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Abstract

The nonlocal nonlinear Schrodinger equation is used to analyze the superfluid flow around an impurity. The differences¨
between the processes of vortex nucleation and roton creation are elucidated. It is argued that vortices are nucleated when
the velocity around the ion exceeds the velocity of sound. q 2000 Elsevier Science B.V. All rights reserved.

PACS: 67.40.Vs; 67.55; 02.60; 05.45.-a

A half a century has passed since the discovery of
superfluidity and superfluid vortices, but the mecha-
nisms of vortex nucleation are still not properly
understood. The main reason is that there is no truly
microscopic picture of superfluid helium available,
so the appearance of vortices Afrom nothingB, or
intrinsic nucleation, cannot be derived from first
principles.

In the absence of such theory the dynamics of
vortices are quite often derived from the Ginzburg–

Ž . w xPitaevskii GP model 1,2 which is assumed to be
linked to the condensate fraction of the superfluid.
This model has been extensively studied particularly
for the motion of ions in a dilute Bose condensate
w x3,4 . The main conclusion of the numerical integra-
tion and asymptotic analysis of the GP equation is
that the vortices nucleate when the velocity some-
where on the surface of the moving object exceeds
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the speed of sound. The condensate escapes the
formation of a shock wave through the breakdown of
the healing layer, resulting in vortex nucleation.
Unfortunately, there are many shortcomings of the
GP model, so that the model can claim only a
qualitative significance for actual superfluid helium.
The dispersion relation of the GP model has no roton
minimum, which is held responsible for many of the
properties of the superfluid. The velocity, c, of long

1 2wavelength sound is proportional to r where r is
the density, while experiments evaluating the

Ž .Gruneisen constant U s rE crcEr , show that, in¨ G T
Žthe bulk i.e., on lengthscales long compared with

.the healing length, krc , the fluid behaves as a
Ž g .barotropic fluid pAr , where p is the pressure

w xwith gs2.8 5 . Finally, the healing length and
correlation length in real helium are known to be
quite different.

For some time there has been a belief that, as
soon as a realistic two-particle interaction potential,
V, that leads to a phonon–roton-like spectra is intro-
duced in the GP model, the properties of superfluid

w xhelium will be well represented 6–11 . The mini-
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mum requirements on such a potential would be the
correct position of the roton minimum and the cor-

Ž .rect bulk normalization see below . Unfortunately,
w xas was shown in Ref. 12 , such a model is not

applicable since it has nonphysical solutions, having
catastrophic mass concentrations. To remedy this, we

w xadopted 13 a density–functional theory approach
w x14,15 and included short-range correlations into the
total energy in the simplest way. This allowed us to
correct the nonphysical features of the model, while
retaining not only an adequate representation of the
Landau dispersion relation, but also simplicity in the
analytical and numerical studies. We used this model,
which is a nonlocal nonlinear Schrodinger equation¨
Ž .NNLSE , to elucidate the properties of vortex rings.
For this model we showed that the vortex core
parameter and the healing length can be brought into
agreement, so that the energy of large vortex rings

w xagrees with experimental observations 16 . The goal
of this Letter is to use the NNLSE model to elucidate
vortex nucleation from, and roton emission by, mov-
ing ions.

The deliberately introduced impurity has been a
valuable experimental probe of the structure and
behavior of superfluid helium. These impurities are:
3 ˚He atoms of radius 4 A, electrons that by their

˚motion create a bubble of about 16 A radius, and
4 q ˚He positive ions of radius 8 A. Vortex nucleation2

by an ion moving in a superfluid helium at low
temperature has been studied experimentally and the-

Ž w x .oretically see Ref. 17 for a review and has led to a
number of interesting results as well as some contro-
versy. The superfluid offers no resistance to the ion
provided that the speed, Õ, of the ion relative to the
superfluid is less than a certain critical value, Õ . Atc

speeds greater than Õ , the ion continually shedsc

vortices and these create a time-varying drag on the
w xion 16 . The critical speed may be estimated by

modeling the ion as a solid sphere and noting that
the maximum relative velocity, u , between fluidmax

and sphere is greatest on the equator of the sphere
and is approximately 3Õr2, assuming that Õ is small
enough for the compressibility of the fluid to be
ignored.

At first it was believed, on the basis of the
Ž Ž . w x.experimental data see Table 8.2 a of Ref. 17 that

the critical state arises when u fÕ , the Landaumax L

critical velocity, so that Õ f2Õ r3, a result inc L

w xrough agreement with observation 16 . A great sur-
w xprise came from the discovery by Bowley et al. 18

that even a tiny concentration of 3He is enough to
decrease the critical velocity of nucleation dramati-
cally. After the helium was cleansed of 3He, the
critical velocity of nucleation by negative ions in-

Žcreased by approximately 10 mrs from 49.9 mrs to
.59.5 mrs, at a pressure of 12 bars . Their explana-

tion of this remarkable observation was based on the
fact that 3He atoms tend to congregate on a free
surface, such as that of the electron bubble, and to
reduce surface tension. An electron bubble is already

w xmade oblate by its motion 19 , and the reduction in
surface tension makes it more oblate, so increasing
u on the equator and reducing Õ . The picture ofmax c

w xnucleation that emerges after the Hendry et al. 20
experiments was that vortex nucleation and roton
emission are independent processes, and that the
latter is linked to Õ but the former is not. AtL

pressures greater than 11 bars, pairs of rotons are
emitted when Õ)Õ , and these decelerate the ion.L

When the applied electric field is increased suffi-
ciently the ion may reach a critical velocity Õ forc

vortex nucleation before being decelerated by roton
emission. From this picture it seems clear that Õ )Õc L

and, since u is greater than Õ by at least a factormax
Žof 3r2 but by a larger factor when compressibility

.is taken into account , the vortex nucleates when
u exceeds some critical speed u that greatlymax c

exceeds Õ . The main contention of this Letter isL

that u is the speed of sound c. We use our NNLSEc

theory to support this conclusion.
The NNLSE equation that we suggested and stud-

w xied in Ref. 13 is written for the single-particle
Ž .wavefunction c x,t for N bosons of mass M as

"
2

2X X X2 < < < <i"c sy = cqc c x ,t V xyx dxŽ . Ž .Ht 2 M

< < 2Ž1qg .qWc c , 1Ž .
where V is the interaction potential, and W and g

Ž <are phenomenological constants. If Ws0 and V x
X <. Ž < X <. Ž .yx sV d xyx , Eq. 1 reduces to the GP0

model. Several authors have considered models in
w xwhich Ws0 but V is not a dy function 6–11,21 .

Ž .It is then easily arranged that 1 gives a good
representation of the Landau dispersion relation, and
especially that the roton minimum is well described
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Žand the velocity of sound, c, is correct. The last
condition is not fulfilled by the nonlocal model

w x. w xconsidered in Ref. 11 . It has been shown 12 that,
for any potential that satisfies these conditions, the

Ž .general model 1 with Ws0 has nonphysical fea-
tures, such as loss of hyperbolicity, leading to the
creation of nondissipative mass concentrations.
Higher order terms must be retained in the expres-
sion for the correlation energy, and this motivates the

Ž .introduction of the last term in 1 .
If E is the average energy level of a boson, weÕ

Ž . Ž .write Csexp iE tr" c , so that 1 becomesÕ

"
2

2X X X2 < < < <i"C sy = CqC C x ,t V xyx dxŽ . Ž .Ht ž2 M

2 1qgŽ .< <qW C yE .Õ /
Casting this equation into dimensionless form by the
transformation x™ax, t™"tr2 E , where asÕ

Ž .y1r2
" 2 ME is the healing length, we obtainÕ

EC
2X X X2 < < < <y2 i s= CqC 1y C x V xyx dxŽ . Ž .H

E t

2 1qgŽ .< <yx C , 2Ž .

where xsWr1qgrE is a nondimensional parame-` Õ

ter and r is the density at infinity, where the fluid`

is undisturbed. The dispersion relation is

`
1 12 4 2v s k q2p k sinkrV r r drq 1qg x k .Ž . Ž .H4 2

0

The normalization condition on the interaction poten-
Ž < X <. Xtial is HV x dx s1yx , and this gives the slope

Ž .at the origin the dimensionless speed of sound as
( 1qgx r2 . By relating this to the known speedŽ .

Ž .of sound 238 mrs , we find that the unit length and
˚'unit time of our model are as0.471 1qgx A and

y13' Ž .arc 2 s1.4=10 1qgx s.
For the interaction potential we choose the form

w x Ž < X <. Ž . Žsuggested by Jones 21 as V xyx sV r s a
2 2 4 4. Ž 2 2 .qb A r qd A r exp yA r , where the parame-

ters a ,b and d are chosen so that the normalization
condition is satisfied and the dispersion relation has
its roton minimum close to that experimentally ob-

˚ y1served at the vapor pressure k s1.926 A ,rot

w x"v rk s8.62 K8 22 , which in our nondimen-rot B 'sional units is at k s0.9077 1qgx , v srot rot
Ž .0.158 1qgx , the Landau velocity being Õ sL

0.27c. We choose the remaining parameters to be
As0.9, xs0.2 and gs1. We focus on this model,
but note that the alternative choice, gs2.8, makes
the velocity, c, of long wavelength sound waves
proportional to r 2.8, in agreement with the experi-
mentally determined Gruneisen constant U s¨ G
Ž .rE crErc f2.8.T

Fig. 1 compares the experimentally determined
dispersion curve with that employed by our model.
The insets give the density in the core of the straight
line vortex and in the healing layer at a solid bound-
ary, both for our gs1 model and for the GP model.
The energy per unit length of the line vortex is

Ž .w Ž . xEEs kr r4p ln L ra qL , where L is a cut-off` c 0 c

distance and L is the vortex core parameter. The0

GP model gives L f0.38; our model significantly0

reduces this to L fy0.09. The negative vortex0

core energy comes from a marked depletion of the
vortex core in the nonlocal model. The core of the
vortex in our NNLSE model is similar to the one

w xdeduced from Monte Carlo simulations 23 .
Ž .We numerically integrated 2 for the axisymmet-

ric flow around the positive ion of dimensionless
radius bs10 moving uniformly; its dimensionless
velocity is UsU l , where 1 is the unit vector inz z

the z-direction. The ion is modeled as the infinite
potential barrier so that cs0 on rsb. To keep the
ion in the center of the computational box, we

Ž .transform z to zyUt in 2 . Our numerical calcula-
Ž w x.tions for the details of the numerics see Ref. 12

indicate that, provided U does not exceed the dimen-
sionless Landau critical velocity U , the ion experi-L

ences no drag and the flow is steady in the frame of
reference moving with the ion. Fig. 2 shows the
density variation around an ion moving with the
velocity Us0.78U . Notice that the velocity on theL

Žequator of the ion exceeds U for the incompress-L

ible flow the velocity on the equator would be 3Ur2
if the flow were incompressible but is even larger

.when compressibility is allowed for , but this leads
neither to vortex nucleation nor roton emission.

When U)U a modulated wave envelope isL

formed with wave number from the neighborhood of
XŽ . Ž . Ž .the Landau point, where v k sv k rk , v kL L L

Ž . Ž .sv k yUPk, and v k refers to stagnant helium.
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Ž < X <.Fig. 1. The dispersion relation pyEE. The solid line corresponds to the nonlocal potential V xyx with As0.9, xs0.2, and gs1. The
w x Ž . < < Ž .dots are based on experiment 15 . The insets show a the amplitude c rc of the straight line vortex for the NNLSE solid line and the`

Ž . Ž . < < Ž .GP model dashed line ; b the amplitude c rc of the healing layer at a solid boundary an infinite potential barrier placed at rs0 for`

Ž . Ž . Ž . Ž < X <. < X <the NNLSE solid line and the GP model dashed line ; c the potential V xyx plotted as a function of rs xyx , in the
nondimensional units defined in the main text.

These waves radiate energy to infinity, resulting in
drag on the ion. Fig. 3 shows the wave pattern for an

Ž .Fig. 2. The density plot in a cross-section of the solution of 2 for
the flow around a sphere of radius 10a moving to the right with
velocity 0.78Õ .L

ion moving from left to right with velocity 0.56c.
This does not closely resemble the wave pattern of

Ž .Fig. 3. The density plot in a cross-section of the solution of 2 for
the flow around a sphere of radius 10a moving to the right with
velocity 0.56c.
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w xPomeau and Rica 11 , who regarded theirs as ex-
hibiting Cherenkov radiation.

We have not so far been able to observe vortex
nucleation for U)U , but we obtained insight intoL

vortex nucleation with the help of an artificial exam-
w xple which tended to confirm the hypothesis 20 that

roton emission and vortex nucleation are different
processes.

Our artificial example is motivated by the fact
that the critical velocity Õ for vortex nucleation byc

Ž .an electron bubble is according to the GP model
reduced by its shape which, when moving, is oblate
w x 319 . Also, the presence of He would enhance this
effect through the concomitant reduction in surface

Ž .tension see above . We can make Õ even smallerc

by artificially increasing the flattening, to such an
extent that Õ becomes less than Õ and can there-c L

fore be studied with the NNLSE model without the
complications of roton emission. We therefore con-
sider an ion with an oblate spheroidal surface mov-

Ž .ing in the direction of its short symmetry axis with
a velocity less than Õ . The ratio of lengths of axesL

is 5. Nucleation of vortices occurs when ÕsÕ fc
Ž0.148"0.007c when the speed of sound is reached

.on the equator ; see Fig. 4. To compare this with the
corresponding result for the Bose condensate, we
performed similar calculations using the GP model.
The critical velocity of nucleation in this case was
found to be 0.205"0.007c. Such a significant drop
Ž .;30% in the critical velocities between local and
nonlocal model can be partially explained by the
greater compressibility of the fluid, according to the
nonlocal model.

This encourages us to make the following specu-
lative observation. The GP model predicts that the
critical velocity of nucleation for the positive ion of

˚ w xradius 10 A is 0.53c 3,4 . The drop of approxi-
mately 30% predicted by the nonlocal model reduces
this to 0.37c. The critical velocity of nucleation for
the negative ion is a further 20% smaller, or 0.29c,
which is within 15% of experimentally observed
critical velocity. By this we imply that the nucleation
of vortices occurs when the velocity somewhere on
the surface of the moving ion exceeds the speed of
sound.

In summary, we considered a nonlocal nonlinear
Ž .Schrodinger equation NNLSE as a model of super-¨

fluidity. The model has a finite range interaction

Ž .Fig. 4. The density plot in a cross-section of the solution of 2 for
Ž .the flow around an oblate spheroid see text moving to the right

Ž . Ž .with velocity 0.156c at ts100 left and ts300 right . The
white circles show the core of a vortex ring nucleated from the
spheroid and gradually falling astern of it.

potential that leads to a dispersion curve with a roton
minimum and can accommodate a more realistic
relationship between the speed of sound, the density
and the pressure. The parameters of the model can be
chosen to bring the healing length into agreement
with the vortex core parameter. According to our
NNLSE model, there is no drag on a positive ion
moving with Õ-Õ . As the velocity of the ionL

exceeds the Landau critical velocity Õ , it starts toL

experience drag and it creates modulated waves with
wave numbers corresponding to the roton minimum.
Our model failed to describe vortex nucleation in
such circumstances. Nevertheless it could, through
an artificial example, provide strong indications that
roton emission and vortex nucleation are different
processes, the former being connected to the Landau
critical velocity, and the latter to the speed of sound.
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