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Abstract. The Bose condensate model is used to analyse the superfluid flow around an ion
(modelled as a solid sphere) and to elucidate the mechanism of vortex ring emission from the
sphere that occurs if its velocity exceeds a critical value. An asymptotic expansion is developed
for the steady subcritical flow, using the ratio of the healing length to the radius of the sphere as a
small parameter. This expansion allows for the compressibility of the condensate, and converges
well enough for the critical ion velocity to be calculated accurately. The flow for supercritical ion
velocities is computed numerically. Particular attention is paid to the question of why the vortex
rings are emitted at a preferred location on the sphere’s surface.

1. Introduction

This is the seventh in a series of papers devoted to the Bose condensate as applied to superfluid
helium and especially superfluid vortices (see Roberts and Grant 1971, Grant 1973, Grant and
Roberts 1974, Jones and Roberts 1982, Jones et al 1986, Berloff and Roberts 1999).

Vortex nucleation by an impurity such as the positive ion 4He+
2 moving in superfluid helium

at low temperature has been studied experimentally and theoretically (see, e.g., Donnelly
1991), and has uncovered some interesting physics. The flow around an ion that is moving
with a sufficiently small velocity, v, is well represented by one of the classical solutions of
fluid mechanics, namely the flow of an inviscid incompressible fluid around a sphere. In this
solution, the maximum flow velocity, u, relative to the sphere is 3v/2, and occurs on the equator
of the sphere (defined with respect to the direction of motion of the sphere as the polar axis).
Above some critical velocity, vc, the ideal superflow around the ion breaks down, leading to
the creation of a vortex ring (Rayfield and Reif 1964). The critical velocity can be roughly
estimated by arguing that the vortex will be nucleated from the point where the relative velocity
of the ion and superfluid is greatest (the equator), and will occur when that velocity reaches
the Landau critical velocity, vL. If, using the incompressible model, we estimate the relative
velocity as 3v/2, we find that vc ≈ 2vL/3, in rough agreement with experiment (see table 8.2
of Donnelly (1991)). Because 2vL/3 is only about 15% of the speed of sound, c, it appears
that the incompressible model should perform reasonably well, and that an allowance for the
compressibility of the superfluid is not a high priority. This was the basis of the original paper
by Strayer et al (1971) and the later developments of Muirhead et al (1984), who created a
theory of vortex nucleation that allowed them to calculate vc, the form of the potential barrier
that must be overcome for the creation of vortices both as encircling rings and vortex loops,
and the nucleation rate. These calculations were carried out for a smooth rigid sphere moving
through an ideal incompressible fluid.
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The Bose condensate offers a different insight into the nucleation process. The condensate
is a weakly interacting Bose gas that, in the Hartree approximation, is governed by an equation
for the single-particle wavefunction ψ(x, t) that was first derived by Ginzburg and Pitaevskii
(1958) and Gross (1963); see (1) below. Using this equation, Grant and Roberts (1974) studied
the negative ion (the electron bubble) and a positive ion, modelling the latter as a spherical,
infinite potential barrier, on the surface of which ψ vanishes. Their solutions were derived
by expansion in v/c, so that their leading-order flow is incompressible. They did not observe
vortex nucleation.

As a model of superfluidity, the condensate suffers from the defect that its dispersion
relation does not possess a roton minimum, so that vL = c. To observe vortex nucleation
therefore, Grant and Roberts (1974) would have had to develop expansions appropriate for a
compressible flow in which u = O(c), which they did not do (although we do so in section 3
below). It is possible to make the condensate model more realistic by replacing the δ-function
interaction potential between atoms, on which it is based, by a non-local potential. This restores
the roton minimum and a realistic vL but only at the expense of considerable complexity (see
Berloff 1999). As for the most recent research on this topic (e.g. Frisch et al 1992, Winiecki
et al 1999), we shall employ the condensate model in its original form.

An important scale defined by the condensate model is the ‘healing length’, a, defined in
(10) below. This determines the radius of a vortex core and the thickness of the ‘healing layer’
that forms at a potential barrier (such as the ion surface in our model). The radius, b, of the
ion is large compared with a, and asymptotic solutions for ε ≡ a/b → 0 become relevant;
see section 3. Such a solution has two parts, an interior or ‘boundary-layer’ structure that
matches smoothly to an exterior or ‘mainstream’ flow. In the mainstream, quantum effects are
negligible at leading order, and the condensate becomes effectively a compressible inviscid
fluid obeying the simple equation of state, p ∝ ρ2, where p is pressure and ρ is density (see
(8) below).

There is some similarity between the flow of the condensate past the ion and the motion of
a viscous fluid past a sphere at large Reynolds numbers, the healing layer being the counterpart
of the viscous boundary layer. There are, however, important differences. At subcritical
velocities, the flow of the condensate is symmetric fore and aft of the direction of motion, and
the sphere experiences no drag. In contrast, the viscous boundary layer separates from the
sphere, so evading D’Alembert’s paradox, destroying the fore and aft symmetry, and therefore
bringing about a drag on the sphere. Moreover, when v > vc, shocks form at or near the
sphere, but shocks are disallowed in the condensate since they represent a violation of the
Landau criterion and a breakdown of superfluidity. When v > vc, the condensate evades
shocks through a different mode of boundary-layer separation. The sphere sheds circular
vortex rings that move more slowly than the sphere and form a vortex street that trails behind
it, maintained by vortices that the sphere sheds. As the velocity of the ion increases such a
shedding becomes more and more irregular. Each ring is born at one particular latitude within
the healing layer on the sphere. As it breaks away into the mainstream, it at first contributes a
flow that depresses the mainstream velocity on the sphere below the critical value. As it moves
further downstream, however, its influence on the surface flow diminishes. The surface flow
increases until it again reaches criticality, when a new ring is nucleated and the whole sequence
is repeated. The vortex street trailing behind the ion creates drag on the ion that decreases as
the nearest vortex moves downstream, but which is refreshed when a new vortex is born.

Frisch et al (1992) and Winiecki et al (1999) have solved the condensate equation for flow
past a circular cylinder, and have confirmed the main features of the scenario just described.
In this paper, we present analogous solutions for a more realistic geometry. By employing
a convergent series expansion suitable for u = O(c), we determine vc for ε = 0 more
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accurately than before. We confirm this value through numerical integrations at finite ε, while
simultaneously obtaining indications of how vc depends on ε. (We should observe here that
the criterion v = c for criticality applies only for ε = 0. The velocity in a healing layer
can exceed c without implying nucleation. For example, u in a vortex core actually becomes
infinite, according to the condensate model!) We also show how and why the vortex ring
detaches, not from the equator of the ion, but from a latitude downstream of it. We find how
this latitude depends on v.

Since Bose–Einstein condensation of dilute gases in traps was observed experimentally
in 1995 (for a review of the experimental and theoretical results, see Dalfovo et al 1999)
attempts were made to produce and detect quantized vortices in such gases. The existence
of quantized vortices would establish an important connection between Bose condensation
and superfluidity. As the Bose–Einstein condensates in the experiments are formed as small
spheres of atoms, held in place by magnetic traps the motion of these spheres should cause the
formation of quantized vortices. Therefore, our theory could be tested experimentally and is
potentially useful in interpreting experimental results.

2. The condensate equation

According to the Bose condensate model, ψ(x, t) in an assembly of N bosons of mass M , is
governed by the nonlinear Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2M
∇2ψ − ψ

(
E + 1

2Mv2 − V0|ψ |2) (1)

where V0 is the strength of the δ-function interaction potential between the bosons and E is
the single-particle energy in the laboratory frame, where the ion moves with velocity v in the
positive z-direction through a fluid at rest at infinity. Equation (1) is written for the ion reference
frame, in which the fluid at infinity is moving with velocity v in the negative z-direction and
the ion is at rest. Thus we require that

ψ → ψ∞ exp

[
− iMvz

h̄

]
for x → ∞ (2)

where ψ∞ = (E/V0)
1/2.

We ignore the effect of the electric charge on the ion, and model it as a sphere of radius b
that is an infinite potential barrier to the condensate, so that

ψ = 0 at r = b. (3)

Here we have introduced a spherical coordinate system (r , θ , φ), with its origin at the centre O
of the ion, and with θ = 0 as the z-axis. The wavefunction is required to obey the normalization
condition on the total number of bosons N = ∫ |ψ |2 dV . The mass density and flux are

ρ = Mψψ∗ j = h̄

2i
(ψ∗∇ψ − ψ∇ψ∗). (4)

Equation (1) can be written in hydrodynamic form through the Madelung transformation,

ψ = ReiS (5)

so that

ρ = MR2 j = ρu = ρ∇φ φ = (h̄/M)S. (6)
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The real and imaginary parts of (1) then yield a continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (7)

and an integrated form of the momentum equation

∂φ

∂t
+

1

2
u2 − 1

2
v2 + c2

(
ρ

ρ∞
− 1

)
− h̄2

2M2

∇2ρ1/2

ρ1/2
= 0 (8)

the last term of which is often called the ‘quantum pressure’, although dimensionally it is a
chemical potential. Also appearing in (8) are the density at infinity ρ∞ and the speed of sound
c:

ρ∞ = Mψ2
∞ c2 = E/M. (9)

We also define the healing length, a, as

a = h̄

(2ME)1/2
. (10)

The boundary conditions (2) and (3) give

ρ → ρ∞ u → −v1z for x → ∞ (11)

ρ = 0 jr = 0 on r = b (12)

where 1q denotes the unit vector in the direction of increasing coordinate q. There is no
requirement that ur = 0 on r = b; indeed, the problem would be overdetermined if we applied
that condition.

3. Asymptotic expansion for velocities up to criticality

In this section, we develop the asymptotic expansion of solutions for small ε ≡ a/b. We
suppose that the speed of the ion is comparable with the speed of sound c, so that the effects
of compressibility cannot be ignored. The appropriate non-dimensionalization of (1) is

x → bx t → (
abM/h̄

)
t v → (

h̄/aM
)
U ψ → ψ∞ψ. (13)

Subcritical flow is steady in the ion reference frame, and the Madelung equations are therefore

ε2∇2R − R(∇S)2 = (R2 − 1 − U 2)R (14)

R∇2S + 2∇R · ∇S = 0. (15)

The quantum pressure term, ε2∇2R is negligibly small in the far field but is of major
importance in the boundary layer, for which we set r = 1 + εξ , and expand R and S as

R(ξ, θ) = R̂0(ξ, θ) + εR̂1(ξ, θ) + ε2R̂2(ξ, θ) + · · · (16)

S(ξ, θ) = Ŝ0(ξ, θ) + εŜ1(ξ, θ) + ε2Ŝ2(ξ, θ) + · · · . (17)

Equations (14) and (15) give ∂Ŝ0/∂ξ = ∂Ŝ1/∂ξ = 0, so that

Ŝ0 = Ŝ0(θ) Ŝ1 = Ŝ1(θ) (18)

where Ŝ0(θ) and Ŝ1(θ) are to be determined by matching to uθ on r = 1 in the mainstream.
After we substitute the Ŝ0 into (14), it becomes to leading order

∂2R̂0

∂ξ 2
− R̂3

0 + R̂0
[
1 + U 2 − (Ŝ ′

0(θ))
2
] = 0 (19)
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so that

R̂0 = g(θ) tanh(g(θ)ξ/
√

2) (20)

where

g(θ) =
√[

1 + U 2 − (Ŝ ′
0(θ))

2
]
. (21)

The equation governing Ŝ2 is

∂

∂ξ

(
R̂2

0
∂Ŝ2

∂ξ

)
= − 1

sin θ

∂

∂θ

[
R̂2

0 sin θ
dŜ0

dθ

]
. (22)

This gives Ŝ2 as

Ŝ2 = − 1

sin θ

∂

∂θ

(
h(ξ, θ) sin θ

dŜ0

dθ

)
+ ζ2(θ) (23)

where

h(ξ, θ) =
∫ ξ

0

dξ ′

R̂2
0(ξ

′, θ)

∫ ξ ′

0
R̂2

0(ξ
′′, θ) dξ ′′ = 1

2
ξ 2 −

√
2ξ

g(θ)
coth

(
g(θ)ξ√

2

)
(24)

and ζ2(θ) is a function of integration that can be determined by matching to the mainstream.
To leading order, the mainstream flow is the classical inviscid compressible flow past a

sphere, and is governed by

R2 = 1 + U 2 − (∇S)2 (25)

R2∇2S + ∇R2 · ∇S = 0. (26)

We substitute the first equation of this system into the second one to obtain an equation for S
alone. We then expand S as in (17) and then expand S0, S1, . . . in powers of U , for example,

S0(r, θ) = US11(r)P1(cos θ) + U 3(S31(r)P1(cos θ) + S33(r)P3(cos θ)) + · · · . (27)

For U close to the speed of sound, c = 1/
√

2, we do not expect (27) to converge fast enough
to be useful, but the critical U which we are trying to determine is approximately 2c/3 and for
such values of U the expansion (27) converges fast enough. We expand S to the U 11 term in
order to obtain an estimate for the critical velocity of nucleation, Uc, accurate to 1%. The first
few equations for the mainstream are

d2S11

dr2
+

2

r

dS11

dr
− 2S11

r2
= 0 (28)

d2S31

dr2
+

2

r

dS31

dr
− 2S31

r2
= 9

5

(
dS11

dr

)2 d2S11

dr2
+

2S2
11

r2

d2S11

dr2

+
6

5r

(
dS11

dr

)3

+
2S11

5r2

(
dS11

dr

)2

− 8S3
11

5r4
(29)

d2S33

dr2
+

2

r

dS33

dr
− 12S33

r2
= 6

5

(
dS11

dr

)2 d2S11

dr2
− 2S2

1

5r2

d2S11

dr2

+
4

5r

(
dS11

dr

)3

− 12S1

5r2

(
dS11

dr

)2

+
8S3

11

5r4
. (30)
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Solving these, we obtain

S11 = −r − 1

2r2
S33 = − 3

88r8
+

3

5r5
+

3

5r2
+
C1

r4
S31 = − 1

12r8
+

2

5r5
+
C2

r2
.

(31)

To carry out the asymptotic matching, we substitute r = 1 + εξ in the expressions for
S11, S31, S33, . . . , expand the solution in powers of ε, and match it to the boundary-layer
solution. The first few terms of the resulting mainstream solution are

S0(r, θ) = −3U cos θ

2r2
+ U 3

([
− 1

12r8
+

2

5r5
− 2

3r2

]
cos θ

+

[
− 3

88r8
+

3

5r5
− 54

55r4
+

3

5r2

]
P3(cos θ)

)
+U 5

([
− 1901

18 480r14
+

1739

2310r11
− 5589

21 175r10

− 1766

1155r8
+

972

1925r7
+

776

525r5
− 1470 911

1016 400r2

]
cos θ

+

[
− 179

2244r14
+

7256

8085r11
− 2274

3575r10
− 523

220r8

+
624

275r7
+

152

75r5
− 72 781 521

23 823 800r4
+

106

75r2

]
P3(cos θ)

+

[
− 1945

140 448r14
+

2291

9240r11
− 87

385r10
− 295

182r8

+
240

77r7
− 51 393

434 720r6
− 68

21r5
+

24

11r4
− 10

21r2

]
P5(cos θ)

)
+ · · · . (32)

From this we can determine the first function of (18):

S0(θ) = − 3
2U cos θ − 7

20U
3 cos θ + 81

440U
3P3(cos θ)

+U 5
[− 14 693

24 200 cos θ + 1560 249
3403 400P3(cos θ) − 31 857

217 360P5(cos θ)
]

+ · · · . (33)

The maximum flow velocity is attained on the equator and is, to leading order in ε,

u0θ (1, 1
2π) = 3U/2 + 0.626 136U 3 + 1.569 61U 5

+5.181 61U 7 + 19.9015U 9 + 84.2325U 11 + · · · (34)

where here we have included terms up to order U 11. The flow (34) reaches the speed of sound
if the far-field velocity U is approximately 0.415. An idea of the accuracy of this value of
Uc is obtained by comparing it with the final term of (34), which for Uc = 0.415 is 0.005.
The result also agrees very well with the numerical calculations of section 5 for small ε. By
comparing 0.41 with 2c/3 ≈ 0.471, we gain an impression of the importance of compressibility
in determining Uc in the condensate model.

The O(ε) contribution to the mainstream solution satisfies the following equations:

R0R1 = −∇S0 · ∇S1 (35)

2R0R1∇2S0 + R2
0∇2S1 + 2∇(

R0R1
) · ∇S0 + ∇R2

0 · ∇S1 = 0. (36)

We substitute the first equation of this system into the second one to obtain the equation for
S1 and expand S1 as in (27) to the U 5 term. The first few terms of the resulting mainstream
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solution are

S1(r, θ) = U
D1

r2
cos θ + U 3

([
D1

2r8
− 8D1

5r5
+
D2

r2

]
cos θ

+

[
9D1

44r8
− 12D1

5r5
− 6D1

5r2
+
D3

r4

]
P3(cos θ)

)
+ · · · . (37)

The unknown constants are found by matching the boundary-layer solution (23) to (37). We
substitute r = 1 + εξ in (37), expand the solution in powers of ε, and note that the last term in
(24) is O(ξ) for ξ → ∞. We expand the corresponding term of Ŝ2 for large ξ in powers of U
and in the Legendre polynomials, and set the coefficients of the resulting expansion equal to the
corresponding coefficients at the order ε in the expansion of (37). This defines the constants
in (37) as

D1 = − 3√
2

D2 = − 79

10
√

2
D3 = − 783

110
√

2
. (38)

On the equator of the sphere the ε term of the expansion of uθ is

u1θ (1, 1
2π) = 2.121 32U + 3.165 91U 3 + 11.582 55U 5 + · · · . (39)

The interesting question is whether the S1 term increases or decreases Uc. This raises the
philosophical point touched on in section 1: is the Landau criterion precise when we go beyond
the leading term in the u expansion of the mainstream by including the ε term associated with
the quantum pressure? We are encouraged to believe it is; because of the upward curvature of
the dispersion curve associated with the condensate model, the speed of long-wavelength sound
plausibly sets the stability limit for all disturbances. We therefore now set uθ(1, 1

2π) = c,
where uθ includes (34) and (39). For ε = 0.1 the resulting Uc is approximately 0.36, which is
less than the value (Uc ≈ 0.39) suggested by the numerical calculations of section 5, whereas
u0θ alone gave a value greater than 0.39, i.e. the zeroth and first approximations bracket the
correct answer for Uc at finite ε.

4. Asymptotic expansion for the cylinder

In considering the shedding of line vortices from a moving cylinder, Frisch et al (1992) gave
an argument for the critical velocity that we shall now test through an expansion of the same
type as that of the preceding section. Instead of (27), we now use a Fourier expansion in θ ,
which is one of the cylindrical coordinates (r, θ, z), with θ = 0 parallel to U :

S0 = US11(r) cos θ + U 3(S31(r) cos θ + S33(r) cos 3θ) + · · · . (40)

The mainstream solution is found to be

S0(r, θ) = −U

(
r +

1

r

)
cos θ + U 3

[(
− 1

6r2
+

1

r3
− 13

6r

)
cos θ +

(
− 1

r3
+

1

2r

)
cos 3θ

]
+U 5

[(
− 7

30r9
+

3

2r7
− 43

12r5
+

35

6r3
− 479

60r

)
cos θ

+

(
− 1

36r9
+

4

15r7
− 3

2r5
+

43

30r3
+

19

12r

)
cos 3θ

+

(
7

20r5
− 1

2r3
− 1

4r

)
cos 5θ

]
+ · · · . (41)
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The boundary-layer function corresponding to (18) is

Ŝ0(θ) = −2U cos θ + U 3
(− 4

3 cos θ + 1
3 cos 3θ

)
+ U 5

(− 67
15 cos θ + 79

45 cos 3θ − 2
5 cos 5θ

)
+U 7

[− 251
12 cos θ + 203 933

18 900 cos 3θ − 80 113
18 900 cos 5θ + 11

14 cos 7θ
]

+ O(U 9). (42)

The maximum flow velocity, which occurs on the cylinder equator, is

u0θ (1, 1
2π) = 2U + 7U 3/3 + 176U 5/15 + 79.9809U 7 + 552.181U 9 + 4471.18U 11 + · · · .

(43)

This reaches the velocity of sound for U = Uc ≈ 0.30. (To illustrate the convergence of (43),
we note that the U 11 term is only 0.0066 for U = 0.30.)

According to Frisch et al (1992), criticality is reached when, in our non-dimensional units,
the velocity exceedsρ/2 anywhere in the mainstream. In applying their criterion, they assumed
that the maximum velocity can be well approximated by its value, 2U , in an incompressible
flow, and it followed that at criticality Uc ≈ 0.302, which is in agreement with their numerical
integrations. A similar critical velocity was obtained by Winiecki et al (1999). Although
this result is close to the value of the critical velocity we derived above, equation (43) shows
that the assumption of incompressibility does not provide a good estimate of the maximum
velocity. In fact, when (43) is used, the argument of Frisch et al (1992) gives a critical velocity
of Uc ≈ 0.26, which is very different from the results of the numerical integration.

5. Numerical calculations

In this section we present some results from numerical calculations for the axisymmetric
flow around the sphere and the nucleation of vortex rings from it. We used a different non-
dimensionalization of (1):

x → ax t → (a2M/h̄)t v → (h̄/aM)U ψ → (
ψ∞e−iUz

)
ψ (44)

the last of which removes the uniform flow −v1z everywhere, so that

ψ → 1 as r → ∞. (45)

Equation (1) becomes

−2i
∂ψ

∂t
+ 2iU

∂ψ

∂z
= ∇2ψ + ψ(1 − |ψ |2) (46)

the solution to which must satisfy (45) and

ψ = 0 on r = b/a. (47)

We employed a finite-difference scheme to solve (46) in the axisymmetric case in which
ψ depends only on r and θ , and in which therefore

−2i
∂ψ

∂t
+ 2iU cos θψr − 2iU

sin θ

r
ψθ = ∂2ψ

∂r2
+

2

r

∂ψ

∂r
+

cot θ

r2

∂ψ

∂θ
+

1

r2

∂2ψ

∂θ2
+ ψ(1 − |ψ |2).

(48)

The integration box was chosen as [b/a, r1] × [0, π ]. One of the main considerations in
choosing the integration scheme was that outgoing sound waves should escape from the
integration box. We used the Raymond–Kuo (1984) radiation boundary condition on r = r1.
In time stepping the leap-frog scheme was implemented with a backward Euler step every 100
steps to prevent the even–odd instability. In space we used a fourth-order finite-difference
scheme together with a second-order scheme close to the boundary r = r1. The code was
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tested against the asymptotic solutions of section 3. The initial condition for velocities slightly
larger than Uc was chosen as ψ = tanh(ξ/

√
2). The numerical scheme does not conserve

energy but the dissipation of energy is very small. When reflective boundary conditions were
used instead of radiative ones, the energy loss due to the dissipative character of the scheme
did not exceed 10−4% per 1000 time steps.

Our numerical work strongly suggests that the value of Uc (≈ 0.415) obtained in section 3
for ε = 0 is correct. We also found that Uc decreases with decreasing ε, in agreement with
the analysis of section 3.

Figure 1. The density plot in a cross section of the solution of (48) for the flow around a sphere
of radius 10 moving to the right with velocity 0.42 at (a) t = 68, (b) t = 124, (c) t = 212 and (d)
t = 268. Vortex rings appear as white circles close to the sphere and gradually fall astern of the
ion.

Figure 1 shows the formation of the ring from a sphere of radius 10 moving with
supercritical velocity U = 0.42. After the ion emits a vortex ring, the flow associated with
the ring at first makes the total mainstream velocity subcritical everywhere. The self-induced
velocity of the ring is less than the velocity of the ion, so that the ring gradually falls astern of
the ion and the total fluid velocity builds up until it again reaches criticality on the surface of
the ion. The vortex ring emission follows the same scenario as that observed by Frisch et al
(1992) for vortex pair nucleation from a cylinder (see section 1). What came as a surprise is
that, although the maximum velocity of the compressible flow is always attained on the equator
of the sphere, the vortex ring nucleates from the sphere downstream of the equator, at θc > 1

2π .
This is clearly seen in figure 1(a), which shows the birth of the first vortex after the motion of
the ion has been initiated. The first nucleation seems to be the result of an instability of the
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critical flow (obtained from section 3, as described above). The second nucleation is influenced
by the presence of the first ring (see figure 1(b)). It therefore takes place at a different location
on the ion surface, as is readily seen in figures 1(c) and (d).

It is difficult to extend the theory of section 3 to cover the time-dependent supercritical
state that arises when vortices are nucleated. It is, however, comparatively easy to generalize
(18)–(21) for the healing layer. We find that

Ŝ0 = Ŝ0(θ, t) (49)

where

∂2R̂0

∂ξ 2
− R̂3

0 + R̂0

[
1 + U 2 −

(
∂Ŝ0

∂θ

)2

− 2
∂Ŝ0

∂t

]
= 0. (50)

The relevant solution is

R̂0 = g(θ, t) tanh(g(θ, t)ξ/
√

2) (51)

         

Figure 2. Time evolution of g(θ)2 defined in (52) for the flow around a sphere of radius 10 before
the nucleation of the first (a) and the second (b) vortex rings; U = 0.42, θ in radians.



Motions in a Bose condensate: VII 4035

Figure 3. The values of θ at which the first two vortex rings nucleate from the surface of the ion,
as a function of the velocity, U , of the ion, when ε = 0.1. The first angle of nucleation, θc1 (full
circles), increases with U . The flow velocity on the surface of the ion is reduced by the first vortex
ring, and the next nucleation therefore takes place at a smaller value, θc2 (circles), of θ . The θc2

curve has two continuous branches (see text).

Figure 4. The time interval, T , between the nucleations of the first and second rings as a function
of U for ε = 0.1.

where now

g(θ, t) =
√[

1 + U 2 −
(
∂Ŝ0

∂θ

)2

− 2
∂Ŝ0

∂t

]
. (52)

The ∂Ŝ0/∂t term in (52) is highly significant: as g(θ, t) approaches 0, the thickness of the
healing layer tends to ∞ and the assumptions we made in our asymptotic expansions break
down. Our numerical integrations indicate that the nucleation of a vortex ring occurs near
latitude θc after time tc, when

g(θc, tc) = 0
∂g

∂θ
(θc, tc) = 0. (53)
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Figure 5. The density plot in a cross section of the solution of (48) for the flow around a sphere
of radius 10 moving to the right with velocity 0.47. The dynamics of the turbulent wake is shown
through time snapshots. Initially a vortex ring is born at θc = 124◦; shortly afterwards a second
ring of larger radius is nucleated at θc = 107.5◦. The close proximity of these two vortex rings
allows them to interact with each other and with the sphere. As these two vortices drift downstream
a third vortex ring is born at t = 176. As a result of interactions the radius of one of the rings
decreases, so that it overtakes the sphere, striking it at t = 248.

Thus, the nucleation of a vortex ring represents a breakdown of the healing layer. This may be
traced to the growth in importance of the first term in (8) at θc and the concomitant decrease in
significance of the final, quantum pressure. This decrease implies that, at nucleation, ∂R/∂ξ at
θc is no larger than ∇R in the mainstream, i.e. the mainstream and healing layer have become
temporarily connected. This provides the channel through which the vortex escapes from the
ion. It may be noted that the breakdown (g = 0) of the healing layer on the supercritical ion is
not directly linked to the criterion (|v| = c) used to determine the critical state for the steady
subcritical solutions. This explains why θc >

1
2π , even though the maximum uθ on the sphere

still occurs on the equatorial plane (θ = 1
2π ).

As it is impractical to extend the theory of section 3 for the mainstream to the time-
dependent case, and then to determine Ŝ0 and g by matching to the healing layer, we must
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determine Ŝ0 and g from the numerical results for small ε. Figure 2 shows how g evolves
when ε = 0.1 and when the velocity of the ion is 0.42. The first vortex begins to form when g

becomes zero at θc ≈ 120◦ at tc ≈ 35 (see figure 2(a)), where a second minimum in g can also
be seen on the t = 34.5 curve near θc ≈ 110◦. This second minimum develops, becomes zero,
and then the next vortex is nucleated (see figure 2(b)). The breakdown of the healing layer is
very evident in figure 2, and is responsible for the two blips seen on the sphere in figure 1(a)
and, at different θ -locations, in figure 1(c). It is also clear that, as the healing layer thickens
at θc, it provides the core of the nascent vortex. The angle θc at which the vortex rings are
nucleated is shown in figure 3 as a function of U ; θc1 refers to the first vortex ring and θc2 to
the second one. For U < 0.435, the frequency of nucleation is so low that the second ring
is formed at a time when the first ring has moved so far downstream that it has only a small
effect on the nucleation process; θc2 is therefore only slightly less than θc1 . As U increases, the
frequency of nucleation increases, and the first ring is near enough to the ion to be influential
when the second ring forms. In fact, as U approaches 0.435 the two minima of g(θ) become
zero almost simultaneously, so that the second ring can be formed almost equally easily at
two different locations on the sphere. When U > 0.435, the second minimum of g(θ) takes
over from the first one, and the difference between θc1 and θc2 becomes substantial. Figure 4
supports this argument by showing how the time that elapses between the emission of the first
and the second rings initially decreases rapidly with increasing U .

As the velocity of the ion increases the average frequency of nucleation of vortex rings
also increases and the closer proximity of the vortex rings to each other and to the ion enhances
their interaction with one another and with the ion. The result can be remarkable (figure 5): a
ring can lose momentum and gain speed, causing it to overtake the ion, strike it, enlarge itself
and again fall behind the ion.

6. Conclusions

We have used the Bose condensate model of superfluid helium to clarify the process through
which a moving ion generates vortices if its velocity, v, exceeds a certain critical value, vc, of
the same order as the Landau critical velocity (which for the condensate, which has no roton
minimum on its dispersion curve, is the speed of sound, c). To some extent, vc depends on ε,
the ratio of the healing length to the sphere radius. We have determined vc analytically to first
order in ε by equating to c the flow velocity at the equator of the ion. This does not mean,
however, that the vortex ring is emitted from the equator when v > vc, as was supposed by
Strayer et al (1971), Muirhead et al (1984) and Frisch et al (1992). This was demonstrated
through direct numerical simulations for small but finite ε. We have shown, through asymptotic
analysis, that the vortex rings emerge from singularities that develop irregularly in the healing
layer at some particular latitudes θc. We have found that θc increases with v, i.e. the point of
detachment moves towards the rear stagnation point (θ = π ).

The development of the singularity is intimately linked to the time dependence of the
mainstream supercritical flow, which fluctuates as the vortices move downstream to join the
train of rings following the ion. We have not analysed what happens the first time that a vortex
ring is created, but we surmise that in this case the singularity develops as the result of the
instability of the mainstream flow. Thereafter, time dependence is ensured through the ring
(and later rings) trailing behind the ion.

The breakdown of the healing layer is the analogue for the superfluid of boundary-layer
separation in high-Reynolds-number viscous flows, and this explains the choice of subtitle for
our paper.
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