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Axisymmetric disturbances that preserve their form as they move along the vortex lines in uniform
Bose-Einstein condensates are obtained numerically by the solution of the Gross-Pitaevskii equation. A
continuous family of such solitary waves is shown in the momentum (p)-substitution energy (€) plane
with p — 0.09px3/c2, £ — 0.091p«3/c as U — ¢, where p is the density, ¢ is the speed of sound, « is
the quantum of circulation, and U is the solitary wave velocity. It is shown that collapse of a bubble
captured by a vortex line leads to the generation of such solitary waves in condensates. The various
stages of collapse are elucidated. In particular, it is shown that during collapse the vortex core becomes
significantly compressed, and after collapse two solitary wave trains moving in opposite directions are

formed on the vortex line.
DOI: 10.1103/PhysRevLett.94.010403

An important role in the dynamics of nonlinear sys-
tems is played by solitary waves—the localized distur-
bances of the uniform field that are form preserving and
move with a constant velocity. They appear in diverse
contexts of science and engineering, such as fluid dynam-
ics, transport along macromolecules, and fiber optic com-
munications just to name a few. Considerable interest is
attached to determining the entire sequence of solitary
waves as they define possible states that can be excited in
the system. Understanding the production, motion, and
interactions of such solitary waves is one of the most
significant questions in nonlinear science. In condensed
matter systems solitary waves are topological objects
since they owe their existence and perseverance to the
topology of the order parameter field describing a me-
dium with a broken symmetry. In this Letter I establish
and study the production of a new class of solitary waves,
each of which moves along vortex lines/topological de-
fects in conservative Ginzburg-Landau systems. The dis-
cussion is restricted to a condensed matter system such as
atomic Bose-Einstein condensates (BEC) where the evo-
lution equation is the Gross-Pitaevskii (GP) model [1]; see
Eq. (1) below (also known as the defocusing nonlinear
Schrodinger equation in nonlinear optics). The applica-
tions are not restricted to the condensed matter systems
due to the generality of the Ginzburg-Landau systems
with implications to the motion of excitations along cos-
mic strings in the early Universe [2] and along topologi-
cal defects in other ordered media: liquid crystals [3],
nonequilibrium patterns, etc. Finally, the new solutions to
the nonlinear Schrodinger equation which this Letter
presents are of interest when so few have been derived
in multidimensions.

Symmetry-breaking transitions in equilibrium sys-
tems can be described by an energy functional, £ =
[ LdV, in terms of a Lagrangian L. The simplest
form of the Lagrangian, capable of describing the
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quenching beyond the critical point where the disordered
state becomes unstable and the symmetry is spontane-
ously broken, is a Ginzburg-Landau Lagrangian £ =} X
[IVy]* + 31 — [¢1*)*] dependent on a complex scalar
order parameter . The evolution equation describing
the relaxation to the equilibrium state in an energy-
preserving (conservative) system is given by the Euler-
Lagrange equation ¢, = —idE/dy* that we write as

P

i =
Jt

V2 + (1= [Py (D)
A phase singularity of a complex field ¢ given by ¢ = O is
called a quantized vortex or topological defect depending
on a particular application. The total change of phase
around any closed contour must be a multiple of 277 and
only quantized vortices with the total change of phase 27
are topologically stable.

Such a general reasoning gives a simple explanation
why Eq. (1) has a universal meaning and has been applied
to a variety of systems [4]. In particular, it described
accurately both equilibrium and dynamical properties of
BEC [5]. The GP model has been remarkably successful
in predicting the condensate shape in an external poten-
tial, the dynamics of the expanding condensate cloud,
and the motion of quantized vortices; it is also a popular
qualitative model of superfluid helium. For these systems
Eq. (1) is written in dimensionless variables such that the
unit of length corresponds to the healing length &, the
speed of sound ¢ = 1/+/2, and the density at infinity
Poo = Phol® = 1.

The straight line vortex positioned along the z axis in
the absence of any other solitary waves is obtained by
rewriting (1) in cylindrical coordinates (s, 6, z) and using
the ansatz i, = R(s) exp(if). The resulting solution for
R(s) was found numerically in the first reference of [1]
and approximated in [6]. The infinitesimal perturbations
of a rectilinear vortex in the GP model may be bound or
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free, depending on their angular and axial wave numbers,
m and k. The free waves radiate energy acoustically to
infinity, while the bound states do not. The low frequency
modes m = 1, which displace the axis of the vortex, are
found to be bound for all k [7,8]. The low frequency modes
m = 2 are also bound when & is sufficiently large, but are
free for small k [8].

A family of fully three-dimensional solitary waves
was found by Jones and Roberts (JR) [9] who integrated
Eq. (1) numerically and determined the entire sequence of
solitary wave solutions of the GP equation, such as vortex
rings and finite amplitude sound waves named rarefaction
pulses. They showed the location of the sequence on the
momentum, p, energy, &, plane, that I refer to as the JR
dispersion curve. In three dimensions they found two
branches meeting at a cusp where p and £ assume their
minimum values, p,, and £,,. As p — o on each branch,
& — 0. On the lower branch the solutions are asymptotic
to large vortex rings. As £ and p decrease from infinity
along the lower branch, the solutions begin to lose their
similarity to large vortex rings. Eventually, for a momen-
tum p, slightly greater than p,,, they lose their vorticity
(¢ loses its zero), and thereafter the solitary solutions
may better be described as ‘‘rarefaction waves.” The
upper branch consists entirely of these and, as p — o
on this branch, the solutions approach asymptotically the
rational soliton solution of the Kadomtsev-Petviashvili
type I equation.

In what follows I determine the entire family of axi-
symmetric (m = 0) solitary wave solutions that move
along the straight line vortex and relate them to the JR
dispersion curve. In Eq. (1) written in cylindrical coor-
dinates (s, 8, z) I take the ansatz ¢ = [R(s) + ¢ (s, 7)] X
exp(if) and assume that the disturbance ¢(s, z) moves
with velocity U in the positive z direction. In the frame of
reference moving with the solitary wave, ¢ (s, z) satisfies

L dp 10T ¢ i’d ¢ B
— R(¢ +2¢%) — 9" ] — R* ™. 2)

The disturbance is localized, so the boundary condition is
¢(s,z) — 0, as |x| — oo in all directions of x. In view of
the asymptotic expansions at infinity [9], I introduce

stretched variables z/ = z and s’ = sv/1 — 2U? and map
the infinite domain onto the box (0,%) X (= 7%,%) using
the transformation 2 = tan~!'(Lz’) and § = tan™'(Ls’),
where L is a constant ~0.1-0.4. Transformed Eq. (2)
was expressed in second-order finite difference form us-
ing 250 X 200 grid points, and the resulting nonlinear
equations were solved by the Newton-Raphson iteration
procedure using banded matrix linear solver based on
the biconjugate gradient stabilized iterative method with
preconditioning. For each solitary wave two quantities
were calculated: the nonzero (z) component of the mo-
mentum [9]

p=%[www—n—vww—nwv 3)

and the substitution energy, 3‘, which is the difference
between the energy of the vortex-solitary wave complex
and the energy of the vortex line,

| 1
&= [IV0P =190l + 50~ Iy
~ 301 = lyoPav. @

By performing the variation ¢ — ¢ + 6¢ in (3) and (4)
and discarding surface integrals that vanish provided
6y — 0 for x — oo, we see that U = aé/ap, where the
derivative is taken along the solitary wave sequence. The
same expression is obeyed by the sequences of classical
vortex rings in an incompressible fluid and by the solitary
waves of [9]. I also note that if we multiply Eq. (2) by
20y /0z and integrate by parts we get &=
[ldy/dz|*dV, similarly to the expression for the energy
of the JR solitons [10]. This expression was used as a
check of the numerical accuracy. As p — oo, & — o and
the solitary wave solutions are represented by large vor-
tex rings moving along the vortex line. As & and p
decrease from infinity, the radii of the rings decrease
and for a momentum py < 78, ¢(s, z) = 0 on the z axis
only. To distinguish these solutions from vortex rings and
to emphasize the analogy with the JR solitary waves,
these solutions are called rarefaction waves as well.
Table I shows the velocity, substitution energy, momen-
tum, and radius of the solitary wave solutions found.
Figure 1 shows the momentum-energy curve of the solu-
tions in comparison with the JR dispersion curve. Notice
that unlike the JR dispersion curve, there is no cusp on the
energy-momentum plane. As U — ¢ neither & nor p goes
to infinity; instead & — 32 and p — 45 which lies below
the JR cusp. It was suggested in [9,10] that every solitary
wave on the upper branch is unstable, since it is energeti-
cally favorable for it to ““collapse’ onto the lower branch
of smaller energy at the same momentum. Since the
rarefaction solitary waves on the vortex line do not
have any other solitary states of lower energy at the

TABLE L. The velocity, U, substitution energy, é’, momen-
tum, p, and radius, b, of the solitary wave solutions moving
along the straight line vortex.

U 0.4 0.45 0.5 0.55 0.6 0.61
LA V) 113 90.7 72.4 56.9 54.0
p 262 193 145 110 83.2 78.4
b 4.18 3.62 3.08 2.41 1.05 0.1
U 0.63 0.65 0.67 0.69 0.7 0.705
& 484 43.0 37.8 333 322 32.1
p 694 61.0 53.1 46.5 45.0 45.0
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FIG. 1 (color online). The dispersion curves for two families
of the axisymmetric solitary wave solutions. The dashed line
represents the JR dispersion curve. The part of the curve that
corresponds to the vortex rings is shown in gray (red). The solid
line gives the substitution energy as a function of momentum
for the solitary waves moving along the vortex line with vortex
rings shown in light gray (green).

same momentum, this may suggest that they are stable.
The substitution energy, 3’, and momentum, p, of our
vortex rings are larger than corresponding values of £
and p of the JR rings moving with the same velocity. If
the vortex rings of the same radii are compared, our rings
have lower energy and momentum. Figure 2 shows the
density isoplots and the density contour plots of two
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FIG. 2 (color online). Two solitary wave solutions moving
with velocity U = 0.45 (left) and U = 0.69 (right) along the
straight line vortex. The density isoplots at p = 0.1 (left) and
p = 0.3 (right) are shown in the two top panels. The density
contour plots (0.1, 0.3,0.5,0.7,0.9) at the cross section 8 = 0
are shown in the two bottom panels.

representative solutions such as a rarefaction pulse and a
vortex ring. Notice the vortex core expansion at the center
of the vortex ring due to a decrease in pressure in the high
velocity region.

A question that arises after new solutions are found
theoretically is how to create them in an actual physical
system. In [11] we established a new mechanism of vortex
nucleation by collapsing bubbles in the context of the GP
model. These results referred to the collapse of cavitated
bubbles generated by ultrasound in the megahertz fre-
quency range that have been observed to produce quan-
tized vortices in superfluid helium [12]. Also, vortices
form as a result of bubbles colliding during a first-order
phase transition of an early Universe [2]. In [13] we have
shown that a soft bubble, carved out in the surrounding
fluid by an electron through its zero-point motion, be-
comes trapped in vortex lines. The Bernoulli effect of the
flow created by the flow circulation around the vortex
propels the bubble and vortex towards one another with
a force approximately proportional to s 3, where s is the
closest distance between them. As the bubble becomes
trapped in the vortex core, the flow round the bubble
acquires circulation that it previously could not possess.
After the emission of Kelvin waves, which were excited
on the vortex core during the capture, the bubble-vortex
complex stabilizes to an axisymmetric form depicted in

FIG. 3 (color online). Collapse of the bubble of radius a = 10
trapped by the vortex line. The density plots of the cross
section of the solution of Eq. (1) with initial state (5) at y =
0, x € [—50,50], z € [0, 100] are shown. The inset shows a
vortex ring traveling along the z axis generated after the
collapse of the bubble of radius a = 50 at + = 100. Two vortex
rings of smaller radii are also seen to the left and to the right.
Both low and high density regions are shown in darker shades
to emphasize intermediate density regions.

010403-3



PRL 94, 010403 (2005)

PHYSICAL REVIEW

week ending

LETTERS 14 JANUARY 2005

4 Fr 10
€T 8
' 6
L 13
3 4
Noa :
\
2 [ ot 'l \‘ 'l \“ ,'\l L;‘msl‘\:m 115‘ 120
Ve _g,_._-‘,-;.‘,_.::;.;-}-...“;7!...':;1..“;.’.’!.!\:'1..‘;,’.“.','.4;.1“,»
R
z
0 20 40 60 80

FIG. 4 (color online). Collapse of the bubble of radius a =
10. The contour p/p., = 4/5 is shown at t = 0 (solid green
line), t = 20 (dotted blue line), and r = 60 (dashed red line).
The density contour plot of the condensate showing a well-
separated solitary wave at t = 166 is given in the inset (com-
pare this with the bottom right panel of Fig. 2).

Fig. 2 of [13]; see also Fig. 3 (¢+ = 0) below. One could
expect that a similar capture of bubbles created by ultra-
sound takes place in BEC and that vacuum bubbles get
trapped in cosmic strings. The captured bubble will then
collapse sending axisymmetric waves along the vortex
line. To elucidate the stages of this collapse I performed
the numerical simulations of the GP equation (1) starting
with the initial condition

R(s)e‘%anh(%) if r>a,

¢(x,t=0)={ 5)
0 if0=r=aq,

where > = x> + y? + z2. The initial state (5) gives an
accurate representation of the stationary complex, which
consists of the straight line vortex on the z axis and the
bubble of radius a centered at the origin. The surface of
the bubble is assumed to be an infinite potential barrier to
the condensate particles, so no bosons can be found inside
the bubble (¢ = 0) before the collapse, and this is why
tanh(€¢/~/2), which is the wave function of the condensate
distance € away from a solid wall, is relevant here.
“Softer” bubbles that allow some condensate penetration
were also considered by reducing the slope of the hyper-
bolic tangent, but no significant difference was detected. I
performed fully three-dimensional calculations for cav-
ities of various radii in a computational cube with sides of
200 healing lengths [14]. Figure 3 shows the density plots
of the portion of the cross section at y = 0 at various
times after the collapse of a bubble of radius a = 10.
Figure 4 depicts density contours p/p., = 4/5 at times
t =0, 20, and 60. The time-dependent evolution of the
condensate during and after the bubble’s collapse involves
several stages. During the first stage dispersive and non-
linear wave trains are generated at the surface of the
bubble. This stage of the evolution is characterized by a
flux of particles towards the center of the cavity. This

creates an inward force acting on the vortex core reducing
the cross-sectional area of the core. The reduction by a
factor of 1.5 is seen on the r = 15 snapshot of Fig. 3 and on
the density contour of Fig. 4 at r = 20. The next stage in
the evolution is outward expansion of the condensate that
overfilled the cavity. The instability mechanism for col-
lapsing bubbles in the absence of the straight line vortex,
which we described in detail in [11], sets in, leading to the
production of vortex rings and rarefaction pulses mostly
along the vortex line, as the energy and momentum
necessary for their creation is lower there. As the train
of solitary waves starts moving away from the collapsed
bubble (see Figs. 3 and 4), the distance between them
increases since they move with different velocities. In
time each individual solitary wave approaches its local-
ized form found in the first part of this Letter; see the
inset of Fig. 4. During collapse of a bubble of a larger
radius (a = 28) vortex rings are generated together with
rarefaction pulses on the vortex line; see the inset of
Fig. 3.
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