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As the technologies for DNA expression become more reliable and accessible there is a
need for efficient data processing, storing and retrieving information and efficient mathe-
matical analysis of these results. Temporal gene expression patterns are now being obtained
for many cell types in response to specific stimuli, or during execution of developmental
programs. Current efforts have focused on identifying underlying patterns in complex data
using techniques of clustering points or vectors in multidimensional space, where n points
(vectors) in k—dimensional space correspond to the quantitative expression level of n genes
in k samples. The assumption is that genes with similar expression patterns are likely to
be involved in the same regulatory process. But the clustering results can be very different
for various measures of similarity that we adopt. The most typically used measures are the
Euclidean distance between points or linear correlation coefficient, which is related to the
angle between the two k—dimensional vectors. Some other distance measures, including rank
correlation coefficient and mutual information-based measures, are proposed in [4]. So far
there is no theory how to choose the best similarity measure and there is a vast evidence that
different measures produce different clusters. To achieve a more reliable clustering results,
it is necessary to develop a framework for integrating data and gaining insights into the
static and dynamic behavior of complex biological systems such as networks of interacting
genes. Modeling gene networks using a system of coupled nonlinear differential equations is
a popular way to capture signaling pathways since such models include reasonable (though
somewhat simplified) assumptions about the interactions between genes and natural degra-
dation of gene product [3]. We have developed a similarity measure substantiated by the
underlying genetic network of a very general form that includes nonlinear effects and natural
degradation of gene product. The suggested algorithm can be used to determine simple
regulatory signals and to estimate whether the similarity measure is reliable for a given pair
of genes.

We shall assume that genes regulate one another via the neural network of a general
form:
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where z; are the expression levels (concentrations of gene product ). 7;(u) are natural gene
product degradation rate functions; in what follows we shall assume that 7;(p) = 7, although
vector p can express hyperbolic or sigmoidal kinetics of gene product degradation. \; are
the asymptotic maximum expression levels, defined as A\; = lim;_, o ;(t) when g = 1 during
the entire time. The matrix A = [a;;] represents the regulatory connection between genes. A
positive [negative] value of a;; indicates that the jth gene enhances [represses] the gene i. The
parameters b; correspond to some bias present in the system. The function g is a nonlinear

monotonic sigmoidal activation function. In what follows we use g(z) = 1/ (1 + exp(—x)).

and assume F; = }°"_ aijz; + bi.
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In [1] we demonstrated that the linear correlation measure fails to recognize co-regulated
gene patterns or detects similarity in uncorrelated gene expression data in a simple model
network of four interacting genes modeled by (1). Under the assumption that the tran-
scriptional control in gene networks obeys (1) we devised an algorithms for detecting co-
expressed genes based on the similarity of patterns of activation and repression that are
represented by the signalling function g. The ith equation of the system (1) has sim-
ple analytical solution if either gene ¢ is fully activated (g =~ 1) or repressed (g = 0):
zi(t) = x;(t,) exp(—7i(t—tr)), t > t,, where t, is the moment of gene suppression (g takes
on values close to 0) and z;(t) = Ai +(xi(ta) — As) exp(—7i(t —ta)), t > tq, where t, is the
moment of gene activation (g takes on values close to 1). The solution between adjacent t,
and t, can be found by smooth matching between x;(¢,) and z;(t,). Notice that the highest
negative rate of change in gene product concentration occurs at t = t,: minz;(t) = —7ix:(t,)
and the highest positive rate of change occurs at t = to: max@;(t) = (1 + 7)) — zi(ta).
Such maximum values of gene expression rate of change identify the change in control and,
therefore, in order to identify the co-regulated genes we should compare moments of time
when these changes take place. Because of the discrete nature of data, the co-regulated
genes can have the highest expression rates shifted by one time interval with respect to one
another. The algorithm for determining such co-regulated genes becomes as follows: (1)
Calculate the time derivatives for each of the gene expression time series using forward or
centered differences. (2) Represent the expression control experienced by gene i by a vector
q’ = (0,-- 95, --qk) such that g; = 1 if #;(¢;) > max(2i(tj-1),0),2i(t;) > @i(tj+1); —1
if £;(t;) < min(2£;(¢;-1),0), Z:(t;) < £i(tj4+1); and 0 otherwise. (3) Two genes m and ! are
decided to be co-expressed if either ¢;"* = ¢t for any j = 1, k, or for any j such that q" # qé-
either ¢j}, = qj-, q" = q§-+1 =0or qjL, =q;,q" = q}_l = 0. Similarly, two genes m and [
are decided to be oppositely expressed if either ¢]" = —qé- for any j = 1, k, or for any j
such that ¢j* # —q;- either ¢j, = —q},q}” = q§+1 =0orqZ, = —q},q}” = q§_1 =0.

We applied our algorithm [1]to gene expression data on rat CNS development [2] and
classified pairs of genes into several categories: co-regulated genes (genes with a similar acti-
vation/repression that occurs several times during the experiment, such repeated simultane-
ous activation/repression can be taken as an indication of similar regulatory mechanisms),
co-expressed genes (genes with just a few but similar activations/repressions during the ex-
periment), oppositely expressed genes, and genes with expression levels too noisy to draw
any meaningful conclusion.
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