodic pulse train is also a
solution, and this fact can be viewed as another instance of ‘‘clean interac-
tion’’ of solitons.
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Some nonintegrable equations may also have a simple underlying struc-
ture that allows one to treat them in a way similar to integrable equations.
For these equations the inverse scattering transform method fails, since its
implementation requires some quite restrictive analytical properties. Then
we may abandon the search for a general solution and concentrate on the

w xspecial solutions instead. In our previous article 2 we introduced the
method of constructing the periodic pulse train solution as an infinite
superposition of the solitary waves. The form of such periodic wave trains
can be obtained in two seemingly different ways. The first presumes the
knowledge of an exact solitary wave solution, which often can be expressed
in terms of hyperbolic functions, of the given equation. When we substitute
an infinite superposition of such solutions into the equation and use a

Ž w x .partial fraction decomposition in exponentials see 2 for details we obtain
some ‘‘extra’’ terms that prevent such superposition to satisfy the equation

w xexactly. It was shown 2 that by taking a linear combination of the solitary
wave and such an extra term, and by introducing a scaling parameter on the
traveling wave coordinate, we can create a periodic pulse train that satisfies
the equation exactly. It was noted that the same periodic pulse train can be
obtained by taking the building block of the superposition in the form
suggested by a formal Painleve expansion even if the equation does not´
possess a Painleve property.´

Here we concentrate on two aspects of pulse interactions. First, we extend
this approach to equations that are not Galilean invariant and do not have a
solitary wave solution; nevertheless the periodic solution still can be found.
Second, we illustrate how this method can be used to analyze the multiparti-
cle solutions.

This article is organized as follows. In Section 2 we discuss some results
on the periodic solutions of the generalized Kuramoto]Sivashinsky equation
from the point of view of interaction between the solitary waves. Section 3
gives an example of a system for which no solitary solution was found, but
the periodic pulse train solution can be constructed for some spacing
between pulses. In Section 4 we construct the approximation for the two-
particle solution for the generalized Kuramoto]Sivashinsky equation. The
comparison of this approach with the method suggested by Kudryashov for
finding the cnoidal wave solutions is given in Section 5. Conclusions close
the article in Section 6.

2. ‘‘Almost clean’’ interactions of solitary waves

The generalized Kuramoto]Sivashinsky equation,

u q2uu q u q s u q u s 0, 2.1Ž .t x x x x x x x x x x
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w xdescribes waves in a vertical and inclined falling film 4 , in liquid films that
are subjected to interfacial stress from adjacent gas flow, interfacial instabil-
ity between two cocurrent viscous fluids, unstable drift waves in plasma, and
phase evolution for the complex Ginzburg]Landau equation. The Painlevé

w xtransform for this equation was found by Kudryashov 5 and, omitting the
‘‘constant level’’ term, is given by

15 15 2u s 30 ln F q s ln F q 16ys ln F . 2.2Ž . Ž . Ž . Ž . Ž .x x x x x x2 152

w xFollowing the discussions given in 2 we take the specific form of the
singularity manifold F s1q eaŽ xyct .. The Painleve expansion takes the form´

30a3eaŽ xyct . 1y eaŽ xyct .Ž .
u x , t sŽ . 3aŽ xyct .1q eŽ .

2 aŽ xyct . 15aeaŽ xyct . 16ys 215a e s Ž .q q . 2.3Ž .2 aŽ xyct .aŽ xyct . 152 1q eŽ .2 1q eŽ .

The first and second terms of this expression have the form of solitary waves
that decay exponentially fast as xª"`. The last term is a traveling front
and as xªq` approaches a nonzero constant. We can get rid of the last
term by setting s s4

1q a eaŽ xyct .q 1y a e2 aŽ xyct .Ž . Ž .2u xyct s 30a . 2.4Ž . Ž .s 3aŽ xyct .1q eŽ .

Ž Ž . Ž . Ž ..For the traveling wave equation u x, t su xyct su j

ycu q u2 q u9q4u0 q u- s B 2.5Ž .

Ž .we considered the superposition of solitary waves 2.3 spaced 2d apart

q`

u j s u j y2md . 2.6Ž . Ž . Ž .Ý s
msy`

We used the partial fraction decomposition in exponentials applied to the
double product of two solitary waves taken with a shift j. It was shown that
such a product can be written as a sum of some solitary waves and traveling
fronts. The sum of the latter does not converge individually, but can be
combined as

q` q` q`

a j b m y b mq j s a j j, 2.7Ž . Ž . Ž . Ž . Ž .Ž .Ý Ý Ý
msy` js1 js1
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Ž . Ž .and thus is a constant B in 2.5 . The superposition 2.6 was shown to
Ž .satisfy 2.5 exactly for any d )p for the following relations among the

parameters d , a, c, and B, where ws ey2 ad:

2 a2 y1q11a4 q240a4 g1c s , 2.8Ž .22 a

1r4
d s ad 1q240 g , 2.9Ž . Ž . Ž .2

q` 2 j j6w 1qwŽ .4 2B s 180a y 1q a jŽ . Ý 5jž 1ywŽ .js1

q` j 2 j 3 j 4 jw q5w q5w qw2q 1y a j , 2.10Ž . Ž .Ý 5j /1ywŽ .js1

where the coefficients g and g depend on the product ad only and are1 2

given by the infinite series

q` 2 jw
g s , 2.11Ž .Ý1 4j1y vŽ .js1

q` j 2 j 3 jw q4w qw
g s . 2.12Ž .Ý2 4j1ywŽ .js1

Figure 1 gives the periodic solutions for different values of d . As d
increases, this periodic pulse train approaches the exact solitary wave
solution

e j

u j s 60 . 2.13Ž . Ž .3j1q eŽ .

Ž .Equation 2.6 may be viewed as an ‘‘almost clean’’ interaction of such
solitons. Under nonlinear coupling, solitons adjust their form but do not
destroy each other. In general, it reveals the formation of localized persis-
tent structures, their interaction, and the particle dynamics made up of
solitary waves. It is not so obvious that the periodic solution for small values

Ž . Ž .of d is made out of solitary waves 2.13 see Figure 1a .
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Figure 1. The graphs of the periodic solutions of the generalized Kuramoto]Sivashinsky
equation for different values of the spacing 2d between pulses. The periodic pulse train for
d s13 is unstable.
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3. The Bretherton model equation

In this section we illustrate how the exact periodic solutions can be found
for the different types of equations that particularly are not Galilean
invariant and for which no solitary solutions are known. To do so we
consider the Bretherton model equation that appears in the study of the
three-wave interaction process where one-dimensional dispersive waves in-

w xteract weakly through a cubic term 6

u q u q u q u s u3. 3.1Ž .t t x x x x x x

It has the Painleve expansion´

2F Fx x x' 'u x , t s "2 30 y q s "2 30 ln F . 3.2Ž . Ž . Ž .x x2ž /FF

We let

F x , t s 1q eajŽ .

with j s xyct, so that

eaj

u x , t s u xyct s u j s A , 3.3Ž . Ž . Ž . Ž .s s s 2aj1q eŽ .

2' Ž .where As"2 30 a . The traveling wave form of 3.1 is given by

c2 q1 u q u q u y u3 s 0. 3.4Ž . Ž .jj jjjj

Note that this equation lacks the constant of integration and, therefore, to
compensate the constant that will appear as a result of the partial fraction
decomposition we consider a periodic pulse train of the form

q`

u j s u j y2md q B. 3.5Ž . Ž . Ž .Ý s
msy`

Ž . Ž .Then u j satisfies 3.4 if

3q` q`
Y ZXmu j qu j qu y u q B q B s 0, 3.6� 4Ž . Ž . Ž .Ý Ýs , m s , m s , m s , mž /

msy` msy`
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2 Ž . Ž .where we used the notation msc q1 and u j su j y2md . Equa-s, m s
Ž .tion 3.6 can be written as

q`
Y ZX 2 3 2mu qu q 1y3B u yu y3BuŽ .� 4Ý s , m s , m s , m s , m s , m

msy`

q` q` q` q`
2 2y3 u u y3 u uÝ Ý Ý Ýs , m s , mqj s , m s , mqj

msy` msy`js1 js1

q` q` q`

y6 u u uÝ Ý Ý s , m s , mqj s , mqjqi
msy` js1 is1

q` q`
3y6B u u y B q B s 0. 3.7Ž .Ý Ý s , m s , mqj

msy` js1

From the partial fraction decomposition in the variables zs eya j and
ws ey2 ad we have the following expressions:

q` q` q` q` 2 2 mqjz w2u u s AÝ Ý Ý Ýs , m s , mqj 22m mqjzqw zqwŽ . Ž .msy` msy`js1 js1

q` mzw2 2s A p q A qÝ1 12mzqwŽ .msy`

q`
2s Ap u q A q , 3.8Ž .Ý1 s , m 1

msy`

q` q` q` q`
2 2u u q u uÝ Ý Ý Ýs , m s , mqj s , m s , mqj

msy` msy`js1 js1

q` q` 3 3mqjz w3s A Ý Ý 24m mqjzqw zqwŽ . Ž .msy` js1

q` q` 3 3mq2 jz w3q A Ý Ý 42m mqjzqw zqwŽ . Ž .msy` js1

q` q`3m 3 m 2 2 mzw q z w z w3 3 3s A p q A p q A q , 3.9Ž .Ý Ý2 3 24 4m mzqw zqwŽ . Ž .msy` msy`

q` q` q`

u u uÝ Ý Ý s , m s , mqj s , mqjqi
msy` js1 is1

q` q` q` 3 3mq2 jqiz w3s A Ý Ý Ý 2 22m mqj mqjqizqw zqw zqwŽ . Ž . Ž .msy` js1 is1

q` q`mzw3 3 2 3s A p q A q s A p u q A q , 3.10Ž .Ý Ý4 3 4 s , m 32mzqwŽ .msy` msy`
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where

q` j2w
p s y ,Ý1 2jw y1Ž .js1

q` 2 j jw qw
q s y j,Ý1 3jw y1Ž .js1

q` j 2 j 3 jw q6w qw
p s ,Ý2 4jw y1Ž .js1

q` 2 j16w
p s ,Ý3 4jw y1Ž .js1

q` 2 j 3 jw qw
q s 4 j,Ý2 5jw y1Ž .js1

q` q` iq j 2 iqj iq2 j 2 iq2 j 3 iq2 j 2 iq3 j 3 iq3 jw qw qw y6w qw qw qw
p s ,Ý Ý4 2 2 2i j iqjw y1 w y1 w y1Ž . Ž . Ž .js1 is1

q` q` q` q`2 iq4 j iq2 j 4 iq2 j 2 iqjw yw w yw
q s 2 j q2 i .Ý Ý Ý Ý3 3 3 3 3j iqj i jqiw y1 w y1 w y1 w y1Ž . Ž . Ž . Ž .js1 is1 js1 is1

Ž Ž ..To obtain the last expression we used the formula similar to 2.7 :

q` q` q`

a b m q y a j y a j b mq j q a j b mq jq iŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ý Ý 1 1 2 2
msy` js1 is1

q` q` q` q`

s a j j y a j i . 3.11Ž . Ž . Ž .Ý Ý Ý Ý1 2
js1 is1 js1 is1

Ž .Now 3.7 has a summation in m only or is a constant and we can set each
term of this sum equal to zero, collect coefficients of similar exponentials,
and solve this equation for an arbitrary m. This gives a system of three
algebraic equations in d , B, m, a. Then m is found as

4 2 2 4 4'1q a y3B y12 30 a p y360a p y720a p1 2 4m s y . 3.12Ž .2a
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For B and a we have the equations

2 2 4'1y3B y 30 B 1q12 p a y 4q240 p q60 p q720 p a s 0Ž . Ž . Ž .1 2 3 4

3.13Ž .

and

3 4 6 6' 'B y B y360a q y720 30 a q y1440 30 a q s 0. 3.14Ž .1 2 3

The first equation is quadratic in a2, so it can be solved for a2 and used in
the second equation, which is cubic in B. Since the coefficients

Ž y2 ad .p , p , p , p , q , q , q depend on the product ad only recall that ws e1 2 3 4 1 2 3
Ž . 2 Ž .we can fix ad , solve the quadratic equation 3.13 for a , find B from 3.14 ,

and recover d . Note that by definition mG1; therefore, the solution exists
only for restricted values of d , which in our case are 3.5697-d -4.4143.
Figure 2 gives the dependence of different parameters on the spacing
between pulses.

Figure 2. The dependence of the velocity of propagation c, the constant B, and the
amplitude of the pulse on the half period d of the exact periodic solution of the Bretherton
equation.
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3. The two-particle periodic pulse train

An extensive study of multiparticle solutions of the generalized
Kuramoto]Sivashinsky equations for relatively small values of the dispersion

w x w xparameter was performed in 7 . In 8 the dynamics of the trains of
well-separated pulses was investigated using singular perturbation methods
and with numerical simulations. We used the Fourier]Galerkin spectral
method with periodic boundary conditions to analyze the steady traveling
wave solutions of the GKSE. The numerical results demonstrate that the
solutions tend to form stable lattices of pulses that are steady in some
particular frame. Periodic solutions containing a single pulse occur if p -d
-12.75. For d )12.75 the single particle solution becomes unstable and is
thus not realized for greater d . For d )2p two-particle solutions can
emerge. Some are characterized by equal spacing and are indeed just the
single-particle solutions with spacing twice as small. Others have unequal
spacing between pulses. In general, for d ) Np , solutions ranging from one
to N pulses are all possible, but as d increases, first the one-particle

Ž .solution loses its stability at d s12.75 , then the two-particle solution
Ž .becomes unstable at d s25.5 , and so on.

The families of multiparticle solutions found in our case are similar to
w xresults achieved in 7 in the small dispersion case. Figure 3 represents the

Ž . Ž .two-particle solutions with equally a and unequally b spaced pulses.
As one compares the form of these two periodic solutions it may look as if

they are made out of the same solitary waves. To verify this hypothesis we
consider the periodic pulse train that is a superposition of solitary waves

Žwith two spacings 2d and j between pulses two periodic single-particle0

Ž .Figure 3. Two-particle periodic solutions of the GKSE with a equally spaced pulses for
Ž .d s14, where spacing between pulses is 14; b unequally spaced pulses for d s14, where the

smallest spacing between pulses is 13.28.
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.solutions added with a shift j . So, the solution of0

ycu q u2 q u9q4u0 q u- s B 4.1Ž .

or

LL u q u2 s B

with a linear operator

d d2 d3

LL s yc q q4 q2 3dj dj dj

is sought in the form

q`

u j s u j y2md qu j y2md yj , 4.2Ž . Ž . Ž . Ž .Ž .Ý s s 0
msy`

where

b eaj q b e2 aj
1 2u j s . 4.3Ž . Ž .s 3aj1q eŽ .

To simplify the notation we denote

U j , m s u j y2md q u j y2md yj .Ž . Ž . Ž .s s s 0

Ž . Ž .u j satisfies 4.1 if we can find constants c, d , j , and B such that0

2q` q`

LL U j , m q U j , m s B , 4.4� 4Ž . Ž . Ž .Ý Ýs sž /
msy` msy`

which can be written as

q` q` q`
2

LL U j , m qU j , m q2 U j , m U j , mq j sB.� 4Ž . Ž . Ž . Ž .Ý Ý Ýž /s s s s
msy` msy` js1

4.5Ž .

Since we would like to get the summation in m only, so that we can set
each term in the sum equal to zero independent of m, we need to separate
the summation in j from m in the last term of the previous expression.
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Using the substitutions zs eya j , ws ey2 d a, and ps eya j 0 this term can be
written as

q` q`

2 U j , m U j , mq jŽ . Ž .Ý Ýs s
msy` js1

q` q` m 2 2 mb w z b w z1 22s 2 A qÝ Ý 3 3m mž zqw zqwŽ . Ž .msy` js1

b pw mz 2 b p2 w2 mz1 2q q3 3m m /zq pw zq pwŽ . Ž .

b w mq j z 2 b w2 mq2 j z1 2= q3 3mqj mqjž zqw zqwŽ . Ž .

b pw mq j z 2 b p2 w2 mq2 j z1 2q q . 4.6Ž .3 3mqj mqj /zq pw zq pwŽ . Ž .

Using the partial fraction decomposition the term under the summation
signs can be decomposed into linear combination of

z 2 w m z 2 w mq j zw2 m

, , ,3 3 3m mmqjzqw zqwŽ . Ž .zqwŽ .

zw2 mq2 j pz2 w m z 2 pw mq j zp2 w2 m zp2 w2 mq2 j

, , , , ,3 3 3 3 3m mmqj mqj mqjzq pw zq pwŽ . Ž .zqw zq pw zq pwŽ . Ž . Ž .

w m w mq j pw m pw mq j

, , , .m mmqj mqjzqw zq pwzqw zq pw

The sequences

w m w mq j pw m pw mq j

, , , ,m mmqj mqjzqw zq pwzqw zq pw

Ž .tend to 0 for mªq`, but for mªy` they do not individually since the
m Ž m.terms of the m-sequences tend to 1. Furthermore, w r zqw and

mq j Ž mq j. Ž m Ž m. mq j Ž mq j..w r zqw as well as pw r zq pw and pw r zq pw do
not have equal magnitude, but opposite sign coefficients, so they cannot be
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put into the form

q` q` q`

a j b m y b mq j s a j jŽ . Ž . Ž . Ž .Ž .Ý Ý Ý
msy` js1 js1

and thus be a constant term. Instead, we must be able to add series of the
form

q` q` m mqjw w
j j, p q f j, pŽ . Ž .Ý Ý m mqjzqw zqwmsy` js1

pw m pw mq j

y f j, p y j j, p , 4.7Ž . Ž . Ž .m mqjzq pw zq pw

Ž . Ž .where the coefficients j j, p and f j, p also depend on b and b . These1 2

coefficients have quite complicated structures, but the symmetry between
them can easily be seen by looking at their Taylor expansion in p:

j j, p s b b w jp q y3b 2 q10b b y3b 2 w2 jp2Ž . Ž .1 2 1 1 2 2

q9 y2b 2 q5b b y2b 2 w3 jp3 q O p4 , 4.8Ž .Ž .Ž .1 1 2 2

b b y3b 2 q10b b y3b 2
1 2 1 1 2 2 2f j, p s p q pŽ . j 2 jw w

y2b 2 q5b b y2b 2
1 1 2 2 3 4q9 p q O p . 4.9Ž .Ž .3 jw

These two expansions consist of terms that are opposite in the sign of
exponents of w. Therefore, denoting by m the coefficients of w k j or wyk j

k
Ž . Ž .they are equal in these two expansions we can rewrite 4.7 as

q` q` q` m mqjw wk j yk jm w qwÝ Ý Ý mk mqjž zqw zqwmsy`k s1 js1

pw m pw mq j
yk j k jyw yw . 4.10Ž .m mqj /zq pw zq pw
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Each term of this series in k can be shown to give us a constant and a
a x Ž a x .Ž a x .new periodic pulse train that consists of the terms e r 1q e 1q pe .

q` q` mqk j myŽky1. j myk j mqŽkq1. jw w pw pwq y yÝ Ý m mmqj mqjž /zqw zq pwzqw zqwmsy` js1

q` q` q` q` q` q`mqk j myk j myŽky1. jw pw ws y qÝ Ý Ý Ý Ý Ým m mqjzqw zq pw zqwms 0 js1 ms 0 js1 ms 0 js1

q` q` mq Žkq1. jpwy Ý Ý mq jzq pwms 0 js1

q` q`mqk j myk jw pwk j yk jq yw y ywÝ Ý Ý Ým mž / ž /zqw zq pw
m- 0 js1 m- 0 js1

q` q`my Žky1. j mqŽkq1. jw pwyk j k jq yw y ywÝ Ý Ý Ýmq j mqjž / ž /zqw zq pwm- 0 js1 m- 0 js1

q` q` q` q` q` q`m m mw pw pwk j k j yk js w y w y wÝ Ý Ý Ý Ý Ým m mzqw zqpw zqpw
js1 ms 0 js1 ms j js1 ms 0

q` q` q`m mw wyk j k jq w q w y1Ý Ý Ý Ým mž /zqw zqw
js1 ms j js1 m- 0

q` mpwk jy w y1Ý Ý mž /zq pw
js1 m- j

q` q`m mw pwyk j yk jq w y1 y w y1Ý Ý Ý Ým mž / ž /zqw zq pw
js1 m- j js1 m- 0

q` q` q` q`m m m mw pw w pwk j yk js w y q w yÝ Ý Ý Ým m m mzqw zqpw zqw zqpw
js1 ms 0 js1 ms 0

jy1 jy1q` q`m mpw wk j yk jq w y wÝ Ý Ý Ým mzq pw zqw
js1 ms 0 js1 ms 0

q` q`m m m mw pw w pwk j yk jq w y q w yÝ Ý Ý Ým m m mzqw zqpw zqw zqpw
js1 m- 0 js1 m- 0

jy1 jy1q` q`m mpw wk j yk jy w W y1 q w y1Ý Ý Ý Ým mž /ž /zq pw zqw
js1 ms 0 js1 ms 0

q` q` q`m mw pwk j yk j k j yk js w qw y q w qw j.Ž . Ž .Ý Ý Ým mž /zqw zqpw
msy`js1 js1

4.11Ž .
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Ž .So 4.7 becomes

q` q` q` q`m mw pwk j yk j k j yk jm w qw y q w qw jŽ . Ž .Ý Ý Ý Ým mk ž /zqw zq pw
msy`k s1 js1 js1

q` q` m1y p zwŽ .s j j, p qf j, pŽ . Ž .Ž .Ý Ý m mž /zqw zq pwŽ . Ž .msy`js1

q`

q j j, p qf j, p j. 4.12Ž . Ž . Ž .Ž .Ý
js1

q` Ž Ž . Ž .. Ž .Now we let BsÝ j j, p qf j, p j. What is left in 4.5 has thejs1

summation in m only and we can set each term of this sum equal to zero;
that leads to the equation

2 X Y Zycu j q u j q u j q4u j q u jŽ . Ž . Ž . Ž . Ž .s s s s s

A eaj q A e2 aj Q peaj qQ p2e2 aj
1 2 1 2q2 q3 3aj ajž 1q e 1q e pŽ . Ž .

eaj

qG 1y p s 0. 4.13Ž . Ž .aj aj /1q e 1q peŽ . Ž .

The coefficients A , A , Q , Q ,G were obtained from the partial fraction1 2 1 2
Ž .decomposition in 4.6 and have the form

A s b 2 g q l q b 2 g q m q b b g y3g q m ,Ž . Ž . Ž .1 1 3 1 2 1 1 1 2 3 1 3

Q s b 2 g q l q b 2 g q m q m y l q b b g y3g q l ,Ž . Ž . Ž .1 1 3 1 2 1 1 3 3 1 2 3 1 3

A s b 2 g q m q m y l q b 2 g q l q b b g y3g q l ,Ž . Ž . Ž .2 1 1 1 3 3 2 3 1 1 2 3 1 3

Q s b 2 g q m q b 2 g q l q b b g y3g q m ,Ž . Ž . Ž .2 1 1 1 2 3 1 1 2 3 3

G s b 2 q b 2 r q b b r ,Ž .1 2 1 1 2 2
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where

q` 2 2 j j 2 2 j j3 p w pqw 3 p w 1q pwŽ . Ž .
r s y ,Ý1 5 5j jw y p pw y1js1 Ž . Ž .

q` j 2 2 j 3 3 j 4 4 j 4 j 3 2 j 2 3 j 4 jpw q5p w q5p w qp w p w q5p w q5p w qpw
r s y ,Ý2 5 5j jpw y1 w y pjs1 Ž . Ž .

q` 2 4 2 j 3 2 3 j3 p 1q p w y12 p 1q p wŽ . Ž .
l s Ý1 4 4j jw y p pw y1js1 Ž . Ž .

36 p4 w4 jy12 p3 1q p2 w5 jq3 p2 1q p4 w6 jŽ . Ž .q ,4 4j jw y p pw y1Ž . Ž .
q` 3 2 j 2 2 4 2 j 5 7 3 jy p 1q2 p w qp y3q12 p y3 p w q y2 pq6 p yp wŽ . Ž . Ž .

l s Ý3 4 4j jw y p pw y1js1 Ž . Ž .
16 p2 y36 p4 q8 p6 w4 jq y2 pq6 p5y p7 w5 jŽ . Ž .q 4 4j jw y p pw y1Ž . Ž .
y3 p6 y3 p2 q12 p4 w6 jy p3 q2 p5 w7 jŽ . Ž .q ,4 4j jw y p pw y1Ž . Ž .

q` 3 j 2 4 6 2 j 3 5 7 3 jp w q 2 p y4 p q2 p w q y8 p y2 p q p wŽ . Ž .
m s Ý1 4 4j jw y p pw y1js1 Ž . Ž .

24 p4 y8 p6 w4 jq y8 p3 y2 p5q p7 w5 jŽ . Ž .
2 4 6 6 j 3 7 jq 2 p y4 p q2 p w q p wŽ .q ,4 4j jw y p pw y1Ž . Ž .

q` 3 5 7 j 2 2 4 6 j 3 7 5 jy2 p yp w qp y3q12 p y3 p w q ypq6 p y2 p wŽ . Ž . Ž .
m s Ý3 4 4j jw y p pw y1js1 Ž . Ž .

8 p2 y36 p4 q16 p6 w4 jq y pq6 p3 y2 p7 w3 jŽ . Ž .q 4 4j jw y p pw y1Ž . Ž .
p2 y3q12 p2 y3 p4 w2 jy 2 p3 q p5 w jŽ . Ž .q ,4 4j jw y p pw y1Ž . Ž .

q` j 2 j 3 jw q4w qw
g s ,Ý1 4jw y1Ž .js1

q` 2 j6w
g s .Ý3 4jw y1Ž .js1
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By equating the coefficients of equal powers of exponentials in Equation
Ž .4.13 we get the expression for the velocity c as

c s 120a2 y g q g q l y mŽ .1 3 1 1

y1y5a2 q3 pq15a2 py3 p2 y135a2 p2 q p3 q5a2 p3

q , 4.14Ž .3py1Ž .

and the compatibility conditions on a and p as

pq p2Ž .
l s q m , 4.15Ž .3 33py1Ž .

p 1q p a2 p2 y p2 q10a2 pq2 pq a2 y1 2Ž . a y1Ž .
r s q r , 4.16Ž .1 25 22 2 1q aŽ .2 1q a 1y pŽ . Ž .

y4a2 g 4 2 41y a y4 pq60a py56a p1l s q ,1 2 42a y1 60 ay1 a 1q a py1Ž . Ž . Ž .
6 p2 y486a4 p2 y4 p3 y60a2 p3 y176a4 p3 q p4 y a4 p4

q 4260 ay1 a 1q a py1Ž . Ž . Ž .
3q a2

q m y m . 4.17Ž .3 12a y1

Ž .By fixing the product ad we can find p from 4.15 and then find a that
Ž . Ž .satisfies both 4.16 and 4.17 to good accuracy.

Ž .From Equation 4.15 we recover p, which corresponds to equally spaced
pulses. Then, by taking irregular spacing from numerical results, we can use
Ž . Ž . Ž .4.16 , 4.17 to find the approximation for a and use 4.13 to find the error

Ž .of approximation of the irregular two-particle solution by 4.2 . It turns out
Ž .that the error of approximation 4.2 for the smallest value of d for which

two-particle solutions was observed is about 0.1% of the maximum height of
the pulse, and this error quickly decays as d increases. The appearance of

Ž .Ž a x Ž a x .Ž a x ..the term G 1y p e r 1q e 1q pe indicates the interaction between
two adjacent pulses that slightly modifies the form of each pulse.

5. Cnoidal waves

The periodic solutions in terms of elliptic functions for some integrable
equations were obtained by Toda in case of ‘‘Toda lattice.’’ Later Whitham
suggested constructing the periodic solutions as sums of equally spaced
solitons for the Korteweg]de Vries, the modified Korteweg]de Vries, and
the Boussinesq equations. For this construction he gave elementary argu-

w xments, using identities in sech functions 1, 9 . These are the same solutions
since the infinite sums of hyperbolic functions can be represented by the
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ŽJacobi elliptic functions. The Painleve expansion or some generalization of´
the Painleve expansion for equations that do not formally possess a Painleve´ ´

.property can often be written in the derivatives of the logarithmic function.
Our choice for the singular manifold function F s1q eaj naturally leads to
the representation of such an expansion in terms of hyperbolic functions. So
we can represent the periodic pulse trains as the infinite superposition of the
hyperbolic functions and their derivatives and, therefore, as Jacobi elliptic
functions and their derivatives.

For example, the generalized Kuramoto]Sivashinsky equation with s s4
Ž . aj2.1 has a Painleve expansion with F s1q e´

1q a eaj q 1y a e2 ajŽ . Ž .2u j s 30a , 5.1Ž . Ž .s 3aj1q eŽ .

which can be written as

aj aj2 2 2u j s 30a sech q sech 9 . 5.2Ž . Ž .s ž /ž /2 2

Then the infinite superposition of such functions can be represented as the
cnoidal function and its derivative.

The Bretherton model equation has the Painleve expansion with F s1q´
eaj of the form

aje2'u j s "2 30 a , 5.3Ž . Ž .s 2aj1q eŽ .

which can be written as

aj2 2'u j s " 30 a sech , 5.4Ž . Ž .s 2

and the infinite superposition of this function is a cnoidal wave.
w xKudryashov 10 developed the method of getting the cnoidal wave

solution by directly applying the Painleve expansion to the original equation,´
thus reducing it to the anharmonic oscillator. Obviously our approach is
closely related to his method but involves more elementary arguments and
exhibits the interaction between the solitary waves directly.

We may represent our periodic pulse train solutions in the form of elliptic
w xfunctions and their derivatives using the identity given in 9 :

q`
2 2 2a sech aj y2md s dn j y C 5.5Ž . Ž .Ý

ms1

with Cs1y E9rK 9, asp r2 K 9, and 2d sp K rK 9.
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6. Conclusion

The remarkable result that in some problems the infinite superposition of
the soliton solutions is a periodic solution of the governing equation has
been known for some time now. This fact can be considered as another
indication of a clean interaction between solitons. Although a linear sum of
aperiodically spaced solitary wave solutions is not an exact solution, for
some systems the superposition of slightly modified waves is a solution. In
nonintegrable systems the solitary waves combined into a periodic solution
may interact more strongly than in integrable equations and produce some
additional terms as the result of such an interaction. The partial fraction
decomposition in exponentials is a convenient tool for analyzing such terms.
The Painleve expansion gives the correct form of these interaction terms.´
This leads to a conclusion that the interaction of the solitary waves in the
periodic pulse train depends on the singularity structure of the system.
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