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Vortex nucleation by a moving ion in a Bose condensate
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Abstract

The nonlinear Schrödinger equation is used to analyze the superfluid flow around an ion and to elucidate the vortex nucleation
process. Asymptotic expansion for the flow is used to find the critical velocity of the ion for vortex production. 3D numerical
calculations demonstrate, that if the axisymmetry of the flow is broken by introducing a solid boundary several healing length
from the sphere, vortex loops rather than vortex rings may be formed. These loops may detach from the ion and attach
themselves to the wall. In the presence of small 3D random noise, the system still favors the creation of vortex rings. 2000
Elsevier Science B.V. All rights reserved.
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The deliberately introduced impurity can be a fruit-
ful experimental probe of the structure and behavior
of superfluid helium. These impurities are:3He atoms
of radius 4 Å, electrons that by their motion create a
bubble of about 16 Å radius, and4He+2 positive ions
of radius 8 Å. Vortex nucleation by an ion moving in
superfluid helium at low temperature has been studied
experimentally and theoretically (see [1] for a review)
and has led to a number of interesting results. The su-
perfluid offers no resistance to the ion provided that its
speed,v, relative to the ion is less than a certain critical
value,vc . At speeds greater thanvc, the ion continu-
ally sheds vortex rings and these create a time-varying
drag on the ion [2]. The critical speedvc may be esti-
mated by modeling the ion as a solid sphere and not-
ing that the maximum relative velocity,umax, between
fluid and sphere is greatest on the equator of the sphere
(defined relative to the directionOz of motion as po-
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lar axis), and is approximately 3v/2, assuming thatv
is small enough for compressibility to be negligible.

Muirhead et al. [3] developed the theory of vortex
nucleation using a semiclassical (hydrodynamic) ap-
proach; the vortex was taken in the form derived in [4]
from the Gross–Pitaevskii (GP) condensate model [5].
They analyzed two scenarios for the vortex shedding
that occur forv > vc . In the first, a fully-formed ring
detaches, simultaneously and as a whole, from the
equator of the sphere. We call this the ‘complete ring’
scenario to distinguish it from the second or ‘vortex
loop’ scenario, in which a vortex loop grows from the
ion’s equator, is stretched by the flow, and later de-
taches from the sphere to become eventually a circular
vortex ring also. Muirhead et al. [3], using an energy
barrier argument, conclude that loop nucleation is fa-
vored over ring nucleation. The principal aim of this
Letter is to compare the two scenarios by numerical
simulations using the Bose condensate model.

It is well known that, when the Reynolds number
is large enough, the viscous boundary layer in contact
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with a moving sphere separates, so creating vorticity
in the wake of the sphere and an associated drag.
Helmholtz’s theorem would forbid this process in a
classical fluid that is strictly inviscid. The superfluid
can, however, defeat Helmholtz’s by the separation
(breakdown) of the healing layer on the surface of the
ion [6]. In [6] we used the GP model to investigate
the complete ring scenario. Ifv > vc (umax> c, where
c is the local speed of sound) circular vortices are
emitted at or near the equator of the ion, defined by
the direction of its motion. The flow created by this
flow, when combined with the flow over the surface of
the ion, at first reducesumax belowc. The self-induced
speed of the ring is, however, less thanv, so that the
ring falls increasingly far behind the ion, and its effect
on the ion diminishes. Eventually criticality again
occurs and another ring is emitted. Frisch et al. [7]
and Winiecki et al. [8] have demonstrated analogous
phenomena for the emission of vortex pairs from a
cylinder moving with speedv > vc ≈ 1

2c. The drag on
the cylinder created by the vortices in its wake was
evaluated in [8].

In terms of the single-particle wavefunctionψ(x, t)
for theN bosons of massM, the time-dependent self-
consistent field equation of the GP model is [5]

(1)ih̄
∂ψ

∂t
= h̄2

2M
∇2ψ +ψ(E − V0|ψ|2

)
,

whereE is the single particle energy andV0 is the
strength of theδ-function interaction potential be-
tween the bosons. The wavefunction is required to
obey the normalized condition on the total number of
the bosonsN = ∫ |ψ|2dV . The sphere is an infinite
potential barrier to the condensate, so that the bound-
ary condition isψ = 0 at r = b, whereb, the radius
of the sphere, is assumed much greater than the heal-
ing lengtha = h̄/(2ME)1/2, i.e., ε ≡ a/b� 1. The
Madelung transformationψ = R exp(iS) converts (1)
into a mass continuity equation∂ρ/∂t +∇ · (ρu)= 0,
and an integrated momentum equation involving a
quantum potential:

(2)
∂φ

∂t
+ 1

2
u2+ c2

(
ρ

ρ∞
− 1

)
− h̄2

2M2

∇2ρ1/2

ρ1/2
= 0.

Hereρ =Mψψ∗ is the mass density, andj = (h̄/2i)
(ψ∗∇ψ − ψ∇ψ∗) = ρu; u = ∇φ, where φ =
(h̄/M)S, is the fluid velocity;c2= E/M is the sound
velocity; ρ∞ =ME/V0 =Mψ2∞ is the mass density

at great distances. It is clear from (2) that the fluid is
compressible. Indeed, ‘in the bulk’ (the region far from
the sphere) where gradients of the density,ρ, are neg-
ligible, (2) shows that the pressure,p, is proportional
to ρ2. Compressibility is therefore important at criti-
cality, since the velocity of the sphere is then compa-
rable withc.

In [6], we solved (1) in the ion reference frame, so
that the ion is permanently situated at O. The con-
densate is in steady motion at infinity in the negative
z-direction with speedV ≡ v/c. Grant and Roberts
[9] developed an asymptotic expansion of the solu-
tion for U � 1, so that the flow is approximately in-
compressible. Their results can be extended to show
that the dimensionless flow velocity,u/c, is 3V/2+
551ε2V 3/1760. ForV = O(1), compressibility be-
comes important. The solution consists of two parts,
a boundary layer (inner solution) close to the surface
of the sphere and the mainstream flow (outer solution)
in the far field. In the mainstream, quantum effects are
negligible at leading order inε, and the condensate
becomes a compressible inviscid fluid. By matching
smoothly the boundary layer to the mainstream solu-
tion we show [6] that the maximum flow velocity,u/c,
on the equator of the sphere is

Uθ = 3V/2+ 0.313V 3+ 0.3924V 5+ 0.648V 7

+ 1.24V 9+ 2.63V 11+ 5.96V 13+ · · ·
(3)+ ε(2.12V + 1.58V 3+ 2.89V 5+ · · ·).

This expression reaches the local speed of sound when
Vc ≈ 0.53 for ε→ 0.

The ring scenario was studied in [6] by numerically
integrating axisymmetric solutions of (1), i.e., solu-
tions independent ofχ , where(r, θ,χ) are spherical
coordinates andθ = 0 in the direction of motion of the
sphere. We also demonstrated the style of healing layer
separation, which occurs near, or slightly downstream
of, the ion equator.

In this Letter, we examine the possibility that
vortex shedding is preferentially a non-axisymmetric
process, as for example is envisaged by the vortex loop
scenario. For this purpose, a fully 3D program was
constructed, which finds solutions of (1) that depend
on χ , as well as onr and θ . Eq. (1) was solved
in an integration box of dimensions 80a in each of
the Cartesian dimensions (for the details of numerical
integration see [6]).
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Fig. 1. The results of numerical integration of (1) for the sphere of radius 10a with V = 0.566. The pictures show the isosurfaceρ = 0.2ρ∞ at
(a) t = 85a/c, (b) t = 128a/c, (c) t = 160a/c, and (d)t = 234a/c.

We first examined whether a vortex loop grows
spontaneously from a small asymmetric perturbation.
Our perturbation consisted of random noise added to
the motion of the sphere, so that its dimensionless
steady velocityV = V ẑ was replaced byV = V ẑ+
h(t) whereh is a random perturbation. (This is meant
to simulate in an approximate way fluctuations in the
electric field dragging the ion through the fluid.) When
h was changed every time step (1t ≈ 0.005a/c),
no tendency to produce vortex loops was observed,
even where|h| was as large as 10% ofV . When
h was changed randomly every 2000 time steps, the
ion motion V ẑ + h is oblique toOz and constant
during each of these periods (duration 10.7a/c), and
circular vortices tended to nucleate on or near the
equator defined by that direction. Again, there was
no perceptible tendency for loops to develop. Loops
might start to form but they would evanesce or quickly
transform to a complete ring while still in contact
with the ion. To accentuate the appearance of the
vortex loop we implemented the following strategy:
initially we fixed h = 1

5Vcŷ and allowed the system
to evolve up to the nucleation of the first ring (for
about 16000 time steps); see Fig. 1(a). After that,h
was reset toh = −1

5Vcŷ during the next 24000 time
steps. As the sphere changes its direction the flow at
part of the nascent vortex ring becomes subcritical.
This nonuniformity allows the formation of a vortex

loop; see Fig. 1(b). For as long as the sphere maintains
its motion, the radius of the vortex loop grows, the feet
of the loop move closer to each other and towards the
back side of the sphere (Fig. 1(c)) until they reconnect
to form a ring; see Fig. 1(d). Such an asymmetric
vortex ring balances the velocity field on the surface
of the sphere nonuniformly; even though the sphere
continues moving steadily in the same direction this
nonuniformity influences the formation of the next
vortex loop and so on. Note that for the larger values
of V the picture of nucleation becomes increasingly
more complicated. As the velocity field around the
sphere can become supercritical before the complete
loop detaches, some other loops and rings may be
formed that reconnect among themselves and with the
previously formed loops or rings.

Second, we changed the geometry by introducing a
plane wall (an infinite potential barrier) at a distance of
10a from the ion. Fig. 2 shows the formation and evo-
lution of the vortex loop on the sphere moving subcrit-
ically with V = 0.51 in a presence of a solid plane at
10 healing lengths from the sphere. A vortex loop ap-
pears on the side of the sphere closer to the boundary;
see Fig. 2(a), as the velocity reaches criticality there.
The loop spreads laterally, interacts with the boundary
(Fig. 2(b)), the feet of the vortex line on the surface of
the sphere come closer to each other (Fig. 2(c)), and
they detach to form a loop on the boundary (Fig. 2(d)).
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Fig. 2. The results of numerical integration of (1) withV = 0.51 for the isosurfaceρ = 0.2ρ∞ at (a)t = 132a/c, (b) t = 168a/c, (c) t = 216a/c,
and (d)t = 240a/c.

Fig. 3. The results of numerical integration of (1) withV = 0.59 for the isosurfaceρ = 0.004ρ∞ at (a)t = 64a/c, (b) t = 81a/c, (c) t = 96a/c,
and (d)t = 113a/c.
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For larger distances between the ion and the bound-
ary it is also possible that a loop on the sphere devel-
ops into a ring without touching and reconnecting with
the boundary. This scenario is different if the sphere is
moving with supercritical velocity. Again the vortex
loop is first formed close to the boundary (Fig. 3(a));
almost simultaneously however a complimentary loop
appears on the opposite side of the sphere (Fig. 3(b)).
Both rings rapidly spread laterally until they reconnect
to form a vortex ring; see Figs. 3(c) and (d). These fig-
ures also show how the healing layer on the wall is
thickened by the presence of the ring. This process,
also present in Fig. 2, aids the capture of a vortex loop
by the wall.

The simulations described in this Letter have not
revealed any marked tendency for vortex loops to
nucleate in preference to vortex rings at criticality,
although in special circumstances loops do form first
and develop rapidly into rings.
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