Quantum vortices, travelling coherent structures and superfluid turbulence
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ABSTRACT. The Gross-Pitaevskii equation and its modifications are used to elucidate different aspects
of superfluid behaviour: motion of vortices, travelling waves, interactions with normal fluid and super-
fluid turbulence. Different mechanisms of formation of travelling coherent structures are considered.
They are formed when a critical velocity is exceeded in the flow. They can appear as a result of insta-
bilities or energy transfer among waves. They are formed together with the formation of condensate,
but the interactions with normal fluid (non-condensed particles) lead to their dissipation.

1. Introduction

Superfluidity is the ability to flow through narrow channels without friction; this phenomenon is
characterised by the existence of quantised vortices with the quantum of circulation k = h/m, where
m is the mass of a boson. Superfluidity is closely related to the Bose-Einstein condensation (BEC)
— the state of matter in which a large percentage of bosons collapse into their lowest quantum state,
allowing quantum effects to be observed on a macroscopic scale. This phenomenon has been first realised
experimentally in dilute atomic gases in 1995 and since that time many more superfluid system has been
experimentally obtained: Fermi gases, exciton-polariton condensates, multi-component BEC, etc. The
link between superfluidity and BEC is in the existence of the classical field ¢ (order parameter, wave
function) associated with the macroscopic component of the field operator. The order parameter ¢ is
the complex function (or several complex functions for multi-component condensates, or 3x3 matrix of
complex functions for ®He) where, quantum mechanically, density, p,, is the square of the amplitude
and velocity, v is proportional to the gradient of the phase, S:

(1.1) V= replis,  v.=lvs
The existence of quantised vortices immediately follows from this representation. If we draw a closed
contour C in a singly-connected superfluid system described by 1, then the phase S of ¢ can only
change by a multiple of 27 for 1) to remain single valued as we move around this contour. If the phase
S does indeed changes by, say, 2w, then there has to be at least one point (in 2D) or a line (in 3D)
inside C where S takes any value between 0 and 27. To prevent such phase singularity, the density, ps,
has to vanish at this point (line). These points or lines are therefore quantised vortices with the unit of
circulation [ v - dl = 27h/m = h/m, as stated above.

The first successful macroscopic theory for the motion of superfluid helium (Hell) was that of
Landau [1], in which the fluid is modelled as an interacting mixture of superfluid of density p; moving
with velocity vs and a normal fluid of density p,, moving with velocity v,,, representing the phonons and
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rotons that ride on the superfluid. As the temperature T tends to absolute zero, p, — 0 and p; — p
(the total density of the mixture). As T' — Ty, the temperature of the phase transition to helium I,
ps = 0 and p, — p. The range T' < 0.6K is often defined to be the ‘low temperature regime’, while 0.6K
< T < Ty is the ‘high temperature regime’, in which most experiments on superfluid turbulence have
been performed, and in which the normal fluid determined by the turbulence taking place in the normal
fluid. This is confirmed by the success of theories of superfluid turbulence, such as that of Barenghi et
al. [2], [3], in which the superfluid vorticity is largely tied to that of the normal fluid. In contrast, in
the low temperature range (T < 0.6°K), where p,, is smaller than p,, we may expect turbulence in the
superfluid largely to determine turbulence in the normal fluid, rather than the reverse.

In the low temperature regime, p,/ps < 1, and the normal fluid plays a relatively minor role.
Even though the superfluid is inviscid, there are significant differences between classical turbulence at
large Reynolds number and superfluid turbulence. The most significant is that vorticity is continuously
distributed in a classical (Navier-Stokes) fluid, but is quantised in a superfluid in units of k. Turbulence
in the superfluid therefore resembles a tangle of vortex filaments, whose dynamics differs from that of
the chaotic but continuous vorticity of classical turbulence; see, for example, [4].

1.1. The first approach: HVBK theory. The Landau [1] theory of superfluidity pre-dated
the discovery of quantised vortex lines and therefore omitted significant dynamical effects. This was
remedied, in the limit in which the mean spacing b between the vortex lines is small compared with
any other length scale L of interest, by HVBK theory, so named after Hall and Vinen [5] who first set
up such a theory, and Bekharevich and Khalatnikov [6] who generalised it; see also Hills and Roberts
[7]. In this limit (b < L), the superfluid vorticity is treated as a continuum, but the discrete nature of
the vorticity gives rise to an extra force T on the superfluid component, arising from the tension in the
vortex lines; this term is absent from the classical Euler equation of motion for an inviscid fluid. The
vortex lines also create a force F of mutual friction between superfluid and normal fluid that is additional
to the mutual friction included by Landau in his equations, and represents the effects of collisions of
the quasiparticles with the vortex cores. HVBK theory has scored a number of successes. It has given
results [8] in quantitative agreement with experiments on the instability of Taylor-Couette flow in Hell
[9]. HVBK theory provides the first of three principal ways of studying superfluid turbulence.

1.2. The second approach; classical theory of vortex filaments. The second approach recog-
nises that HVBK theory presupposes a high density of pre-existing superfluid vortex lines, and is in-
capable of describing processes that create or destroy those lines. For example, the assumption b < L
implies that the superfluid vorticity, ws, varies slowly with position x. This excludes situations favourable
to the reconnection of lines, such as when oppositely-directed vortex lines are brought by the flow into
juxtaposition. To understand the creation and destruction of lines, it is necessary to study situations
in which b is not small compared with L, and in which vortex lines are treated as discrete entities. The
term “superfluid turbulence” is often used synonymously for the “evolution of superfluid vortices.” On
the scale much larger than the vortex core radius (a ~ 10~8¢m) the motion of superfluid vortices is
commonly described by the classical theory of vortex filaments. If superfluid vortices are modelled as
filaments of zero cross-section with d—function vorticity, the kinematic statements V-v = 0,Vxv = w
imply a line integral along the filaments, s = s(§), where £ is arc length:

k [ s'x(x—s)d¢
1.2 = | = U
(1.2) ve = [ SRR
in which s'(§) = ds/d§ is the unit tangent vector. The integral (1.2) known as the Biot-Savart Law
(BSL) diverges however in the limit x — s;, where s; = s(&;) is any point on a filament; the nature of the

divergence is spelled out in detail in §2.3 of [10]. To salvage (1.2) the ‘cut-off method’ was introduced.
When computing the velocity v(sy) of the filament at x = sq, the segment |{ — &;| < §, where § = O(a),
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is simply deleted from (1.2). The best choice of § has been determined when the radius of curvature,
R(&), at s is large compared with a. When R < L, the motion of the vortex at s; is decided mainly
by the distribution of the vorticity w(s) in the vicinity of s; and, to a first approximation,

(1.3) v(s1) = (k/47) (s} xs7) In(¢/a),

where £ = O(R). This is known as the ‘local induction approximation’ (LIA), and is the most convenient,
but also the crudest, way of determining the motion of vortex lines. It is especially dubious when (as is
often the case) the conditions a <« R < L are not met.

It is clear that the application of classical theory is not free of difficulty. Moreover, two mechanisms
very relevant to superfluid turbulence are ignored. It has recently been shown [11] that emission of
sound by a vortex tangle is very significant in superfluid turbulence. This process is completely removed
by the main assumption of classical vortex theory: V:vy; = 0. The dynamics of vortex filaments in a
compressible fluid is not as well understood as that for the incompressible case. Secondly, the processes of
severance and coalescence of vortex lines are centrally important for the study of superfluid turbulence,
but these are explicitly forbidden by the Kelvin-Helmholtz theorem, according to which vortex lines
are frozen to an Euler fluid and cannot change their topology. In a normal fluid, the processes have
been successfully simulated numerically by restoring viscosity to the fluid. This step is disallowed in
a superfluid, and the only way to defeat the theorem is through ad hoc procedures. For example, it
has been supposed that, whenever one vortex filament comes within a distance A of order a of another
filament, reconnection will always occur, and that otherwise reconnection will not happen. A precise
way of determining A is not known, but its value can clearly greatly affect the reconnection rate in a
vortex tangle. Moreover, the angle at which the vortex filaments approach one another is undoubtedly
an important factor in determining whether they reconnect or not; a clear set of reconnection rules is
lacking.

1.3. The third approach; GP theory. We now move to the third approach, a theory that gives
superfluid vortex lines their own unique core structure. At the same time, it provides a mechanism for
the severing and coalescence of vortex lines, and includes sound propagation, so that the emission of
sound from a vortex tangle can be evaluated. In short, while having the same objectives as the second
approach, it evades all of its difficulties (although it has a few difficulties of its own).

In the Hartree approximation, the imperfect Bose condensate is governed by the GP equation [12].
In terms of the single-particle wavefunction i (x,t) for N bosons, the time-dependent self-consistent
field equation is

(1.4) iape(x,1) = —(h*/2m) V4 (x, 1) + 9(x,1) / (', )PV (|x — x'|) &z’ — Evip(x, 1),

where V(|x — x'|) is the potential of the two-body interactions between bosons, and E, is the chemical
potential which we explicitly introduce into the system. The normalisation condition is [ |¢)|*d®z = N.
For a weakly interacting Bose gas, (1.4) is simplified by replacing V' (|Jx — x'|) with a —function repulsive
potential of strength V4. This does not qualitatively alter the nature of the results since the characteristic
length of the weakly interacting Bose gas is larger than the range of the force. Equation (1.4) for such
a potential is

(1.5) iy (x,t) = = (1?[2m) V>4 + Volu|*y) — Euy.

Equations (1.4)-(1.5) define Hamiltonian systems, the following integrals being conserved: mass

(1.6) M= m/|¢|2dx,
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momentum density

ﬁ’ * *
(L.7) Py [W'VY-uVax
and energy; in the case of (1.5) this is expressed by
h2
(1.8) B 2—/|w|2d + o /|¢|4 dx.

It is usually convenient to model phenomena in an infinite domain in which, prior to the onset of a
disturbance, 1 = ¥, everywhere, where, by (1.5)

(1.9) Voo = (Bu/Vo)'/2.

We then modify (1.7)-(1.8) to forms measuring departures from this uniform state
I . x

(1.10) p =g [ 10" =) V0 = (6 = do) V'l dx,
h2

(1.11) E=_— / V| dx + — /(|¢|2 2 )2 dx.

The Madelung transformation relates the wave function, ¢ = RexpiS, to classical hydrodynamical
variables. The mass density p, mass flux j and velocity potential ¢, are p = mR2,j = pv = pVé, ¢ =
(h/m)S. The real and imaginary parts of (1.5) then give a continuity equation and an integrated form
of the momentum equation:

(1.12) pe+V-(pv) = 0,
6‘25 2 P _ 2 5 V2pt/2
(1.13) at 2+ec (p: - 1) = c‘a Ve

where poo = mE, [V} is the den51ty at infinity (the density of the fluid when stagnant), c¢ is the speed
of sound ¢ = \/Ey/m = (Vo/m2)Y/2psl? and a = k/2y/mc is the so-called ‘healing length’. The healing
length is the characteristic length on which fluid heals itself when locally perturbed. It also fixes the
vortex core size, see Sec. 1.2. The final term in (1.13) is sometimes called the ‘quantum pressure’. It
may be particularly noticed that, while the fluid flows irrotationally, it is not incompressible. According
o (1.13) and temporarily ignoring its right-hand side, the pressure P is proportional to p?: P =
(?/2ps)p®. Motion in the fluid is accompanied by sound waves.

The elementary excitations (small amplitude harmonic modes) above the ground state (the lowest
energy state for a given number of particles) 1y = \/ po/m = \/ E,/Vy are found by inserting ¢ =
Yo (x) + e (x,t) into the GP equation (1.5) and linearising it to

h? \% N
(1.14) iy = —5 =V + 52 p" © (g1 + 7).
We look for plane wave modes: ¢ = Aexpli(k - x — wt)] + B*exp[—i(k - x — wt)], where A and B are
complex constants. The existence of a non-trivial solution for A and B implies the dispersion relation
(Bogoliubov law) as

2
poVo o . [ Bk

1.1 2 ez

(1.15) @ m2 B+ (2m

For small k£ (long wavelengths) the dispersion is sound-like w = ck. The corresponding quasiparticles

are phonons. For large k (short wavelengths) the dispersion is particle-like w ~ hk?/2m.

A vortex filament is no more than a curve on which 4 = 0, and there is no reason why such
curves should not intersect or divide. Using the hydrodynamical interpretation of (1.5), these processes
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correspond to the coalescence or severance of vortex lines. There is no violation of the Kelvin-Helmholtz
theorem, which does not apply to integration paths passing through zeros of p. In short, the GP equation
provides a means of studying these important changes of topology of a vortex tangle without making any
ad hoc assumptions, and while remaining within the framework of Hamiltonian dynamics, i.e., without
introducing viscosity. There is also no need to appeal to the BSL or LIA approximations, which are in
any case somewhat misleading, since the fluid is compressible.

In what follows we consider the GP equation and its modifications as models of superfluid turbulence
paying a particular attention to vortices and travelling coherent structures that these equations exhibit.
We shall often refer to dimensionless GP equation (1.5)

(1.16) —2itpy = V2 + (1 - [¢*)¢,

where time is measured in units of ma?/h and distance in healing lengths a. The impulse (1.10) and
energy (1.11) become

(1.17) p =5 [ VU -1 - V(- 1)dx

measured in 5/a and
(1.18) E=1 [V + 4 - vP) dx

measured in h%p., /m?.

We discuss a single straight line vortex and the vortex motion on uniform and non-uniform back-
grounds in Section II. We modify the GP equation to make it more applicable to superfluid helium in
Section III. Travelling coherent structures that exist in the GP equation, the nonlocal GP equation and
the coupled GP equations are subject of our study in Section IV. In Section V we consider mechanisms
of the formation of these localised structures. We discuss how to introduce the normal component into
superfluid in Section VI, where we also study the dissipation of a vortex ring at non-zero temperatures.

2. Vortices

A vortex line is defined by a zero of the wave function ¢ = 0. In cylindrical coordinates (r, 0, z) the
wave function of a straight-line vortex takes form

(2.1) ¥ = R(r)exp[ish],

where s is an integer (“winding number”, “topological charge”). Fluid rotates around the z-axis with
tangential velocity

(2.2) veTlgg_ s
m mr
and the amplitude satisfies
2 1d( dR h2s? 3
(23) —%;%<T’$> +WR+%R —EvR—O.

At large distances the density is unperturbed, so R — 9,. We introduce the dimensionless function
R = ¢ f(n), where the distance is measured in healing lengths n = r/a.

This equation was numerically integrated by Pitaevskii [13] and the solution is shown on Fig. 1 together
with a Padé approximation [14].
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FIGURE 1. The amplitude of a straight-line vortex for s = 1 as solution of Eq. (2.4).
The leading order terms of the power series expansions at zero and infinity are shown
next to the graph. A Padé approximation of the vortex amplitude n/1/n2 + 2 is shown
by dashed (red) line.
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The simplest Padé approximation of the vortex amplitude that will be used to analyse vortex motion
is in the form f(n)? = n?/(n* + 2) [15], so the wavefunction of a straight line vortex is approximated by

Y

(2.5) ¢—:f(n)ew:(a:+iy)/\/m2+y2+2, x =ncosb,y =nsinf.
The energy per unit length of the vortex line is
K2poo ([ [dR]? TR 17, .,
(2.6) E, = y (/[W] rdr+/7dr+§/(1—R)rdr).
0 0 0

The first term can be regarded as a “quantum energy”, the second term is the classical vortex kinetic
energy that diverges logarithmically unless a cut-off distance L is introduced; the third term in (2.6)
represents the potential energy. The energy per unit length of the vortex is usually expressed in the
form

2
(2.7) B, = "4’7’:" (m% + L0>,
where the constant Ly is called the “vortex core parameter” and was determined numerically by
Pitaevskii [13] as Lo = 0.3809.

Straight-line vortices can transmit energy along their length by Kelvin waves. These have been
comprehensively analysed for incompressible Euler fluids; see for example Chapter 11 of Saffman [10].
They have been studied for compressible hollow core and the GP vortices by Roberts [16] who showed
that in both situations, the waves may be bound or free, depending on their angular and axial wave
numbers, my and k. The free waves radiate energy acoustically to infinity, while the bound states do
not. It is found that for the GP vortex one class of my = 1 modes, called ’slow modes’ because of their
low frequency, consists of bound states for all k. The slow my = 2 modes are also bound when k is
sufficiently large, but are free for small k.

2.1. Vortex motion on uniform backgrounds. Here we consider N, vortices in (z,y)-plane
that are separated by distances far exceeding the healing length a and satisfying Eq. (1.16).
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we introduce a small parameter € = a/L, where L is an average inter-vortex distance and scales
V — €V, 0; — €20, and get to the leading order from Eq.(1.16)

(2.8) p=1-0(), V2§ =0.

This shows that the vortex motion is according to classical inviscid irrotational (except at the vortex
positions x = x;) incompressible flow dynamics. The velocity potential for a point vortex at origin, with

the winding number s, is s, so
e, XX x
v=sVl=s5"—"> =sJ—,
] |x[?
where J denotes rotation through /2.
Laplace’s equation (2.8) is linear, so we can linearly superpose a finite number N, of point vortices

with different strengths and positions x; (i = 1,...N,), thus

e, X (x —x;)
v = §i——————~.
20
Classical point vortices move as material points so each vortex is moved by the velocity field due to all
the other vortices. The dynamical system of vortex motion takes the form

siki(t)ng—Z; H:%ZZsisﬂMxi—xﬂ.
J o g#

In general it is quite challenging to understand vortex motion in condensates as vortices move on
essentially nonuniform backgrounds, interacting with sound and emitting sound. Next we consider
motion of a vortex line near a solid boundary and show that for a vortex parallel to the wall, the motion
is essentially equivalent to that generated by an image vortex, but the depleted surface layer induces an
effective shift in the position of the image compared to the case of a vortex pair in an otherwise uniform
flow.

2.2. Vortex motion near the boundary. Here we consider the problem of vortex motion in an
asymptotically homogeneous condensate in the presence of a solid wall where the wave function of the
condensate vanishes. Again, the geometry is two dimensional, with the vortex aligned along the z axis,
parallel to the surface of the wall. The dynamics of the time-dependent condensate in the presence of
the solid wall at y = 0 is described by the GP equation (1.16) subject to the boundary condition

(29) ¢($7y = Oat) =0, |.’L'| < 00.

In the absence of vortices, the exact solution of (1.4) for the stationary state of the semi-infinite con-
densate is

(2.10) f(y) = tanh(y/Vv2).

In classical inviscid fluid dynamics with constant mass density p, the relevant kinematic boundary
condition at a solid wall with normal vector n is

(2.11) pu-n=0,

where p is the local density of the fluid and u is the velocity of the fluid. The corresponding problem of
a vortex moving parallel to the wall is solved by placing one or more image vortices in such a way that
condition (2.11) is identically satisfied.
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For the dynamics described by the GP equation (1.4), the density p o< [#|? is no longer constant,
but rather vanishes at the surface of the wall. Thus condition (2.11) is automatically satisfied, and all
components of u can in principle remain finite on the boundary. Therefore, it may seem that image
vortices are irrelevant in the case of the GP equation, so that the vortex should remain stationary away
from the boundary (where the fluid density is constant apart from exponentially small corrections). It
was shown in [17] that this is not true. In fact, the vortex moves parallel to the boundary, and it
moves faster than a corresponding pair of vortices of opposite circulation in a uniform condensate in the
absence of the depletion caused by the boundary.

The asymptotics of the vortex velocity was obtained using the Hamiltonian group relation

OF
(2.12) U==,

op
which is satisfied by classical as well as the GP vortex pairs and vortex rings moving on homogeneous
backgrounds [18]. The Hamiltonian relation (2.12) is derived by considering the variation v — v + §

in (1.17) and (1.18) that results in

[ O
(2.13) 5p—1/(5¢ 5 — 0 %dwdy

and

(2.14) OB =5 [ oy [-V2¥+ ¢ (|97 = 1)] + 69 [V + ¢~ (|9 - 1)] dady,

provided 4y — 0 as y — oo. It follows that §E = Udp and thus the Hamiltonian group relation of the
energy and momentum taken along the sequence of solitary-waves that satisfy Eq. (1.16) with 8; —
—U0,. We compare the motion of a pair of vortices of opposite circulation distance 2y, away from each
other with the approximate form of the wavefunction ¢ = ¥, (yo)¥: (—yo) where 1, (y0) = ¥(z,y — o)
and v is given by Eq. (2.5) with the motion of a vortex distance yo + [ away from the solid wall,
approximated by 1o = tanh(y/v/2)1,(yo + )9 (—yo — ). If the pair and a vortex move with the same
(classical) velocity 1/2yg, then

_ 19p/0yo
2 6E/6y0 ’
where E and p are energy and impulse of a vortex next to a solid wall (given by Egs.(1.18)—(1.17) but

with 1), replaced by the new ground state f(y)) that can be integrated to the leading order in large yq
to yield

(2.16) 1= /Oo 1 — tanh(y/v2)2 dy = V2.

(2.15)

Therefore, the velocity of the vortex next to the wall is (to the leading order in large yo)
(2.17) U =1/(2yo — 2V2).

The generalisation of this result were made [19] for inhomogeneous (trapped) condensates. In general,
the velocity can be found by using the area of the displaced density at the boundary to determine the
shift [ in the position of the image vortex.

3. Nomnlocal Model

Although the GP equation is a popular model of superfluid helium, several aspects of the local GP
model (1.5) are qualitatively or quantitatively unrealistic in application to superfluid helium. Superfluid
helium is not a weakly interacting Bose gas, instead it is a strongly correlated fluid dominated by many-
body effects. The velocity, ¢, of long wavelength sound waves is proportional to p% in the GP equaton,
but it is known from helium experiments [20] that ¢ o< p>8. Next, the dispersion relation (1.15) does not
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describe a characteristic dip (roton minimum) in the superfluid helium dispersion curve. The omission
of the roton branch is not too serious at low temperatures, where only the phonon branch is significantly
populated, but it may have some repercussions when studying reconnection processes. The last two of
these weaknesses are removed by replacing the local model (1.5) by a suitably chosen nonlocal model as
in [21, 22, 23]. The minimum requirements on such a potential would be (i) the correct position of the
roton minimum and (ii) the correct speed of sound. Actually such a fit can be obtained with a variety of
potentials. Pomeau and Rica [21] pioneered the use of nonlocal models for study superfluidity, but their
model did not have the correct sound velocity (slope of the dispersion curve at the origin) of superfluid
helium. The applicability of (1.4) with a potential that adequately represents the dispersion curve
has been analysed in [22]. It was shown that for liquid helium having the correct Landau dispersion
curve, solutions of equation (1.4) develop non-physical mass concentrations. In particular, the “Eulerian
part” of the momentum equation (without the quantum stress tensor) may become no longer hyperbolic
in some parts of the integration volume. A virial theorem, similar to the one used to establish the
catastrophic blow-up in the focusing nonlinear Schrodinger equation, can be used to establish similar
catastrophes in bounded volume for (1.4). This indicates that the assumptions underlying the derivation
of the equation break down and that higher order nonlinearities must be introduced.

A more accurate approach in modelling liquid helium is through density-functional theory done by
Dalfovo et al. [24], which attempts to give an adequate microscopic description of interactions. In this
approach the total energy is still written as a functional of the one-body density, but it includes short-
range correlations. This approach has provided a quantitatively and qualitatively reliable representation
of the superfluid properties of free surfaces, helium films, and droplets (see [24] and references therein).
At the same time this approach is phenomenological and results in rather complicated forms of the
energy functionals with many parameters that are chosen to reproduce liquid helium properties.

The nonlocal model (1.4) was modified in [23] in the spirit of a density - functional approach,
by introducing only one additional nonlinear term in the expression for the correlation energy. This
remedies the nonphysical features of model (1.4), while retaining not only an adequate representation
of the Landau dispersion relation, but also simplicity in the analytical and numerical studies.

The idea is to replace the potential part of (1.8) which we write as Fins = 2"# J p* dx by

o L 1 ] I ' w 4y+1
(3.1) Einy = 3 /[2 /p(x W' —r)p(x)dx’ + o 1P dx,

where W and + are phenomenological constants. V(|x — x’|) is chosen so that the implied dispersion
relation is a good fit to the Landau dispersion curve, for instance by considering a potential of the form

(3.2) V(x=x'|) =V(r) = (a + BA%r? + §A ) exp(—A%r?).

where A, B, o, 3, and § are parameters that can be chosen to give excellent agreement with the experi-
mentally determined dispersion curve.
On adopting (3.1), one can see that (1.4) is replaced by

2
(3.3) ity = =3+ [ [0 OPY (= x]) ' + Wl = Eop.

This model not only produces the structure and energy per unit length of the straight-line vortex that
are very close to those obtained from the Monte Carlo simulations by Sadd et al. [25], but it also made
it possible to bring the vortex core parameter (2.7) and the healing length into agreement. Fig.2 gives
the density in the core of the straight line vortex, both for (3.3) and for the GP model. This nonlocal
modification of the GP equation has been used to elucidate the differences between roton emission and
vortex nucleation [26] and to predict what was later identified as a phase transition from a spatially
homogeneous state to a layered state characterised by a periodic density modulation [27].
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FIGURE 2. The amplitude of the vortex line as given by Eq. (3.3) with v = 2.8 (solid
line), v = 1 (short dashed line) and by the GP equation (1.5) (long dashed line).

4. Travelling coherent structures in condensates

In this section we address the question of what kinds of travelling waves can exist in superfluid
models. In particular we consider three models: the local GP equation (1.5), the nonlocal GP model
(3.3) and the system of coupled GP equations that describe two-component BECs.

4.1. Travelling waves in the local GP equation. Firstly, we consider the travelling coherent
structures that exist in the local GP equation (1.16). We are interested in localized disturbances moving
with constant velocity U in z-direction, so they satisfy

(4.1) 2iU% =V + (1 — [¢H), Y] =1 as |x]| — oo.

Velocity of sound is given by ¢ = 1/+/2.

4.1.1. 1D: dark solitons. Equation (4.1) in 1D with V2% replaced by d?y/dz? can be integrated
exactly [28]. We multiply the GP equation (4.1) by ¢*, subtract c.c, and look for solutions with constant
Im(y). From compatibility of equations for real and imaginary parts we obtain

2
(42) ) = Ve =vje, VAR — (120 < Rewy?).

The solutions are found by integrating the second of Egs. (4.2) and using the boundary conditions.
Dark soliton (in dimensional units) has form

(4.3) @b(m—Ut):\/%(i%—l— I_Z_jtanh[m\;——%wwl_g_jb'

Figure (3) shows the graphs of the solitons for various U. Note that the minimum of the density
is at p(0) = pooU?/c?, so that for U = 0, 9 = 0. This dark soliton is often referred to as black soliton
and the solitons with U # 0 are gray solitons. The width of the solutions is v/2a/+/1 — U?/c? and the
phase of the wavefunction experiences a jump AS = 2arccos(U/c) between —oo and +o0. Finally, as
U — ¢, the energy F decreases: therefore, the dissipative effects result in an acceleration of soliton and
its disappearance.
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FIGURE 3. The density of dark solitons for various U as given by Eq. (4.3). The
distance is in healing lengths.
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4.1.2. 2D and 3D: vortex pairs, vortex ring and rarefaction waves. Large vortex rings and vortex
pairs were investigated in [29] where the following expressions for the energy per unit length, momentum,
and velocity, v, were obtained:

(4.4) E= %pm2R<ln % + Lo — 2), p = prTR?,

(4.5) v = (k/47R) (ln % + Lo — 1).

As expected, E =~ 2rREy, but also rings obey Hamilton group relation
(4.6) v=0E/0p.

Jones and Roberts [18] determined the entire sequence of vortex rings numerically for the GP model
(1.16). They calculated the energy E and momentum p and found two branches meeting at a cusp
where p and E assume their minimum values, p,, and E,,. As p — 0o on each branch, £ — oo. On the
lower branch the solutions are asymptotic to the large vortex rings (4.4)-(4.5).

As FE and p decrease from infinity along the lower branch, the solutions begin to lose their similarity
to large vortex rings, and (4.4) - (4.5) determine E, p, and v less and less accurately, although (4.6) still
holds. Eventually, for a momentum pg slightly greater than p,,, the rings lose their vorticity (i) loses
its zero), and thereafter (for U > 0.625) the solitary solutions may better be described as ‘rarefaction
waves’. The upper branch consists entirely of these and, as p — 00 on this branch, the solutions
asymptotically approach the rational soliton solution of the Kadomtsev-Petviashvili (KP) equation and
are unstable. The pE dispersion curve of the solutions in 3D is shown on Fig. (4)(a). The stability of
2D and 3D solutions was analysed in [30]. The lower branch is linearly stable and the upper branch is
linearly unstable to axisymmetric infinitesimal perturbations, but the growth rates are small.

In two-dimensions, there is only one branch of the solutions that terminates at p = 0 and E = 0.
Large p and E correspond to vortex pairs of opposite circulation. As both p and E decrease the velocity
increases, the distance between vortices decreases until at some non-zero p and E the zeros of 4 coincide
and for even smaller values of p and E the solutions become rarefaction pulses. Figure 4(b) shows the
pE dispersion curve in 2D. The solutions in 2D are linearly stable [30].
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FIGURE 4. Energy E as a function of momentum p for three-dimensional (a) and two-
dimensional (b) travelling coherent solutions of the GP equation (1.16). Rarefaction
pulses are shown as dark (red) lines, vortex rings (pairs) are shown as light (green)
lines.
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4.2. Travelling waves in the nonlocal GP model. Equation (3.3) was integrated numerically
in [23] to elucidate the behaviour of vortex rings. These calculations indicate that when the velocity
of the vortex ring reaches the Landau critical velocity the ring becomes unstable and evanesces into
sound waves. For any ring travelling with speed greater than the Landau critical velocity, the amplitude
of the far-field solution will not decay exponentially at infinity, which makes the existence of such a
ring impossible. One of the goals of these calculations was to clarify Onsager’s concept of the roton as
“the ghost of a vanished vortex ring.” One can hope that the transition from the vortex ring to the
sound pulse and the concomitant loss of vorticity would occur close to the roton minimum in energy-
momentum space, or (more probable) close to the point where the group velocity and the phase velocity
are equal (the Landau critical velocity ur). Their calculations show that indeed there is a point on the
pE— plane where the ring ceases to exist and where ur, = 0F/0Op, but this point lies far from the roton
minimum, see Fig. 5). It remains to be seen whether the idea of the roton as a ghostly vortex ring will
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FIGURE 5. The dispersion relation pE of superfluid helium (dots) and a family of the
vortex rings as solutions of Eq. (3.3) (solid lines).
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ever be vindicated. As one has a great variety of potentials that lead to the Landau dispersion curve
one can tune the parameters so that the line £ = urp, meets the pE— curve for the family of the vortex
rings, to allow this sequence of vortex rings to be terminated at a lower energy and momentum level.
Whether this process will lead to coalescence with the roton minimum is not yet clear.

4.3. Travelling waves in the coupled Gross-Pitaevskii system. The simplest example of a
multi-component system is a mixture of two different species of bosons, for instance, 'K-8"Rb [31].
Since alkali atoms have spin, it is also possible to make mixtures of the same isotope, but in different
internal spin states, for instance, for 3’Rb [82]. The multi-component BECs are far from being a trivial
extension of a one-component BEC and present novel and fundamentally different scenarios for their
excitations and ground state. For two components, described by the wave functions ¢; and s, with Ny
and N, particles respectively, the GP equations become

.0 h?
zh% = [—%VZ + Var | |? + V12|¢2|2] Y1,
., 0 h?

(@) W2 = [V Vialin P + VialaP

where m; is the mass of the atom of the ith condensate, and the coupling constants V;; are proportional
to scattering lengths a;; via V;; = 2wh?a;;/mi;, where m;; = mym;/(m; + m;) is the reduced mass.
The energy functional of the system (e.g. [33]) is

S 2 1 4 2 2
49) P= [ g VU + SVl 1 PVl

In this section we study the solitary wave solutions of the coupled GP model (4.7). Many solitary wave
structures have been recently identified in two-component one-dimensional BECs [34] such as bound
dark-dark, dark-bright, dark-antidark, dark-grey, etc. complexes. In higher dimensions, domain walls
[35] and skyrmions (vortons) [36] have been found. To study the equilibrium properties the energy
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functional (4.8) has to be minimized subject to the constraints on the conservation of particles leading
to introduction of two chemical potentials p; = Viini + Viana, uz = Viang + Vaana, where n; = |;|?
is the number density in equilibrium. The dispersion relation between the frequency w and the wave
number k of the linear perturbations (ox exp[ik - x — iwt]) around homogeneous states is obtained as

(4.9) (w? = wi)(W®* —w}) = wi,

where w?(k) = c2k? + h?k* /4m? coincides with a one-component Bogoliubov spectrum with the custom-
ary defined sound velocity ¢ = n;Vi;/m; and w?, = ¢},k* where ¢, = ninaVih/mims. The system is
dynamically stable if the spectrum (4.9) is real and positive which implies that Vi1 Vas > Vi3, Vi; > 0 for
stability [33]. The acoustic branches of Eq. (4.9) are wy = ¢k with the corresponding sound velocities

(4.10) 2 =c +c3+ \/(cf — 3)? +4ct,.

The solitary waves we seek below are all subsonic, so their velocity U is less than c_.
A dimensionless form of (4.7) is obtained by introducing the chemical potentials 1; — 1; exp[—iu;t/H]
and using dimensionless units

h h M1

—X, t— —t, i —
(2m1p1)1/2 2u1 wl Viing

This leads to the system of nonlinear Schrodinger equations

(4.11) x —

Yi.

—21'% = V1 + (1= [¢1]> = a1 |v2]|*)1
(4.12) —2@% = AV 4 (L= arlihi = 2 ff? =A%),
(&%)

V1 = P1co, Y2 = P2oo, as |X|—)OO,

where a; = Vi2/Vii, ¥ = m1/ma and A% = (u; — pa)/p1 is the measure of asymmetry between chemical
potentials (where we assume that pu; > us). Note that the use of Feshbach resonances to vary the inter-
actions between atoms makes this entire range of parameters experimentally accessible. The condition
of dynamic stability becomes ajas < 1. To also ensure stability against collapse when only the density
of one component is varied, the final stability criterion becomes

(4.13) O0<aias <1.
The acoustic branches (4.10) are
1 a1 . a7 . .

To find solitary wave solutions moving with velocity U in positive z—direction, the following equations
were solved [37]

I

A~ = Y+ (L[] — e[l
.0
(4.15) A2 = GV + (-l - S al? = A2y,

Y1 2 Proo, P2 2 P200, as (x| = 00

We are interested in the case when both condensates have nonzero uniform states. The values of the
wave-functions of the solitary waves at infinity in (4.12) are given by

(4.16) Vi = (1-a2+02A%)/(1- ma),
(4.17) Vo = 2(1-a1—AY)/(1-may),
1
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so that we will assume that

4.1 1—A2 — .
( 8) ap < R ar < 1= A2

In a compact form the equations (4.15) can be written as

(419 205 = T i), = 1,2

where we used the notation

fi,e) = 1—|¥1> —arlysl,
(4.20) J2(t1,12) 1—algy|” — Z—;|¢2|2 -

Each solitary wave complex that belongs to a family of the solitary wave solutions for a chosen set
of (a1, aa,y, A?) is characterised by its velocity, U, vortex radii b;, momenta p; = (0,0, p;), and energy.
The impulse of the i—th component [37] is

(4.21) pi = 2%./[(10: = Yico) Vi — (i — Yico) VY]] dx

We form the energy, F, by subtracting the energy of an undisturbed system of the same mass for which
1; = const everywhere, from the energy of the system with a solitary wave, so that the energy of the
system becomes

1 1
B = 5 [UV0F #9196l + 5 = W)
Q
(422 bk (e = laP) M-w—/me i)
Alternatively, we can write

(.23 =1 [ {0l + i) — ) .

Several families of solitary wave complexes were found: (1) vortex rings of various radii in each of the
components (VR-VR, complexes), (2) a vortex ring in one component coupled to a rarefaction solitary
wave of the other component (VR-RP and RP-VR complexes), (3) two coupled rarefaction waves (RP-
RP complexes), (4) either a vortex ring or a rarefaction pulse coupled to a localised disturbance of a
very low momentum (slaved wave) (VR-SW, SW-VR, RP-SW, SW-RP complexes). Fig.6 presents the
dispersion curves of three families of the axisymmetric solitary wave solutions for vy =1, a; = a2 = 0.1
and A% = 0.1 and

5. Mechanisms of formation of travelling coherent structures

In the previous section we showed that various modifications of the GP equation have quite different
travelling wave sequences. The goal of this section to discuss the ways in which these structures can
be formed in superfluids. In spite of differences in the solutions the mechanisms of their formation are
quite similar.
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FIGURE 6. The dispersion curves of three families of the axisymmetric solitary wave
solutions of (4.15) with vy = 1, a@; = as = 0.1 and A? = 0.1. The numbers next to the
dots give the velocity of the solitary wave solution. The top (black) branch corresponds
to VR-VR (VR-RP for U = 0.58) complexes. The middle (green) branch shows p vs E
for VR-SW complexes and the bottom (red) branch is the dispersion curve of SW-VR
(SW-RP for U = 0.58) complexes.
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5.1. Critical superflow velocities. Vortex nucleation by an impurity such as the positive ion
4Hed moving in superfluid helium at low temperature with velocity v has been studied experimentally
and theoretically (see, e.g. [4]), and has uncovered some interesting physics. The flow round an ion
that is moving with a sufficiently small velocity, v, is well represented by one of the classical solutions
of fluid mechanics, namely the flow of an inviscid incompressible fluid around a sphere. In this solution,
the maximum flow velocity, u, relative to the sphere is 3v/2, and occurs on the equator of the sphere
(defined with respect to the direction of motion of the sphere as polar axis). Above some critical velocity,
V¢, the ideal superflow around the ion breaks down, leading to the creation of a vortex ring. There is
some similarity between the flow of the condensate past the ion and the motion of a viscous fluid past
a sphere at large Reynolds numbers, the healing layer being the counterpart of the viscous boundary
layer. There are, however, important differences. At subcritical velocities, the flow of the condensate
is symmetric fore and aft of the direction of motion, and the sphere experiences no drag. In contrast,
the viscous boundary layer separates from the sphere, so evading D’Alembert’s paradox, destroying the
fore and aft symmetry, and therefore bringing about a drag on the sphere. Moreover, when v > v,
shocks form at or near the sphere, but shocks are disallowed in the condensate since they represent a
violation of the Landau criterion and a breakdown of superfluidity. When v > v., the condensate evades
shocks through a different mode of boundary layer separation. The sphere sheds circular vortex rings
that move more slowly than the sphere and form a vortex street that trails behind it, maintained by
vortices that the sphere sheds. As the velocity of the ion increases such a shedding becomes more and
more irregular. Each ring is born at one particular latitude within the healing layer on the sphere. As
it breaks away into the mainstream, it at first contributes a flow that depresses the mainstream velocity
on the sphere below critical. As it moves further downstream however, its influence on the surface flow
diminishes. The surface flow increases until it again reaches criticality, when a new ring is nucleated
and the whole sequence is repeated. The vortex street trailing behind the ion creates a drag on the ion
that decreases as the nearest vortex moves downstream, but which is refreshed when a new vortex is
born.
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Frisch et al. [38] and Winiecki et al. [39] have solved numerically the GP equation (1.5) for
flow past a circular cylinder and Berloff and Roberts [40] for the flow around a positive ion and have
confirmed the main features of the scenario just described. Below the critical velocity steady solutions
of the GP model exist.

The formation of vortex rings and vortex pairs can be also understood mathematically by considering
when the hydrodynamical equations change their type [41]. From the Madelung transformations ¢ =
RexpliS] of the GP equation one gets the following hydrodynamical equations for the number density
n = R? and the phase ¢ = AS/m for the superflow with ¢ = usz as 2 + y*> — o

on

a-ﬁ-V-(anﬁ):O
96 Ligge _ L Lo gy ppe¥in

Consider a stationary flow and neglect the quantum pressure term. We fix a point outside of the disk
at which the components move with velocities u, introduce the local orthogonal coordinates such that
the z—axis is tangent to the flow and expand ¢ in the neighbourhood of this point as ¢ ~ uz + ¢.
Linearising for small ¢ gives

D (n(w) 1)y + 1 (1)Byyd = 0.

At low velocities this equation is elliptic and becomes hyperbolic beyond a critical velocity. This happens
when 9, (n(u)u) = 0 on the equator of the disk.
For two-component condensates [42] the nucleation condition was obtained in a similar fashion and
becomes
O(nyu1) (naus2) ony %

(52) TMTU@ < U1U26—u2 61},1 .

Let us consider the motion around a disk in 2D. At subcritical velocity (U < 0.225), the flows of the
condensates are symmetric fore and aft of the direction of motion, and the disk experiences no drag.
When the condition (5.2) is satisfied, which happens first on the disk equator where the velocities are
maximal, the condensates evade shocks through a boundary layer separation. Fig. 7 shows the emission
of various complexes for the disk of the radius 10 healing lengths that moves with supercritical velocity
U = 0.28. The disk sheds SW-VP, VP-SW and VP-VP complexes in the order and frequency that
depends on the value of the disk’s velocity. These complexes move more slowly than the disk and form
a vortex wave street that trails behind it, maintained by other complexes that the disk sheds. As the
velocity of the disk increases such a shedding becomes more and more irregular. Each complex is born
at one particular latitude within the healing layer on the disk. As it breaks away into the mainstream,
it at first contributes a flow that depresses the mainstream velocities on the disk below critical. For
larger values of the disk velocity (U > 0.265), more energy is required for this depression and VP-VP
complex that has larger energy than SW-VP complexes is born first. At low supercritical velocities
SW-VP complex is born first. As it moves further downstream however, its influence on the surface flow
diminishes. The surface flow increases until it again reaches criticality, when a new complex is nucleated
and the whole sequence is repeated. The vortex and slaved wave street trailing behind the disk creates a
drag on the disk that decreases as the nearest complex moves downstream, but which is refreshed when a
new complex is born. The complexes downstream of the disk move with different velocities and interact
among themselves. These interactions may lead to a transformation from one type of the complex to
another; Fig. 7 shows the splitting of the VP-VP complex into SW-VP and VP-SW complexes. The
mechanism in which solitary waves transfer energy from one is discussed in Sec. 5.3 below.
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FIGURE 7. The time snapshots of |¢1|?> (top) and |¢»|? (bottom) of the solution of
Eq. (4.15) with —2it;; added to the left hand sides with a = 0.5, A2 = 0.1 for the flow
around a disk of radius 10 moving to the right with velocity U = 0.28. The solitary
wave street is seen in the wake of the disk. The complexes were emitted in the order
VP-VP, SW-VP, VP-SW, and SW-VP complex has just got emitted from the disk
boundary. For this large supercritical velocity the VP-VP complex is first nucleated
from the surface of the disk and the insets show this moment at an earlier time. On
the main panels this complex is in the process of splitting into the VP-SW and SW-VP
complexes. Only parts of the computational box are shown.

5.2. Transverse “snake” instability. The velocity of dark solitons in the GP equation in 1D
depends on the density at the minimum as we previously discussed. This implies [43] that if a dark
soliton is placed in dimension greater than one it breaks due to transverse perturbation along the front
and evolves into vortex ring/pairs or other travelling wave structures.

5.3. Energy transfer. The vortex pairs and vortex rings can appear as a result of an interaction
among the solitary wave solutions of the GP equation as was shown in [14]. The interactions between
various, even vortex-free, solitary waves result in energy and momentum transfer that can lead to
vortex nucleation. Rarefaction pulses on the lower branch of the dispersion curve have lower energy
and momentum than vortex rings, therefore, such rarefaction pulse may evolve into a vortex ring if
interactions with other solutions add enough energy and momentum to the rarefaction pulse. This is
illustrated by placing two rarefaction pulses a distance 10a apart that move in the same direction. The
effect two solitary waves have on each other is non-symmetric. As a result, the rarefaction pulse moving
behind transfers part of its energy and momentum to the pulse moving at front, so that the latter
transforms into a vortex ring and slows down, whereas the former spreads out and speeds up. This
process leads to an even closer interaction of the two solitary waves and an even more rapid transfer
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of energy from the solitary wave that moves behind to the one moving at front. Eventually almost all
of the energy and momentum of the former is transferred to the latter, which becomes a vortex ring of
energy and momentum that are only slightly less than twice the energy and momentum of each of the
initial rarefaction pulses. The remaining small energy is emitted as sound waves. Figure 7 gives the
graphical illustration of this process through the snapshots of the density cross-sections.

FIGURE 8. The snapshots of the contour plots of the density cross-section of a conden-
sate obtained by numerically integrating the GP model (1.16). Initial condition consists
of two rarefaction pulses on the lower branch of the Ep cusp. Black solid lines show
zeros of real and imaginary parts of i, therefore, their intersection shows the position
of topological zeros. Both low and high density regions are shown in darker shades to
emphasise intermediate density regions. Only a portion of an actual computational box

is shown.
t=14.4
t=21.6 t =288
H
t=43.2 t =504 t=57.6

5.4. Collapsing ultrasound bubbles. Experiments in superfluid helium have demonstrated the
production of quantised vortices and turbulence [44] by the collapse of cavitated bubbles [45] generated
by ultrasound in the megahertz frequency range.

The time-dependent evolution of the condensate during and after collapse of the bubble involves
several stages that were studied in [46]. During the first stage dispersive and nonlinear wave trains
are generated at the surface of the collapsed bubble. The Fourier components propagate at different
velocities generating wave packets moving in opposite directions. This stage of the evolution is charac-
terised by a flux of particles towards the centre of the cavity, while oscillations of growing amplitude are
being formed on the real and imaginary parts of the wave function and the slope of the steep density
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FiGURE 9. Time snapshots of the density isoplots p = 0.2 after the collapse of the
bubble of radius a = 50 centred at the origin. The density plots of the cross-section of
the solution at z = 0,z € [0,150],y € [—25,25] are given at the bottom of each isoplot
to indicate the details of the vortex formation. Black solid and dashed lines show zeros
of real and imaginary parts of 1 correspondingly, therefore, their intersection shows the
position of topological zeros. Both low and high density regions are shown in darker
shades to emphasise intermediate density regions. The side of the computational box is
300 healing lengths and the distance between ticks on the side corresponds to 30 healing
lengths. The vortex rings nucleate at about ¢ ~ 50.

t=10 { =66
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front is getting smaller. There is a moment of time when the density at the centre of what used to be
a cavity reaches the maximum value. This moment indicates the start of a qualitatively new stage of
the evolution in which there is an outward flux of particles as the condensate that overfilled the cavity
begins to expand. The radial density depletions propagate away from the centre and this is when an
instability sets in leading to formation of vortex rings and rarefaction pulses, as Fig. 9 illustrates. Note
the growth of the vortex rings as they move away from the centre. This is due to the mechanism of
energy transfer that we discussed in the previous section.
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FiGURE 10. Evolution of topological defects in the phase of the long-wavelength part
of the field 1 in the computational box 1282.

q

5.5. BEC formation. Finally, the localized disturbances, vortex rings, rarefaction pulses are
formed during the BEC formation from a strongly degenerate gas of weakly interacting bosons. As
this topic bring us immediately to the discussion of superfluid turbulence we shall discuss the BEC
formation in some detail in the next section.

6. Superfluid turbulence in the GP equation

An important and often overlooked feature of the GP equation is that it gives an accurate mi-
croscopic description of the formation of BEC from the strongly degenerate gas of weakly interacting
bosons [47, 48]. In terms of the coherent-state formalism, it was demonstrated that if the occupation
numbers are large and somewhat uncertain, then the system evolves as an ensemble of classical fields
with corresponding classical-field action leading, in our case to the GP equation. It is important to
emphasise that in the context of the strongly non-equilibrium BEC formation kinetics the condition of
large occupation numbers is self-consistent: the evolution leads to an explosive increase of occupation
numbers in the low-energy region of wavenumber space [49] where the ordering process takes place.
Even if the occupation numbers are of order unity in the initial state, so that the classical matter field
description is not yet applicable, the evolution that can be described at this stage by the standard Boltz-
mann quantum kinetic equation inevitably results in the appearance of large occupation numbers in the
low-energy region of the particle distribution. The blow-up scenario [49] indicates that only low-energy
part of the field is initially involved in the process. Therefore, one can switch from the kinetic equation
to the matter field description for the long-wavelength component of the field at a certain moment in
the evolution when the occupation numbers become appropriately large.

The formation of the large-scale coherent localized ground state (condensate) from a non-equilibrium
initial state has been studied in a number of papers addressing different stages of the formation: weak
turbulence [50, 49], strong turbulence in the long-wavelength region of energy space [51], and finally,
the formation of a genuine condensate [52, 53]. The superfluid turbulence and evolution of vortex tangle
has been extensively studied in [54, 55]. The related question about the effect of finite temperature on
the BEC dynamics has also been addressed recently [56].

Unambiguous demonstration of the formation of the state of superfluid turbulence in the course
of self-evolution of weakly interacting Bose gas was performed in [51]. The formation of a tangle of
well-separated vortices and the decay of superfluid turbulence as well as the formation of a vortex ring
are clearly seen on Fig. 10.
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When the turbulent tangle of vortices decays the system reaches a state of thermodynamical equi-
librium. Number of particles in condensate depends on the total number density p = N/V and the
energy density of the system These relations were found in [53] by adapting the Bogoliubov theory of
a weakly interacting Bose gas [57] to the classical nonlinear Schrédinger equation
(6.1) O = =V + [y
The dynamics conserves the total number of particles N = [ |¢|?dx, and the total energy E =

[ ([V¥|? + $|¢[*) dx. In terms of the Fourier amplitudes ax(t) = [ 4 (x,t)e” ** dx the total energy is
written as

(6.2) E= Zk2aka + — G Z Ay, O, Oz Oy Ok koo —ke —kes -
1234
The Bogoliubov transformamon [57]

ax _(fuy u— bk _ 2 — k?
(a*—k) B (“— “+> (b*—k) ’ us = (L2 T0)/2T, P = w(k)

is used to diagonalise the quadratic (in k # 0) term to
D wk)bibe,  w(k) = VEL+2Vopok?,  po=no/V,
k#0

where w(k) is the Bogoliubov dispersion relation that takes into account nonlinear interactions and
no = |ag|? is the number of particles in condensate. The particle number density is

p=N/V = Zakak —pg—}—z u} +u ) (bb).

k£0
The equilibrium distribution of non condensed particles is found from the kinetic equation modi-
fied by the presence of condensate: ny! = T'/w(k) where T is a temperature. In the new basis, the

uncondensed mass and energy density become

T k* + Vopo
PP e (]
Vk;éo w(k)

—=—Vo[p +(p=po)’ 21

k;éo
T/V can be eliminated to yield the expression for the density of the condensed particles as function of
the energy density for given total number density.

In Sec.1 we discussed that the vortex lines create a force of mutual friction between superfluid and
normal fluid in addition to the mutual friction included by Landau in his equations. We can use the GP
equations to represents the effects of collisions of the quasiparticles with the vortex cores. In particular,
the vortex line decay law at non-zero temperature was found in [58] in the context of the defocusing
NLS equation by inserting a vortex ring into a state of thermal equilibrium and following its decay due
to the interactions with the non-condensed particles. The result agrees with predictions of the HVBK
theory for superfluid helium [5] according to which the fundamental equation of the motion of a vortex
line, vy, is given by (see also page 90, Eq. (3.17) of [4])

(6.3) v = vag +as’ X (vp — ve) — a's’ x [s' X (vn — va)],

where vg is the local superfluid velocity that consists of the ambient superfluid flow velocity and the self-
induced vortex velocity uj, vy, is the normal fluid velocity, s is a position vector of a point on the vortex
and s’ is the unit tangent at that point. Mutual friction parameters a and o' are ad hoc coefficients in
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FIGURE 11. The proportion of condensed particles to the total number of particles in
the system as a function of the energy density for various total number densities.
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the HVBK theory that are functions of p,, p, and T only and but are determined numerically from the
GP equation as a ~ p,T/psTx and o' = 0.

Self-evolution of two Bose gases from a strongly non - equilibrium initial state has been studied in
[59]. It is shown that the large wavelength part of the fields evolves into coherent structures identified as
travelling coherent complexes of the coupled nonlinear Schrédinger equations discussed in Sec. (4.3). The
evolution of the system is reminiscent of the Kibble-Zurek scenario [60] of a formation of the topological
defects when the system is quickly quenched below the point of the second-order transition. This process
would correspond to the formation of the cosmological vortons and springs that are analogous to the
vortex ring-slaved wave and vortex ring-vortex ring complexes correspondingly [37]. Figure 12 shows the
evolution fo the long wavelength part of the field and formation of non-axisymmetric VR-VR complex.
Collisions with non-condensed quasiparticles lead to the disssipation of the complex and its complete
disappearance as the system reaches thermal equilibrium.
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