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The motion of quantized vortices on two-dimensional inhomogeneous density backgrounds with
boundaries is considered numerically and asymptotically. We show that a Hamiltonian group relation
together with the method of images and an approximation for the density background is useful to
understand vortex motion. We analyze the vortex motion on a variety of background configurations
motivated by experiments on trapped Bose-Einstein condensates including linear and quadratic
traps. We show that close to the center of the condensate cloud in the Thomas-Fermi regime the
vortex is moving predominantly due to the image vortex that is effectively shifted because of the
large density depletion of the condensate at the boundary. Close to the boundary the vortex moves
mostly due to a large background density gradient across the vortex core. The vortex velocity is a
nonlinear combination of these effects and of a global shape of the background density. We find the
complete families of the traveling coherent structures in an infinitely long two-dimensional channel
and derive an approximation of the velocity of a single vortex moving close to the center of the

channel in the Thomas-Fermi regime.
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I. INTRODUCTION

One of the fundamental questions in nonlinear sciences
is the behavior of topological defects which owe their ex-
istence and perseverance to the topology of the order
parameter describing a medium with a broken symme-
try [1]. The motion of such defects on a spatially inho-
mogeneous backgrounds is studied in superconductivity,
superfluidity and nonlinear optics. The motion of vor-
tices in superconductors is influenced by localized inho-
mogeneities. External traps is a source of background
density variations in Bose-Einstein condensates (BECs)
and variations of the intensity in the beam cross-section
create an inhomogeneous background in nonlinear optics
experiments. The dynamics of quantum vortices and soli-
tary waves in trapped Bose-Einstein condensation (BEC)
has been a subject of intense interest since the first BEC
realization in 1995. Numerous experiments have revealed
the fascinating nature of these objects, in particular vor-
tices [2, 3] and dark solitons [4-8]. Extensive work on
the vortex dynamics in a trapped condensate has been
the focus of much research (see for an overview [9-11]).

The problem of vortex motion on gradually varying
backgrounds, such that the background field does not
change considerably at the vortex core scale, can be
treated using the method of matched asymptotic expan-
sions [12, 13]. The small parameter of the expansion
is associated with the background variation. In partic-
ular, it was established that the vortex is expected to
move in the direction orthogonal to the gradient of the
background density with a (slow) velocity proportional
to the magnitude of the gradient of the logarithm of the
background density. Unfortunately, there is no univer-
sal mobility relation as was emphasized in [1], so the
detailed asymptotic expansion procedure has to be car-

ried out for each particular system. Notably, this task
has been achieved for the linear density background in a
semi-infinite system by Anglin [14] again under the as-
sumption that the vortex core size is much smaller than
the distance of the density background variation and as-
suming that the vortex is far from the surface (boundary)
of the condensate cloud.

A separate question concerns the effects of the bound-
aries on the vortex motion. In classical inviscid hydro-
dynamics the relevant kinematic boundary condition at
a solid wall with normal vector n is

pu-n=0, (1)

where p is the local density of the fluid and u is the veloc-
ity of the fluid. This condition with non-zero values of the
density of the classical fluid reduces (1) to a no-flow con-
dition u-n = 0, which is often dealt with by introducing
an image vortex of opposite circulation on the other side
of the boundary and removing the boundary. It appears
that for a condensate, with an order parameter which
forces p to vanish on the boundary, the condition of no
mass flow (1) is automatically satisfied and, therefore,
the images are irrelevant to the dynamical description
[14]. On the other hand, the method of images has been
used in a number of papers that study two-dimensional
vortex motion in condensates [15]. In [16] it has been
shown that indeed a stronger condition u-n = 0 has
to be satisfied on the solid (impermeable) boundary, so
that the image vortices together with a good approxima-
tion of the background field is a useful tool in analyzing
the vortex dynamics. In order to separate the effect of
the surface from the effect of the density gradient, the dy-
namics of a vortex in a half space bounded by a solid wall
on which the density of the condensate vanishes was an-



alyzed. This geometry represents the simplest problem
of a vortex in a condensate interacting with a surface.
Specifically, it was found that the depleted surface layer
induces an effective shift in the position of the image in
comparison with the case of a uniform flow, so that the
velocity of the vortex can be approximated by
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where yq is the distance from the vortex core to the wall, £
is the healing length of the condensate and m is the mass
of the boson. Note that /2 corresponds to the area of
the density depleted by the boundary layer, scaled by the
density of the homogeneous state away from the vortex:
Jo° 1 tanh(y/v2)? dy = V2.

The aim of this paper is to consider essentially inho-
mogeneous two-dimensional condensates in the presence
of a boundary. We emphasize that although the problem
of finding the leading order (logarithmic) term of the vor-
tex velocity in trapped condensates has been successfully
solved in [9, 17] and more recently in [18], we are inter-
ested in the correction to this expression. This correc-
tion will provide a dominant contribution to the vortex
velocity when it is positioned close to the center of the
condensate cloud and close to the condensate boundary.
We shall also show that the vortex velocity is not equal
to the sum of the local fluid velocity and a correction due
to the background density gradient in the vortex core re-
gion. We shall restrict ourselves to the Thomas-Fermi
(TF) regime in which the boundary of the condensate is
better defined.

An analysis of the motion of vortices in trapped con-
densates will be presented in order to elucidate the rela-
tive importance that the density gradient and the image
vortex has on the motion. Three separate cases will be
considered, that gradually increase the complexity of the
inhomogeneity. Firstly, we consider the vortex motion in
a linear potential, which is a good estimate of the form
of a condensate near the TF surface of the quadratic
trapping potential [19]. A linear trap has also been used
experimentally [20]. To consider a linear trap has the ad-
vantage that while the dynamics take place on an inho-
mogeneous density background there is a constant den-
sity gradient. Secondly, we consider a one-dimensional
semi-infinite harmonic trap, so that the condensates’
ground state (lowest energy state for a given number of
particles) is strongly inhomogeneous near the boundary
and approaches a constant away from the boundary. Fi-
nally, we find the complete families of traveling coherent
structures in elongated traps in 2D. These waves have
been the subject of a number of experimental [6-8, 21]
and theoretical works in recent years, particularly in a
three-dimensional axisymmetric cigar shaped trap [22-
24] and in 2D channels [25, 26]. Collisions of solitary
waves in 3D channels have also been elucidated [27].
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The paper is organized as follows. In Sec. II we for-
mulate the models that will be considered in this paper
together with the numerical and asymptotic techniques
used. In Sec. III we study the motion of a single vortex
parallel to the TF boundary and calculate its velocity
as a function of distance from the boundary. We ana-
lyze the vortex motion in a semi-infinite quadratic trap
in Sec. IV and finally in Sec. V the family of coherent
structures including vortices moving with a constant ve-
locity in a channel for various strengths of interaction
potential are found together with an asymptotic approx-
imation to their motion. Section VI contains a summary
of the main findings.

II. FORMULATION AND METHODOLOGY

The time-dependent Gross-Pitaevskii (GP) equation
gives an accurate description of the dynamics of the
Bose-Einstein condensate. For a two-dimensional con-
densate in an external potential, V;.(z,y), the GP equa-
tion is given in terms of the macroscopic wavefunction

¢ =¢Y(z,y,t) by

02 = G2y (B, ~ Vi) — VolbP)o, (3
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where E, is the chemical potential of the system and Uy is
the two dimensional coupling constant in the disk-shaped
geometry of the cloud [28]. The background inhomogene-
ity of the condensate cloud is provided by the external
potential trap V. (z,y), typically of the form

1
V;ﬁ’r(x7y) = im(wim2 + wzyZ)a (4)
where w, and w, are the frequencies associated with the
respective coordinates of the trap.

We consider three different trap configurations that al-
low us to elucidate the effects of inhomogeneous back-
grounds. Firstly, we consider a linear trapping potential.
Near the surface of a condensate in a harmonic trap (4)
Eq. (3) can be replaced by its linear approximation [19]
via

1

VYs (5)

Vir (y) = E, — 2

where v = mw? R with Thomas-Fermi (TF) radius R and
where we let w = w, = wy. Thus, this expression for the
potential, taken with the full dimensional GP equation
(3) and scaled according to
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where

produces the non-dimensional GP equation for a conden-
sate in a linear potential trap

0
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where =1 and g =1 and
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Secondly, we consider a semi-infinite condensate in a
one-dimensional quadratic external potential trap, that is
switched off at large distances. Therefore, taking the GP
equation (3) together with the one-dimensional quadratic

potential,
mw?y?/2 y <0

Vir(y) = - 10
i (v) { 0, (10)

and applying the scaling
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gives (after the transformation y — y — ¢) the non-
dimensional GP equation (8) with semi-infinite quadratic
potential

V(y) = {‘I_Z(yo_q) ‘ziz (12)

where the dimensionless parameter ¢ = 2E, /wh splits
the background density into an inhomogeneous part (for
y < ¢) and a homogeneous part (fory > g)andu =g =1
in Eq. (8).

In the final case to be investigated, namely the dy-
namics of vortices and other traveling coherent struc-
tures in an infinitely long channel with a one-dimensional
quadratic potential V3, (y) = mw?y? /2, we use the scaling

nt/2 1
Y= —, t— —t, x—ax, (13)
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where a; = (h/mw)'/? is the transverse oscillator length
and n is the number density of the ground state per
unit length in the longitudinal direction. This non-
dimensionalization gives Eq. (8), where g = 2Ugn/hwa? .
The chemical potential yu = 2E, /hw is fixed by the nor-
malization condition

[ wokay =1, (14)
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where 19 (y) is the ground state of the condensate. The
trapping potential in Eq. (8) becomes

Viy) =y> (15)

We are interested in finding traveling coherent struc-
tures as solutions of (8) that preserve their form as they
move subject to a potential V(y) with a fixed velocity
U. A moving vortex or a vortex pair are two particular
examples of structures we seek to find. For each value
of U, therefore, ¥(z,y,t) = ¥(n,y), where n = © — Ut.
Thus §; — —UJ9, in Eq. (8) gives
2% =yt (= V) — ool (16)

oz
where without loss of generality we assign x = 7, and all
systems are solved subject to boundary conditions

Y(z,y,t) = Yo(y) as z — Foo. (17)

We shall be interested in the form of the solutions (in
particular the distance of the vortex from the conden-
sate surface), its impulse p, velocity U, and energy E.
For semi-infinite (in the y—direction) condensates (with
a linear (9) or a semi-quadratic (12) traps) the impulse
is defined [29] to be

P=15 [(W‘ — )58 — (¥ - %)%*] drdy.  (18)

For the case of an infinitely long 2D channel, the phases
of the solution may differ at z — +00 and at £ — —00, s0
the impulse per unit length in the z— direction is defined
as in [22-24] via

p = [~ o) 3L dedy =
oy _ 0"

1 *

- / o P[8(z = 00,5) — d(z = —o0, )] dy,

where ¢ is the phase of 1 = || exp[i¢].

The associated energy functional per unit length in the
z— direction is

Ep =5 [[IVYP + (V@) — wll + '] dady.
(20)
The excitation energy suitably modified to accommodate
the ground state 1y is given by

E =E; — Ey,, (21)

where Ey, is the energy Eq. (20) evaluated at the ground
state ¥ = 1y in the absence of the disturbance.

The solutions are found numerically by a Newton-
Raphson iteration technique. The infinite domain is



mapped by the transformations Z = tan~!(Dz) and
y = tan~!(Dy) to a finite grid (—%,%) x (—%,%). D is

a constant chosen to lie in the range D ~ 0.4 — 0.8. The
resulting equations are expressed in second-order finite-
difference form. Taking 2012 grid points in the finite
domain, the resulting non-linear equations are solved by
a Newton-Raphson iteration procedure using a banded
matrix linear solver based on the bi-conjugate gradient
stabilized iterative method. The accuracy of the obtained
solutions is verified by evaluating various integral iden-
tities. The vortex position is detected by finding the
zeros of the real and imaginary parts of the wavefunc-
tion. Note, that as the vortex moves close to the conden-
sate boundary it becomes impossible to detect numeri-
cally whether we have a vortex solution or a rarefaction
wave first introduced by Jones and Roberts [29] in the
context of a uniform condensate. Rarefaction waves can
be viewed as two-dimensional density depletions or finite
amplitude sound waves with a dipole velocity field. The
circulation around any contour for these solutions is zero.
We shall, therefore, indicate the critical velocity at which
we do not see numerically the difference between the two
waves.

We compare the results of the numerics with the
asymptotic expressions for the velocity of the solutions.
To obtain this approximation we extend the method de-
veloped for a semi-infinite uniform condensate in a pres-
ence of a solid wall [16]. The idea is to employ the Hamil-
tonian group relation

_JE

U=5,

(22)
which is satisfied by classical vortex pairs and vortex
rings as well as the quantum counterparts in BECs mov-
ing on homogeneous backgrounds [29]. The same result
can be shown to be valid for traveling coherent structures
satisfying (16). The variation ¢ — 1 + % in (18) and
(19) results in the same form for Jp, namely

Sp=1i / b aali* — 5y* g—zﬁ dzdy (23)

and in (21) produces

SE =L [oy* [-V2p+ 9 (V(y) — p+glv]?)] +
5 [V + 4% (V(y) — p+ gly|?)] dedy,

provided 61 — 0 as y — oo. It follows that 6E = Uép
and thus the Hamiltonian group relation of the energy
and impulse taken along the sequence of solitary-waves
holds for a general u, g and V(y). An alternative and
useful form of the energy functional can be obtained from
the substitution  — cz, for a constant ¢ in Egs. (21) and

(24)

(18). Then using the variational relationship

0

|
E = —| dzxdy. 26
[ |52 o (26)
To obtain an approximation to the velocity U as a
function of yg, Eq. (22) is rewritten as

=0 (25)

c=1

gives

U= B_E _ 6E/6y0
~ dp  Op/dyo

with the form of the impulse and energy given by Egs.
(18), (19) and (26). Egs. (22) and (26) are used to ver-
ify the numerical procedure. A trial wavefunction for a
single vortex of a positive unit of circulation moving a
distance yo from a condensate surface with a constant
velocity is given by

Y = PrEYy, Yu_, (28)

where 17 is the ground state, 1o, in the TF approxi-
mation, and the wavefunction of a vortex, 1., , and its
image v¢,_, are given respectively by (see for example
[16, 30])

(27)

_ z +i(y Fyo)
VT2 + (y F yo)? + 262

Here the healing (coherent) length &, determines the size
of the vortex core. For this form of the trial function,
the expressions for the energy (26) and impulse (18,19)
can be integrated exactly and expanded in large values of
yo- Note, that the approximation (28) is accurate only if
the vortex is sufficiently far from the condensate surface.
Typically a first order expansion of U in yo will guarantee
a good approximation.

To separate a local effect of the density variation on the
vortex motion we also compare the velocities obtained
from the trial function (28) with those obtained from

Y =Yrry,, (30)

where the image vortex is absent.

Pos (29)

III. LINEAR POTENTIAL

The first system considered in this paper is that of
the dynamics of the Bose-Einstein condensate placed in
a linear potential trap described by Eqgs. (16) and (9).

This system has already been considered by Anglin [14]
who used a boundary-layer approach to evaluate the vor-
tex motion using the hydrodynamic (outer) solution and



the perturbative (inner) solution. It has been revisited
by Al Khawaja [30] who used the form of Anglin’s inner
solution with a fitting parameter that was evaluated via
numerical and variational calculations. The numerics in-
volved forward integration in time of Eq. (16) with (9)
on a truncated domain. The conclusion of [30] that the
result obtained is superior to that of Anglin [14] has not
been confirmed by our more rigorous numerical analysis.
Conversely the result of Anglin [14] is accurate for even
short distances from the condensate boundary; see Fig.
3 below.

Traveling coherent structures for positive velocity U
are found by the numerical scheme introduced previously
with the initial state given by Eqgs. (28, 29). Figure 1
shows the energy, E, calculated from Eq. (21) (or Eq.
(26)) as a function of the impulse, p, given by Eq. (18).
For small U and large E and p, the solutions resemble a
single vortex propagating at constant speed U, parallel to
the = axis. As the velocity is increased the vortex drifts
towards the boundary of the condensate until the velocity
reaches U = 0.73 at which point we can no longer dis-
tinguish between the vortex solution and the rarefaction
wave.
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FIG. 1: The energy, E, as a function of impulse, p, of the
traveling coherent structures of Eq. (16) with linear trapping
potential (9). The solid line corresponds to a single vortex so-
lution. The energy-impulse of rarefaction pulses are depicted
by the dot-dashed line. Also shown (dotted line) is the energy
vs impulse given by Eq. (31). Energy is measured in units of
h2e'y/mU0 and impulse in units of h62'y/U0.

We obtain the corresponding analytical approxima-
tions of the energy E, impulse p and velocity U as func-
tions of the vortex distance yg, from the condensate
boundary (defined here as the boundary given by the TF
profile) by following the procedure described in the pre-
vious section. We consider the trial function (28) with
(29) and & = 1/|¢rr|, where the TF ground state is
Yrr = /y/2, as an approximation for a vortex solution
assuming that gy is sufficiently large. Figure 2 shows
that indeed Eqgs. (28, 29), provide a good approximation
to the exact numerical solution. For this choice of the

trial function, the impulse (18) and energy (21) are ex-
actly integrable in z and y and to the leading order in
large yo become

s 1
E = % (5 +31n(y0)> , (31)
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FIG. 2: (Color online) The density (p = [¢|?) for the trial
function given by Eqs. (28)-(29) for a vortex solution of the
Eq. (16) with the linear trapping potential (9) (black line) and
the numerically exact solution (gray (red) line). The density
is measured in ey/Up and distance in e.

The velocity is than evaluated according to Eq. (27) as

3

U= 5 (5 + 3 1nw)). (33)

The above result can be compared to the result derived
by Anglin [14]

1

3
U= (1.267+ 5n (y0)> . (34)

Both results are valid only for large yq, i.e. far from
the boundary. We show the exact numerical result for
the velocity as a function of yg together with asymptotic
results (33) and (34) in Fig. 3.

Note that compared to the precise numerics, the ac-
curacy of the asymptotic approach taken here using the
Hamiltonian group relation (22) provides as strong an ap-
proximation to the velocity profile as does the boundary
layer approach taken by Anglin in [14]. In fact the lead-
ing order term in both expressions (33) and (34) has the
same multiplying factor. However, the analysis under-
taken here has explicitly included an image vortex as a
mean of satisfying the no-flow condition. Hence it can be
deduced that a vortex moves because of the combined ef-
fect of the density gradient and the ‘shifted’ image. While
indeed the method of images is limited to cases of simple



geometry, it is an extremely useful tool to use when appli-
cable and produces a result as accurate as a full matched
asymptotic approach but with the additional benefit of
simplicity.
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FIG. 3: (Color online) Graphs of the velocity of the vortex U
vs. the vortex position yo calculated by a numerical integra-
tion of Eq. (16) subject to the boundary conditions (17) for
the linear potential V(y) = 1 — (y/2) (solid red curve) and
the asymptotics given by (33) (dashed blue curve). The cor-
responding result of Anglin (dash-dot black curve) (34) is also
given. Velocity is measured in units of 2¢>y/A and distance
in units of e.

In order to separate the effects of the local density
variation from the boundary effects we calculate the mo-
tion of a vortex without the implied image. We take
the trial function (30) and again use the Hamiltonian
relation (22) to determine the vortex velocity. The wave-
function does not decay fast enough for the convergence
on the half-plane in y, so we consider a finite integral
over y € [0, Lyo], where £ > 1 and asymptotically get the
following expressions for the energy (21) and magnitude
of the impulse (18)

=2 (¢4 3In(yo)) (35)

£2 2
po= ”41/0. (36)

E, =

We also re-evaluate Egs. (31)-(32) for the same finite
domain in y to get

_ o (1 2
E = 4 (2 7 +31n(y0)), (37)
2
_ TYp
p= - (38)

By inspection we conclude that the logarithmic term
in the energies comes from the local density variation,
whereas the effect of the image vortex is represented by
the term linear in yo. It is also important to emphasize
the nonlocal effects represented by the second term of
Eq. (37), which leads to the correction to the velocity

due to the finite integration domain
U=U——. (39)

Thus, the velocity of the vortex is not the sum of the
local fluid velocity and a correction that describes the
background density gradient in the vortex core region.
Instead, (i) the total shape of the condensate has an in-
fluence on the vortex motion not just the background
density in the vortex core and (ii) the effective position
of the image is greatly modified by the shape of the con-
densate. The effects of the applied velocity (due to the
image) and the contribution to the velocity (due to the
background density gradient) do not combine linearly.

IV. SEMI-INFINITE QUADRATIC POTENTIAL

In this section we shall analyze vortex and other trav-
eling coherent structures of Eq. (16) for the external
trapping potential given by Eq. (12) and subject to
the boundary conditions (17). The density profile is
quadratic for 0 < y < ¢ and constant for y > q. We
are interested in how the vortex velocity changes as the
vortex moves further away from the condensate surface.
This is an intermediate case between the motion on a lin-
ear background density (considered in the previous sec-
tion) and the case of a vortex moving in an untrapped
condensate with a solid boundary considered in [16]. A
good choice of ¢ would be one that allows an appropriate
range for the varying density background (0 < y < q)
whilst at the same time reflects the ability of the numer-
ics to resolve accurately around the vortex in the uni-
form density background range. The choice used here is
q = V/50.

Firstly, traveling coherent structures moving with ve-
locity U are sought. As before, the same numerical
scheme introduced in Sec. I can be utilized to find the
energy and impulse of the solutions. The Ep dispersion
curve is given in Fig. 4. For small velocity, the solution is
a single vortex far away from the boundary of the conden-
sate. As the velocity increases the vortex drifts towards
the boundary, and for U > 0.5 (E =~ 1.20, p ~ 2.18)
becomes indistinguishable from rarefaction waves.

The velocity profile can be found by employing the
Hamiltonian group relation Eq. (22) with the form of
the wavefunction given by Egs. (28) and (29) where the
ground state is

1-L@y—q” 0<y<gq
y>q (40)
0 otherwise.

Integration of the impulse and energy results in an



FIG. 4: The energy-impulse curve of the solitary-wave solu-
tions of Eq. (16) with semi-infinite quadratic trapping poten-
tial Eq. (12). The solid line corresponds to a single vortex
solution. The part of the Ep curve for U > 0.5 is depicted by
the dashed line. Energy is measured in units of #*E,/mUp
and impulse in units of (h*E, /2mUZ)*/? both per unit length
in the z—direction.

second-order approximation of U in yg !

1 5v2
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(41)

valid for large yq.

Alternatively, exploiting the similarity between the
density profiles of this condensate and the one consid-
ered in [16] for a vortex next to a wall allows a more
accurate estimate of the velocity profile. Following the
analysis of [16], the velocity can be found by using the
area of the displaced density

5

[ 1-a-vena=3va (42)
0

to recover

1
I w
which has the same first two terms of the Taylor expan-
sion as Eq. (41).

Figure 5 gives the plot of the vortex velocity U as a
function of the distance of the vortex from the boundary
yo for the numerically determined values, the approxima-
tion given by (43) and the exact Hamiltonian established
from Eq. (22). The effects of the density gradient and the
boundary can be readily seen. Far from the boundary,
i.e. for large yo where y > ¢, Eq. (43) gives an accurate
approximation to the velocity. In this region the density
gradient is zero and thus the motion can be viewed as be-
ing due to a ‘shifted’ image vortex, with the shift caused
by the large depletion in density around the boundary.

The exact Hamiltonian group relation (22) with (28)

still gives a good approximation of the vortex motion in
0 <y < ¢. In this region, the density gradient becomes
more prevalent, and the exact Hamiltonian is found to be
in good agreement with the numerics as Fig. 5 illustrates.
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FIG. 5: (Color online) Graphs of the velocity of the vortex U
vs. the vortex position yo calculated by a numerical integra-
tion of Eq. (16) subject to the boundary conditions (17) for
the semi-infinite quadratic potential V(y) given in Eq. (12)
(solid red curve). Also shown is the velocity found by the
Hamiltonian group relation (22) (dashed green curve) and
the asymptotic expression (43) (dash-dot blue curve). Veloc-
ity is measured in units of (2E,/m)*/? and distance in units
of i/ (2mE,)Y2.

V. VORTICES IN A CHANNEL

In this section, we consider vortex dynamics in an
infinitely long channel, a two-dimensional version of a
three-dimensional cigar trap considered experimentally
by [7, 8]. The dynamics of the three-dimensional cigar
trap have also been investigated theoretically by [22, 23],
who discovered a rich variety of traveling coherent struc-
tures, namely vortex rings and gray and black solitons.
The dynamics of solitonic structures in trapped BEC’s
have also been widely studied (see for example [31-34]).

We consider the GP equation (16) with the potential
given in (15) that describes the dynamics of traveling
coherent structures in an infinitely long channel. In con-
trast with the previous sections y = 0 is identified with
the center of the condensate rather than with its TF
boundary. As before, the ground state iy can be esti-
mated from the TF approximation (valid for large g)

1/2
YrE = (,u _gy2> ) (44)

for p > y? and zero otherwise. The width of the conden-
sate is then 2,/p and the center of the trap is along y = 0.
It can be shown from (14) and (44) that p® ~ 9¢2/16.



By fixing the interaction strength, g, the corresponding
chemical potential y and ground state ¥ can be found
exactly from a simple numerical iteration technique sub-
ject to the initial approximation (44) and to the normal-
ization condition (14). A plot of the ground states for a
range of values of g is given in Fig. 6.

FIG. 6: The ground state density, p = ¢, for g =17, g = 40
and g = 90 (solid lines) plotted against y. The Thomas-Fermi
profile (44) for g = 90 is also given (dotted line). Density is
measured in units of n/a? , distance in units of a .

Traveling coherent structures were found numerically
for various values of g. The solutions found are quite
analogous to their three-dimensional (3D) counterparts
found by Komineas and Papanicolaou [22-24]. We briefly
discuss these solutions emphasizing the differences be-
tween our 2D solutions and the axisymmetric 3D solu-
tions.

We also would like to clarify the difference between
dark (gray, black) solitons and rarefaction pulses used
in the context of the 2D and 3D channels. Both types
of solutions represent a density depletion that propagates
with a constant velocity, so their density profiles are quite
similar. Nevertheless, they have quite a different phase
structure when viewed along the axis of the propagation.
The dark soliton is a soliton solution of the GP equation
(16) in one dimension with = 1,9 =1,V (y) = 0,V? =
02 and is found [35] explicitly as

v, [ U? v?
¢d($) = 1Z +14/1— c—2tanh [% 1- 0_2:|; (45)

where the speed of sound ¢ = 1/v/2. Note, that if ¢4
is a solution of Eq. (16) then so is itpq. If U = 0, the
dark soliton (45) is called a black soliton, otherwise it is
a gray soliton. The distinctive feature of the dark soliton
is, therefore, a constant real or imaginary part. To the
contrary, the rarefaction pulses (see, for the analytical

approximations [36]) have both real and imaginary parts
varying in space. One of the parts does not change sign,
but its absolute value has a minimum at the center of the
pulse.

A. Case Study 1: g=17

The first case to consider is for a low interaction
strength, g = 17. This value of g gives the value of the
chemical potential g = 5.60 found numerically. Initially,
in order to clarify the dynamics of a single vortex and a
pair of vortices, the energy-impulse curves will be plot-
ted separately. The dispersion curve for a single vortex is
shown in Fig. 7. The symmetry about p = 7 and the 27
periodicity is as expected [22]. In the center of the con-
densate the solution corresponds to a single vortex with
zero velocity (point A in Fig. 7). This branch is doubly
degenerate as there is a solution with a vortex of opposite
circulation with the same energy. As the velocity is in-
creased the vortex with the positive circulation moves to
negative y values (point B). It continues to do so as the
velocity is increased further until at U = 0.91 we can no
longer distinguish between a single vortex and a rarefac-
tion pulse. The termination velocity (i.e. the velocity of
U at which the traveling structures reach the edge of the
condensate and terminate) is ¢ ~ 1.30. This value of ¢
can be approximated from E = cp near the edge of the
condensate. Exactly the same dynamics occurs for neg-
ative velocity, albeit with the single vortex now moving
towards the upper channel boundary (positive values of
y). To summarize the single vortex case, in the bulk of
the condensate, for |U| < 0.91, (points A and B in Fig.
7) the solution is a single vortex.

The energy-impulse graph for a single vortex is quali-
tatively the same for all values of g. As g is increased the
only discernible difference can be found in the decreasing
range of values for which a rarefaction wave exists.

The dispersion curve for a pair of vortices is given in
Fig. 8, where the termination speed is the same as for
the single vortex case. The curve is qualitatively the
same as the single vortex case, however in the bulk of
the curve |U| < 0.82 the solutions correspond to a pair
of vortices, one of positive circulation at y = —yo and
one of negative circulation at y = yo (points A and B
in Fig. 8 respectively). As energy increases the distance
between vortices decreases until two vortices completely
overlap, so that there is a single point where ¢ = 0. This
solution moves with U = 0 and is a black soliton. As the
magnitude of the velocity is increased away from zero,
the vortices drift away from the center of the trap until
for 0.82 < |U| they lose their vorticity and become a pair
of rarefaction waves (point C). The difference between
the profiles of the rarefaction pulse and the dark soliton
along the direction of propagation of the wave is shown
in Fig. 9. A density contour plot is provided in Fig. 10
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FIG. 7: The energy-impulse dispersion curve for g = 17 for a
single vortex. The solid line corresponds to the single vortex
solution, whereas the dotted line corresponds to a rarefaction
wave for 0.91 < |U|. Point A is at velocity U = 0, point B is
at U = 0.5 and point C is at U = 1. These points are referred
to in the text. Energy per unit length is measured in units of
hnw and impulse in units of An/a. .

for points B and C, and Fig. 11 gives the plots of the real
and imaginary parts of the wavefunction taken across the
channel. The positions of vortices are clearly seen in the
top frame.
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FIG. 8: The energy-impulse dispersion curve for g = 17 for a
pair of vortices. The solid line corresponds to the two vortex
solution, whereas the dotted line corresponds the rarefaction
wave region. There is a black soliton at U = 0. Points A and
B are at U F0.5 respectively and point C is at velocity U = 1.
The units of energy and impulse are as in Fig. 7.
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FIG. 9: The real (solid line) and imaginary (dotted line) com-
ponents of the wavefunction for a black soliton (frame (i)) and
a rarefaction pulse (frame (ii)) for a cross-section through the
center of the wave along the direction of its propagation for
g = 17 in the multi-vortex system are shown. The black soli-
ton is for U = 0 and the rarefaction pulse is at U = 0.9. The
distances are measured in a | .
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FIG. 10: Density (p = |[°|) profiles for g = 17 for a pair of
vortices in the zy plane. Right (left) panel corresponds to
B (C) solutions shown in Fig. 8. Darker regions correspond
to areas of low density whereas lighter regions correspond to
areas of high density. Units are as in Fig. 6.

B. Case Study 2: g=40

As the interaction strength is increased, new features
develop in the multi-vortex energy-impulse dispersion
curve when g > 23.3. This value is the expected first
critical coupling which has been numerically explored in
axisymmetric 3D traps by [22]. For g > 23.3 a cusp devel-
ops in the dispersion curve at a critical coupling velocity.
A regime can be classified, dependent on the parameter
g, such that for 23.3 < g < 59.4 there is a single cusp in
the dispersion curve (ignoring symmetry about p = ).

The dispersion curve for a single vortex exhibits no
such properties and remains qualitatively the same for all
values of g, as is shown in Fig. 12. The new features of
the multi-vortex solution are also shown in the dispersion
curve in Fig. 12 for g = 40 (with corresponding chemical



FIG. 11: The real (solid line) and imaginary (dashed line)
parts of the wavefunction of the traveling wave solution for
g = 17 taken across the channel at £ = 0. Top (bottom)
frame corresponds to point B (C) shown in Fig. 8. Units are
as in Fig. 6.

potential value p = 9.75), where this particular value of
g is chosen to illustrate the new features explicitly. At
this particular value of g it can be seen that a cusp point
develops at a critical coupling velocity of U = 0.53 (with
a further cusp present at U = —0.53 by symmetry about
p = m). The cusp introduces an extra branch into the
family of traveling coherent structures. Two branches in
the dispersion curve are here discussed. The remaining
two can be found by symmetry about p = .

At zero velocity and p = w there is a black soliton.
As the velocity is increased a pair of rarefaction pulses
develop (point A in Fig. 12) which are maintained un-
til U = 0.3 at which point a pair of vortices of opposite
circulation form near the center of the condensate. Fur-
ther increasing the velocity encourages the vortices to
gradually drift apart (point B) until a velocity U = 0.53
at which the branch terminates. A cusp is then seen
to develop. The velocity is now decreased and following
the new branch, it is clear that the the two vortex solu-
tion present in the first branch is continuous through the
cusp (see Fig. 14). Along this new branch the vortices
continue to separate from one another. A configuration
is eventually realized whereby the pair of vortices in the
channel are stationary, U = 0 (point C). The velocity
is then moved to negative values until U = —1.47 at
which point the vortices lose their circulation and a pair
of rarefaction waves develop (point D). The termination
velocity for ¢ = 40 is ¢ = 1.73. A contour plot of the
solutions that correspond to the four points A, B, C and
D is shown in Fig. 13.

The velocity of pairs of vortices is shown in Fig. 14 as a
function of the distance between one of the vortices and
the center of the condensate. At the cusp, which occurs
at U = 0.53, the smooth transition of the vortex motion
from one branch to the other is evident.

Changing the value of g (provided it remains in the
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FIG. 12: The energy-impulse dispersion curve for g = 40.
The thick solid line corresponds to the two vortex solution,
whereas the dashed thick line corresponds the pair of rarefac-
tion waves. There is a black soliton at U = 0. The thin
solid line is the single vortex solution and the correspond-
ing rarefaction wave. Points A, B, C and D are at velocities
U=02U=04,U=0and U = —1.6 respectively. The
units of energy and impulse are as in Fig. 7.

range 23.3 < g < 59.4) will not alter the overall structure
of the dynamics, but changes the value of the critical
coupling velocity at which the cusp appears, with the
critical coupling velocity increasing with increasing g. It
will also alter the termination speed and furthermore the
velocity of the onset of the rarefaction wave from a pair
of vortices.

C. Case Study 3: g=90

If the interaction strength is further increased, another
critical coupling is found to occur at g = g2 = 59.4.
A new regime can then be said to occur for interaction
strengths 59.4 < g < 104.4. This new regime is char-
acterised by the formation of an additional cusp in the
multi-vortex energy-impulse curve and thus the introduc-
tion of a new branch of solutions. Taking g = 90 as a
clear example of this second regime, the extra features
can again be best seen in the multi-vortex dispersion
curve Fig. 15. The chemical potential is y = 16.64. Two
cusps are present, one at U = 0.66 and the second at
U = —1.31. The dynamics are now described along the
three numerically computed branches that form the dis-
persion curve of which the sequence A, B, C, D in Fig.
15 is a component. As in previous examples, the other
branches can be obtained by symmetry about p = 7.

Starting with a black soliton at U = 0, a system of six
vortices develops (point A in Fig. 15) so that there are
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FIG. 13: Density profiles (p = |¢?|) for g = 40 for the multi-
vortex solution in the zy plane. Darker regions correspond
to areas of low density whereas lighter regions correspond to
areas of high density. Points A, B, C and D are shown in Fig.
12. Units are as in Fig. 6.
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FIG. 14: Velocity, U, of the pair of vortices of opposite cir-
culation as a function of yo, which is the distance from the
center of the condensate to one of the vortices for g = 40. The
cusp, from Fig. 12 is at U = —0.53. Solutions on the upper
branch are shown by the solid line and solutions on the lower
branch are shown by the dotted line. Velocity is measured in
units of a; w and distance in units of @ .

six vortices of alternate circulations. As U is increased
towards the first cusp, the two outermost vortices quickly
move towards the edge of the condensate until U = 0.48
at which point these vortices disappear. In the mean-
while the inner 4 vortices, which can be divided up into
two pairs of vortices, one pair on either side of the cen-
ter of the condensate, creep slowly towards each other.
However as the outer two vortices of the six are lost, the
four remaining vortices now all begin to separate.

This process continues until the first cusp is reached
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at U = 0.66. The two inner most vortices continue to
drift towards the center of the condensate and the outer
two continue to drift towards the edge of the condensate,
however at a much faster rate (point B). At U = —1.28,
the outer two vortices reach the edge of the condensate
and the system is reduced to a two vortex set-up. While
still decreasing the velocity another cusp will be found at
U = —1.31. If the new branch is tracked (and therefore
the velocity increased) it is found that the two remain-
ing vortices slowly drift apart towards the edge of the
condensate (see points C and D). For large values of the
velocity, U > 1.85, the two vortices colliding with their
images form a pair of rarefaction waves which continue
to propagate as the velocity is increased until the termi-
nation velocity is reached which for g = 90 is ¢ = 1.95.
A contour plot of the density for the four separate points
A, B, C and D in the dispersion curve gives a clear indi-
cation of the dynamics.
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FIG. 15: The energy-impulse dispersion curve for g = 90.
The thick solid line corresponds to the two vortex solution,
whereas the dotted thick line corresponds the pair of rarefac-
tion waves. The thick dot-dash line is the four vortex system
and the thick short-dash line is the six vortex solution. There
is a black soliton at U = 0,p = w. The thin solid line is the
single vortex solution and the corresponding rarefaction wave.
Points A, B, C and D are at velocities U = 0.2, U = 0.1, U =0
and U = 1.4 respectively. The units of energy and impulse
are as in Fig. 7.

D. Discussion

The interaction strength can be viewed as a measure
of the density gradient of the condensate, with increas-
ing interaction strength corresponding to a smaller den-
sity gradient particularly in the center of the condensate.
There exists a series of critical coupling values of g and
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FIG. 16: Density profiles (p = [¢?|) for g = 90 for the multi-
vortex solution in the zy plane. Darker regions correspond
to areas of low density whereas lighter regions correspond to
areas of high density. Points A, B, C and D are shown in Fig.
15. Units are as in Fig. 6.

the next two critical couplings occur at g = g3 ~ 104.4
and g = g4 ~ 156.6. As each new critical coupling is
reached, an extra cusp will appear in the dispersion curve
and therefore a new branch of solutions is formed.

The effect of raising g to even higher values would be
two-fold. Firstly, as the density gradient decreases the
effect that a ‘shifted’ image would have on the dynam-
ics would increase. Near the center of the condensate
the density gradient would become small and the effects,
noticed in Sec. IV, come to prominence.

To obtain an approximation to the velocity of a vortex
positioned close to the center of the condensate (small
yo) with large g we employ the method we described in
Section II. We consider a trial function

¢ = wTF'ébv'(/}m '(:[}vza (46)
where ¢7p is given by Eq. (44) and

_ T +i(y — yo) 47
$u(@,y) N T (47)

Two images are given as

¢v1 = ¢:($ay - 2\/E+ 2y0)7 (48)
Yo, = YT,y + 2¢/1 + 2y0). (49)

Ideally, one would need to introduce an infinite num-
ber of images to represent the no-flow condition at the
boundaries [38], but our method only works in the TF
regime for which the channel is wide and the effect of
far away vortices is insignificant. For large g, this choice
of the trial function accurately represents the density of
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the condensate in the entire domain, see Fig. 17. How-
ever it does not capture the phase difference at infinities,
see Fig. 18, as for any yo the phase of (46) jumps by
w. Note, that the infinite superposition of image vortices
would give the correct phase difference different from .
Therefore, we can not expect the estimate of the impulse
(19) to give an accurate result. But the expression for
energy (26), that depends only on derivatives of ¢, gives
an accurate estimate of the numerically obtained energy.
We also note that E(p) has a form of a parabola that we
approximate on [0, 7] by

p=7r(1— 1—Efax), (50)

where Ep,,, is the maximum value of energy that occurs
when the vortex is at the center of the channel, yo = 0.
This, together with (27), yields the expression for the
velocity as

2
U= ;\/Efnax — EnaxE. (51)

Figure 19 shows the comparison of our approximation
(51) with numerically calculated values for ¢ = 100 and
g = 500.
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FIG. 17: (Color online) The density of the condensate for
g = 500 at the cross-section x = 0 through the vortex center.
The exact (numerical) density is shown in solid gray (green),
the approximation (46) is shown by a dashed line. The vortex
is positioned at yo = 1.66 away from the center of the channel
and moves with the velocity U = 0.2. The distances are
measured in a .

A second effect of raising g would be in the type and
variety of the dynamics encountered. One could envi-
sion a dispersion curve with multiple cusps and multiple
branches. The dynamics possible in such a system would
be fairly impressive, but it seems certain that a few points
can be made about the system. It has already been seen
for relatively low values of g that the lower branch which
terminates at the termination speed contains an ever de-
creasing range for which a pair of rarefaction waves exist.
It is therefore natural to assume that as g is increased to
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FIG. 18: (Color online) Real and imaginary parts of the con-
densate wavefunction for g = 500 at the cross-section y = yo
through the vortex center. The vortex moves with the velocity
U = 0.2. The exact (numerical) solutions are shown by solid
lines (dark gray (red) — real part, light gray (green) — imag-
inary part), the approximations (46) are shown by dashed
lines.
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FIG. 19: (Color online) Velocity of a vortex as a function of
the distance between the vortex and the center of the channel.
Dark gray (red) solid curve corresponds to the numerical solu-
tion for g = 100, light gray (green) solid curve is for g = 500.
Dashed lines show our approximation (51) where E is calcu-
lated from (26) using the trial function (46). The distances
are measured in a, . Note that the vortex reaches the bound-
ary of the condensate at yo = 4.2 for g = 100 and at yo = 7.2
for g = 500.

even higher values the range of velocity for which the
pair of rarefaction waves exist will diminish and eventu-
ally tend to zero. Furthermore, the number of vortices
in the channel can be estimated for each branch. Two
vortices are expected to be present in the lowest branch
and a further two added to the channel at each cusp all
the way to the highest branch, whereupon a black soliton
can be expected to appear for zero velocity and maximal
energy (p = ).

Brand and Reinhardt [34] have given compelling nu-
merical evidence that the branch of solitonic vortices
joins the branch of dark solitons in a box potential when
the width of the condensate is reduced to a few heal-
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ing lengths. This may suggest that there exists another
critical coupling g for which the two branches depicted
in Figs. 7 and 8 completely overlap. Similarly, it may
suggest that for p close to 0 and 7 the corresponding
branches join via a bifurcation for all g.

VI. CONCLUSION

In summary, we considered the effects of the bound-
aries and inhomogeneities of the density backgrounds on
the vortex motion using numerical solutions and asymp-
totics. We showed that the method of images together
with the Hamiltonian group relation is a useful tool for
finding the velocity of a quantum vortex. We showed
that the image vortex plays an important role not only
when the vortex moves close to the condensate surface,
where the distance to the image is small, but gives the
dominant contribution to the velocity of a vortex that
moves close to the center of the condensate where the
density gradients are small because of an effective ‘shift’
in the position of the image caused by the large density
depletion at the boundary.

Travelling coherent structures moving in an infinitely
long two-dimensional channel in the presence of a har-
monic trap were analyzed in some detail and the approx-
imation of the vortex velocity was found.
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