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Quasiparticles in semiconductors—such as microcavity polaritons—can form condensates in which the
steady-state density profile is set by the balance of pumping and decay. By taking account of the polarization
degree of freedom for a polariton condensate, and considering the effects of an applied magnetic field, we
theoretically discuss the interplay between polarization dynamics, and the spatial structure of the pumped
decaying condensate. If spatial structure is neglected, this dynamics has attractors that are linearly polarized
condensates �fixed points�, and desynchronized solutions �limit cycles�, with a range of bistability. Considering
spatial fluctuations about the fixed point, the collective spin modes can either be diffusive, linearly dispersing,
or gapped. Including spatial structure, interactions between the spin components can influence the dynamics of
vortices; produce stable complexes of vortices and rarefaction pulses with both co- and counter-rotating
polarizations; and increase the range of possible limit cycles for the polarization dynamics, with different
attractors displaying different spatial structures.
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I. INTRODUCTION

The experimental realization of quantum condensation of
quasiparticles with finite lifetimes has opened the possibility
to study situations where the steady states of the condensate
are not just controlled by energetics, but involve also consid-
eration of pumping and decay, leading to steady states with
quasiparticle currents. The exploration of the possible behav-
ior exhibited in these systems is driven particularly by recent
experimental progress in microcavity polaritons1–6 and
magnons7–10 �as well as more exotic realizations in
helium11�. Microcavity polaritons are the quasiparticles that
result from strong coupling between photons confined in pla-
nar semiconductor microcavities and excitons confined in
quantum wells. The photons are confined by Bragg reflectors
to a two-dimensional cavity, and for small in-plane momen-
tum have an effectively quadratic dispersion, with a mass of
the order of 10−5–10−4 of the free electron mass. From
strong coupling between these photon states and exciton
states in quantum wells, new normal modes arise: polaritons.
These are hybrid light-matter particles, which have both a
light effective mass, as well as sufficient interactions to allow
a quasiequilibrium particle distribution to be established.
However, the distribution is only quasiequilibrium, since the
photon component is not perfectly confined, so polaritons
have a finite lifetime, and to maintain a steady-state popula-
tion, continuous pumping is required. Even when the energy
distribution of polaritons looks reasonably thermal, this does
not mean effects of finite lifetime may be neglected, as one
may have thermalized energy distributions on top of steady
state flows driven by the pumping and decay.

Experimentally, it is observed that above a threshold
pumping strength, an accumulation of low energy polaritons
is accompanied by: a significant increase in temporal coher-
ence, spatial coherence that extends over the entire cloud of
polaritons,1,2 the appearance of quantized vortices,3 sugges-
tions of changes to the excitation spectrum,4 and a robustness

of polariton propagation to disorder.5,6 Of these, the observa-
tion of spontaneous vortices3 in polariton condensates pro-
vides a strong hint that the steady states of the system are
affected by the flow of particles. For a more general intro-
duction to microcavity polaritons, their condensation, and the
physical systems studied there exist several reviews or
books, e.g., Refs. 12–14.

The aim of this paper is to investigate the rich varieties of
behavior that come from combining spatial profiles driven by
particle flow with the dynamics due to the spin degree of
freedom that microcavity polaritons also possess. The effects
of this spin degree of freedom have been previously consid-
ered in equilibrium: due to the weak attractive interaction
between opposite spin polarizations, a condensate is ex-
pected to be linearly polarized,15,16 i.e., to have an equal
density of left- and right-circularly polarized components.
Applying a magnetic field can then lead to a phase transition,
as the density of one circular polarization increases, and the
other decreases, leading through an elliptically polarized
phase to a single circularly polarized condensate.17,18 In the
absence of further symmetry breaking, the linear or ellipti-
cally polarized phase has two gapless modes, corresponding
to two broken symmetries: the overall polariton phase, and
the direction of linear polarization �i.e., orientation of ellip-
tical polarization�. The transition to a circularly polarized
state is thus a phase transition, as such a phase has only a
single broken symmetry, and a single gapless mode.

Assuming no other symmetry-breaking terms, the linearly
polarized condensate can have independent vortices of the
left- and right-circularly polarized components;19 such
polarization-dependent phase winding has recently been
observed.20 These independent vortices of left- and right-
circularly polarized lights are called “half-vortices” by
Rubo.19 This name refers to the appearance of this object
when the spinor polariton field is reparametrized in terms of
a common phase of both polarizations, and the phase differ-
ence between the polarizations. In such a basis, a full 2�
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vortex of, e.g., left polarized light corresponds to a phase
winding of �� ,�� for the common phase and phase differ-
ence, i.e., a half rotation in each of these phases. These two
classes of left- and right-circular vortices are not completely
independent. Even in the absence of any further symmetry
breaking, there is a short-range density-density interaction
between vortices of opposite polarizations,18,19 however such
a term does not depend on the circulations of the two vorti-
ces. If one also takes account of TE-TM splitting of the
electromagnetic modes,21 this leads to a term that splits lin-
ear polarization states according to whether the polarization
is parallel or perpendicular to the polariton momentum; as
such, this provides a circulation dependent interaction be-
tween vortices of the two polarizations.22 In addition, real
materials are expected to possess a small splitting between
linear polarization states due to asymmetry of the quantum-
well interfaces in noncentrosymmetric crystals;23 such a
splitting can also be controlled by applying electrostatic
fields24 or stress.25 Such terms will again induce interactions
between vortices of the left- and right-circular polarization,
and if strong enough, will lead to a pinning of the polariza-
tion of a polariton condensate, as has been observed in
experiment.1,26–28

Considering the splitting of linear polarizations as a
phase-locking term between the two circular polarization
components, and combining this with a magnetic field that
favors one or other circular polarization, one has a Josephson
problem,29 where the energy favoring linear polarization is a
Josephson coupling, and the magnetic field leads to a bias
between the two fields. Shelykh et al.30 have considered the
interplay between these spinor Josephson oscillations, and
Josephson coupling between two different spatial modes of a
trapped polariton condensate, showing that complex behav-
ior can arise in this four-mode system without pumping and
decay. A similar problem has also been studied in the context
of spinor condensates of cold atoms in double well
potentials.31,32 If one does include pumping and decay then
even the two-mode system �i.e., just the dynamics of the spin
component� can show a rich variety of behavior.33,34 Due to
dissipation, the dynamics settles on an attractor, which may
either correspond to a phase-locked �i.e., linearly polarized�
state, or may correspond to a limit cycle, in which the phase
difference between the two polarization components continu-
ally increases, with the cyclic nature arising from 2� period-
icity in the phase difference. There also exist parameter
ranges where there is bistability, so that which attractor the
system settles on depends on the initial conditions. In this
paper, we will both review this two-mode dynamics, and
then extend to the case of including many spatial modes in
addition to the spin dynamics.

To describe multiple spatial modes in a trapped, pumped,
decaying condensate, a mean-field approach to this problem
leads to a complex Gross-Pitaevskii equation.35,36 It is also
possible to include fluctuations beyond mean-field theory
within such a formalism by quantum stochastic approaches.37

As well as describing the spatial structure of nonequilibrium
condensates, the complex Gross-Pitaevskii equation has also
been applied in a wide range of areas, see for example Refs.
38 and 39. One application which is very closely connected
to microcavity polaritons is the dynamics of lasers propagat-

ing through strongly nonlinear materials, where combina-
tions of cubic and quintic nonlinearities can produce a state
with a preferred density, sometimes referred to as “liquid
light.40,41” The results in this paper suggest that consideration
of polarization dynamics in such materials may also provide
interesting results.

By considering the spinor complex Gross-Pitaevskii equa-
tion to describe the spinor condensate in an harmonic trap,
several new classes of attractors are seen to occur in addition
to those present for the two-mode system. There are limit
cycles describing small oscillations of the phase difference
between the two components, and limit cycles with 4� peri-
odicity of the phase difference. In addition, the different dy-
namical attractors correspond to different spatial profiles, in
which the presence or absence of vortex lattices can be in-
fluenced by the applied magnetic fields.

As well as describing the steady-state profiles, the com-
plex Gross-Pitaevskii equation can describe the normal
modes for small fluctuations about such steady states. In the
absence of a spatial trap, one notable consequence of includ-
ing pumping and decay is that the long-wavelength modes of
a dissipative condensate are modified, to become
diffusive;42–44 similar results are seen both for incoherent
pumped condensates, and for optical parametric oscillation,
where scattering of pumped polaritons into signal and idler
states is modified by bosonic enhancement due to the popu-
lation of the signal.45,46 From this standpoint, another pur-
pose of this paper is to address how the combination of
pumping, decay, and symmetry-breaking terms modify the
spectrum of the spinor condensate. While a diffusive mode
for the overall polariton density and phase always exists, the
long-wavelength modes for spin modes can show a range of
behaviors: diffusive, linearly dispersing, or gapped, depen-
dent on the balance of decay and symmetry-breaking terms.

The remainder of this paper is arranged as follows. In Sec.
II we introduce the model of spinor condensates as a system
of coupled Gross-Pitaevskii equations with pumping and de-
cay terms. By neglecting the spatial variations in polarized
components we discuss the bifurcation diagrams for a two-
mode system in Sec. III. The normal modes of the homoge-
neous system are obtained in Sec. IV. In Sec. V we study the
stability of cross-polarized vortices. The detailed study of the
dynamics of the full trapped system is performed in Sec. VI.
In Sec. VII we discuss how various regimes can be detected
in experiments. The conclusions in Sec. VIII summarize our
findings.

II. MODEL FOR SPINOR POLARITONS

The model we consider in this paper consists of the com-
plex Gross-Pitaevksii equation �cGPE� as described in Ref.
35, taking into account the two possible polarizations of po-
laritons, written in the basis of left- and right-circular polar-
ized states, denoted by �L,R. In addition to the terms dis-
cussed in Ref. 35, three new parameters arise from
considering the spin degree of freedom in an applied mag-
netic field. First, in addition to an interaction with the total
polariton density HU0

= �U0 /2����L�2+ ��R�2�2, there is an at-
tractive interaction between opposite spin species, HU1

=
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−2U1��L�2��R�2. Second, there is a magnetic field term H�B
= ��B /2����L�2− ��R�2�, and finally there is a symmetry-
breaking term HJ1

=J1��L�R
† +H.c.�, which may naturally

arise1,28 due to asymmetry at the quantum-well interfaces,23

or may be induced by electric fields24 or stress.25 Put to-
gether, these yield the coupled cGPE,

i��t�L = �−
�2�2

2m
+ V�r� + U0��L�2 + �U0 − 2U1���R�2

+
�B

2
+ i��eff − � − 	��L�2���L + J1�R, �1�

with the analogous equation for �R following by replacing
�L↔�R and �B→−�B.

As in Ref. 35, this cGPE includes both a real nonlinearity,
describing the energy shift due to interactions between po-
laritons, and an imaginary nonlinearity. We will discuss here
the nature of this imaginary nonlinearity, and consider its
implications for the spin dependence of this term. It is clear
that some imaginary nonlinearity is necessary, as otherwise if
�eff exceeds � then the density would increase without limit.
Such an imaginary nonlinear term is common in order pa-
rameter equations for lasers39 as a description of gain satu-
ration. In the current context, the gain process in question is
scattering from the reservoir of high energy excitonic states.
This leads to two potential sources of nonlinearity.

The first source is feedback from the density of these high
energy states: if the rate of scattering to the condensate in-
creases, the occupation of the reservoir states decreases, and
so effective gain will reduce. In Refs. 33, 36, and 42 this
process is explicitly modeled, by including the dynamics of
the reservoir population; one should note that in such a
model, the reservoir dynamics is assumed to be local; such
an approximation is reasonable due to the large mass differ-
ence between excitons and polaritons. In the language of
laser theory, this means there is no gain diffusion, which
might otherwise suppress pattern formation. For slow dy-
namics of the condensate, the reservoir dynamics can be
eliminated, leading to an effective nonlinear dependence of
gain rate.

In addition to this reservoir depletion, there is a second
potential source of nonlinearity, discussed in a different con-
text by Griffin et al.47 This second effect concerns the pro-
cess of scattering between the reservoir and condensate
modes, described by a coupled quantum-Boltzmann equation
and cGPE. In such a model, the microscopic scattering rate
will depend on distribution functions evaluated at the con-
densate chemical potential—i.e., such scattering seeks to
achieve chemical equilibrium between the condensate and
reservoir modes �but, in the current context, loss of polari-
tons and external pumping mean this chemical equilibrium is
never achieved�. Thus, in such a model, an increase in the
condensate density will reduce the scattering rate due to the
energy shift of the condensate.

The combination of the above two effects will together
describe some effective nonlinearity in the gain process; an
accurate description of this nonlinearity would require a suf-
ficiently detailed model of polariton scattering. However,
from the above arguments, one can gain some insight into

the spin dependence of this nonlinearity. To the extent that
spin is conserved in the process of scattering, the nonlinear-
ity due to reservoir depletion should depend only on the
density of that spin component. On the other hand, the spin
dependence of the condensate chemical potential nonlinear-
ity will be related to the difference of the real nonlinearities
U0−2U1 vs U0. It is known that the same-spin �triplet� inter-
actions and scattering strengths are much stronger than cross-
spin �singlet� interactions, because the dominant interaction
process involves electron-electron or hole-hole exchange,
which would lead to scattering to dark exciton states for
cross-spin polaritons.48 On this basis, previous models of
spin dependent scattering for optically parametric oscillators
have neglected this cross-spin scattering49,50 and found rea-
sonable agreement with experiments. In fact, by looking spe-
cifically for effects that are only possible with cross-spin
scattering, the relative sizes of these processes has been
found,51 and cross-spin scattering is 5–10 % of the same-
spin scattering rate.

Based on the above considerations, we include cross-spin
interactions in the real nonlinearity �where they play an im-
portant role counteracting the applied magnetic field�, but
neglect them in the imaginary nonlinearity �where their role
would be less important, as the form of pumping chosen
already favors equal densities of the two components�. A
more complete model would replace 	��L�2 by 	��L�2
+	X��R�2, but an accurate determination of 	X would require
a more detailed understanding of the relative roles of reser-
voir depletion and condensate density in producing the non-
linearity. As discussed further below, when written in terms
of density imbalance and phase difference, the inclusion of
imaginary cross-spin terms would only change coefficients,
not the form of the equations. Thus, for the purpose of this
paper, the form of pumping used can be considered suffi-
cient.

In this paper, we will either neglect V�r� �in Secs. III and
IV�, or consider a harmonic trap, V�r�=m
0

2r2 /2. In either
case, we will rescale energies and lengths in terms of the
harmonic-oscillator energy �
0, and length l such that �
0
=�2 /ml2. By additionally rescaling the density such that
U���2→ �1 /2��
0���2 the cGPE can be written as

2i�t�L = �− �2 + v�r� + ��L�2 + �1 − ua���R�2

+
�

2
+ i�� − ��L�2���L + J�R �2�

with the definitions �=2��eff−�� /�
0 , =	 /U0 , J
=2J1 /�
0 , �=2�B /�
0 , ua=2U1 /U0. If considering a
harmonic trap, then v�r�=2V�lr� /�
0=r2, otherwise we will
take v�r�=0.

The dimensionless parameter ua describes the extent of
spin anisotropy of the interaction; using the estimate in Ref.
51 we take ua=1.1. From estimates of the polarization split-
ting in Refs. 27 and 28, we take J1�0.1–0.2 meV. Using
the estimates of trap frequency given in Ref. 35, we will take
0���10, =0.3, and we may write the dimensionless
splitting J�1; in the numerical results, we will consider a
variety of values of J around this value.
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The spatially extended, harmonically trapped system is
unstable unless pumping is restricted to a finite spot.35 For
our studies of this system, we therefore consider a circular
pumping spot with a cutoff radius r0: �→���r0−r�. For
constant pumping strength, r0 determines whether the system
forms vortices spontaneously.35

III. REVIEW OF THE TWO-MODE MODEL

In order to provide a basis from which to understand the
behavior observed in the trapped system, it is first useful to
review the results that occur in the “two-mode model,”
where spatial variation of each component is neglected, so
the coupled complex Gross-Pitaevskii equation reduces to
two equations for the variables �L ,�R. This model was stud-
ied by Wouters,33 where the conditions for the existence of a
steady state �i.e., synchronized� solution were found.64 As �
increased, Wouters33 found that a synchronized solution
could persist for some range of �, with an increasing phase
and density difference between the two modes, until at some
critical � the steady state vanished. Near the critical �, the
existence of bistability was noted. This section will both
summarize these previous results, as well as analyze the be-
havior of the desynchronized solution, showing that the dy-
namics is analogous to that of the damped driven pendulum,
or current-biased Josephson junction.52

To discuss the dynamics, it is convenient to reparametrize
using:

�L,R = ��L,Rei����/2�, R =
�L + �R

2
, z =

�L − �R

2
,

and write coupled equations for � ,R ,z. �The global phase �
does not affect the dynamics.� In visualizing the dynamics,
one may consider a Bloch vector, defined by x
=��L�R cos��� , y=��L�R sin��� ,z, in terms of the above
variables. Since there is pumping and decay, the length of the
Bloch vector is not conserved, hence there is a dynamical
equation for R=�x2+y2+z2. The coupled equations have the
form,

�̇ = −
�

2
− uaz +

Jz cos���
�R2 − z2

, �3�

ż = �� − 2R�z − J�R2 − z2 sin��� , �4�

Ṙ = ��


R − R2 − z2	 . �5�

Writing the equations in this form first allows one to under-
stand the basic effects of pumping and decay on the dynam-
ics, and, second, will be shown below to reduce to the
damped driven pendulum in a relevant limit. One may also
note that if we had included cross-spin dependence of the
gain depletion, as discussed earlier, the above equations
would have exactly the same form, but with slightly modi-
fied coefficients.

For a steady state, it is clear that the condition Ṙ=0 de-
fines a Bloch surface, R�z�. One may then study the dynam-

ics of points that start on this surface to characterize the
nature of the transition as � increases. As shown in Fig. 1,
each starting point z ,� is attracted either to a fixed point, or
to a limit cycle. The fixed point is the synchronized solution;
the limit cycle is the desynchronized solution, in which the
phase difference � between the two spin components is
changing—this behavior is a cycle since the dynamics are
periodic under �→�+2�. As � increases, there is a lower
critical �c,lower below which the all initial conditions on the
Bloch surface flow to the synchronized solution, and an up-
per critical �c,upper which corresponds to the previously
found33 point beyond which synchronized solutions can no
longer exist.

The behavior seen in Fig. 1 can be understood by noticing
that the choice of parameters used puts one in the “Josephson
regime” of the Josephson equations,29 i.e., uaR�J, and that
in addition the typical dynamics obey z�R. In this case, Eq.
�5� simply reduces to R=� /. Then, by eliminating z from
Eqs. �3� and �4�, one finds

�̈ + ��̇ = −
1

2
�� + uaJ

�


sin��� . �6�

This equation describes a damped driven pendulum, or alter-
natively a current-biased Josephson junction. �N.B., due to
our choice of sign of J, “gravity” for the pendulum acts to
drive �→��. The behavior of Eq. �6� is well known �see,
e.g., Ref. 52�; for large damping � there is a simple transition
at �c,upper=2uAJ / between fixed points for ���c,upper and
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FIG. 1. �Color online� Basin of attraction of fixed point and
limit cycle for full two-mode Josephson problem. Each panel is for
a given value of �, as indicated, and shows a color map according
to the final state found by starting from the given initial conditions
� ,z. Points that flow to the fixed point are colored gray, others are
white. The fixed point is marked by a cross, and the limit cycle
�when it exists� by a line.
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limit cycles above. For smaller damping �explicitly, for �
�0.595�4uaJ� /�, there is a range of bistability, where both
limit cycles and fixed points may be found.53 The inset of
Fig. 2 shows the bifurcation diagram determined from Eq.
�3�–�5�, and for comparison, the value �c,upper and the critical
damping that result from the approximations leading to Eq.
�6�.

As well as explaining the classes of behavior seen, Eq. �6�
may be used to explain the critical behavior near �c,lower. For
� sufficiently small that bistability exists, then near �c,lower,
the period of the limit cycle grows like T� �ln
�−�c,lower��.
In the context of the current problem, this period relates to
the average chemical potential difference between the two

components, ��̇= ��L−�R=2� /T. For large �, one eventu-
ally reaches �L−�R=� /2. The evolution of ��L−�R is il-

lustrated in Fig. 2, which plots the spectral weight ��̃L�
��2,
choosing initial conditions so the limit cycle is obtained for
all ���c,lower.

IV. NORMAL MODES IN THE EXTENDED
HOMOGENEOUS SYSTEM

Before considering the interplay of spin dynamics with
the spatial profile of a trapped condensate, one may first
consider a simpler problem involving the interplay of spin
and spatial dynamics—the finite momentum normal modes
of the pumped, decaying spinor condensate. The normal
modes of the spinor condensate without pumping and decay
were discussed in Refs. 17 and 18. In the equilibrium case,
for small ���, there is an elliptical condensate �i.e., a finite
density of both spin components� and there are two gapless
linear modes, describing excitations of the global phase, and
the relative phase of the two components. When ��� becomes
large enough to cause a transition to a circularly polarized
state, only a single gapless mode survives, describing phase

modes of the condensed component. On the other hand, the
presence of pumping and decay is known to replace the lin-
ear dispersion of the phase modes with a diffusive behavior
at small momentum.42–44,46 The aim of this section is to see
how these two effects are combined. The result is that while
the global-phase mode remains diffusive, the real part of the
relative-phase mode can be either gapped, linearly dispers-
ing, or diffusive according to the value of � chosen. In the
following, we will first present numerical results for the
normal-mode frequencies, and then discuss how these can be
straightforwardly interpreted in the same Josephson regime
as discussed above.

For the purpose of numerically calculating the normal
modes, it is simplest to consider the Bogoliubov parametri-
zation of fluctuations at some wave vector k �allowing for
decay� as

�L,R�t,r� = e−i�t�L,R
0 + e−i�t�uL,Re−i
t−�t−ik·r + vL,R

� ei
t−�t+ik·r� .

�7�

Substituting this into Eq. �2�, and linearizing in u ,v yields
the secular equation Det
2�
− i��1−M�=0, where in the ba-
sis �= �uL ,vL ,uR ,vR�T, the matrix M is

M =�
AL BL CL DL

− BL
� − AL

� − DL
� − CL

�

AR BR CR DR

− BR
� − AR

� − DR
� − CR

�
� . �8�

Noting that for plane waves, the kinetic energy term −�2

→k2, the matrix elements are

AL = k2 − J
�R

0

�L
0 + �1 − i���L

0�2, BL = �1 − i���L
0�2,

CL = J + �1 − ua��L
0�R

0�, DL = �1 − ua��L
0�R

0 ,

and similarly with L↔R. The normal modes calculated this
way are shown in Figs. 3 and 4. Figure 3 shows the modes at
k=0 �lower panels� as well as the value of �, and the densi-
ties �L,R �upper panels� corresponding to a solution with a
given value of �. 
This is to make use of the fact that the
steady state of Eqs. �3�–�5� can be found explicitly for � ,�L,R
as a function of � �see Ref. 33�.�

In Fig. 3, the range of � is restricted to 
0,��, since the
range 
� ,2�� is equivalent to this, after swapping L↔R and
�→−�. Within this range, only values ���c�� /2 corre-
spond to stable solutions. As only the modes at k=0 are
shown, there is always a zero mode corresponding to global-
phase rotations. The other three modes divide into an over-
damped mode �largest imaginary part�, and a pair of modes
which can be either overdamped or underdamped, as seen by
the bifurcation of the real part at �=1.964. Three values of �
�corresponding to three different applied detunings �� are
chosen to illustrate the overdamped, critically damped, and
underdamped cases, and the normal modes with finite k are
shown for these points in Fig. 4. In the overdamped case �for
� near � /2�, both the relative-phase and global-phase modes
are diffusive at small k. When underdamped, the relative-
phase mode always has a nonzero real frequency. When criti-
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FIG. 2. �Color online� Fourier transform of �L�t�, showing bi-
furcation of frequencies as � is increased, and illustrating critical
behavior 
�1 / ln��−�c�. Initial conditions for each � are chosen
so that a limit cycle �i.e., desynchronized solution� is found for all
���c,lower. Inset: regions of stability of the synchronized and de-
synchronized solutions found from Eq. �3�–�5�. The dotted line
marks the approximate �c,upper appropriate in the Josephson regime,
Eq. �6�, and the � marks the known bifurcation point �Ref. 53� in
that regime.
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cally damped, the real part of the relative-phase mode has a
linear dispersion. We will next discuss how this behavior can
be understood in the Josephson regime.

To understand the modes qualitatively, it is clearest to
work in the basis of R ,z ,� ,�. Extending Eqs. �3�–�5� to
include spatial gradients via a Madelung transformation, one
finds the equations,

Ṙ = − ��R�� +
1

2
z��	 + �R − �R2 + z2� , �9�

ż = − ��z�� +
1

2
R��	 + �� − 2R�z − J�R2 − z2 sin� ,

�10�

�̇ =
XL + XR

4
− �2 − ua�

R

2
−

JR

2�R2 − z2
cos��� , �11�

�̇ =
1

2
�XL − XR� − uaz −

Jz
�R2 − z2

cos��� −
�

2
, �12�

where we have introduced the shorthand XL,R
= ��2��L,R� /��L,R− ���L,R�2, with �L,R=��� /2. When con-
sidering fluctuations about the uniform state, the gradient
terms simplify, as expressions such as ����2 are necessarily
second order in the fluctuations, and so may be neglected.
We will make the same approximations as led to Eq. �6� �i.e.,
assume J�uaR , z�R�, and use the steady-state solution in
this limit 
R=� / , J sin���=−z� to simplify the equations
for fluctuations. If one writes the fluctuations as �
= ��R ,�z ,�� ,���T then since these are real variables, the
normal modes have the time dependence ��t�=�exp�−i
t
−�t�, giving a secular equation,

Det
2�i
 + ��1 + M0 + k2M1 + O�k4�� = 0, �13�

where Mn indicates an expansion in powers of momentum, to
understand the small k dispersion. The first two terms are

M0 =�
− 2� 0 0 0

− 2z − 2� 0 − 2JR cos���
− 2 + ua 0 0 0

0 − 2ua 0 0
� , �14�

M1 =�
0 0 2R z

0 0 2z R

− 1/2R z/2R2 0 0

z/R2 − 1/R 0 0
� . �15�

The nature of the k=0 normal modes is immediately
clear: � has no restoring force, and so has a zero frequency
oscillation; R has a damping rate �, and so describes a de-
caying mode; z and � are mixed, and have modes with fre-
quencies given by

�i
 + ���i
 + � − �� − uaJR cos��� = 0. �16�

Noting that cos��� is negative, and that the prefactor is the
same as that of sin��� in Eq. �6�, one may write

− uaJR cos��� = �p
2, �17�

where �p��� is a “plasma frequency” describing the restor-
ing force as a function of angle. The normal modes are 

− i�=−i� /2���p

2 −�2 /4. The transition between under- and
overdamping occurs because for ��� the restoring force is
large so �p�� /2, while as �→�c�� /2, the restoring force
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FIG. 3. �Color online� Steady states, and damping of uniform
fluctuations. All panels are plotted as a function of the phase differ-
ence, �, between the two circular polarization components. Top left:
densities of components in steady-state solution. Top right: detuning
corresponding to given solution. Bottom: real �left� and imaginary
�right� parts of frequency for small fluctuations about the steady
state. The gray shaded region is unstable to small fluctuations. The
crosses mark the conditions used for the finite k spectra in Fig. 3.
Plotted for �=6.5, =0.3, J=1.0, ua=1.1.
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vanishes, and so there is an intermediate value of � �and
hence �� at which �p=� /2, describing the critical damping.
Note that whatever the choice of parameters, an overdamped
regime will always exist since �p must always tend to zero
at �c. However if � is sufficiently large the underdamped
regime may vanish. The approximate expressions for the ei-
genvalues 
− i�=0,−i� /2���p���2−�2 /4,−i� match the
general form seen in the bottom panel of Fig. 3, it is apparent
that the full problem has some additional variation of damp-
ing rate with �, not captured by the approximations used in
the above expressions.

One may now explain the linear dispersion at this critical
damping as arising from degenerate perturbation theory, al-
lowing a k2 perturbation to give a �k splitting. Setting �p
=� /2, and writing 
− i�=−i� /2+�, then expanding Eq.
�13� to leading order in � ,k gives

0 = 4�2 − k2� �2

2uaR
+ 2uaR� , �18�

hence describing modes 
− i�=−i� /2+ceffk. Note that al-
though these modes have a linear dispersion of the real part
as a function of k, they have a lifetime that remains finite as
k→0. As such, this may provide an example where linear
dispersion of a given mode in a condensed system need not
imply superfluidity of the associated density. Further work is
required to determine the current-current response function
in this system, which will determine whether there is a dif-
ference of transverse and longitudinal response for spin cur-
rents, however, superfluidity of the spin current is not ex-
pected here, since the spin orientation is locked by the
Josephson term J. The linear dispersion arises only when the
damping matches frequency of this phase-locking term, pro-
ducing critical damping.

V. STABILITY OF CROSS-POLARIZED VORTICES WITH
PUMPING AND DECAY

When an harmonic trap is introduced, the existence of
steady-state currents can destabilize the Thomas-Fermi like
density profile, and lead to spontaneous rotating vortex
lattices.35 Before addressing how this instability interacts
with the polarization degree of freedom, we first discuss the
simpler question of the dynamics and stability of individual
vortices of opposite polarization. One should note first that a
single vortex in a pumped decaying condensate already has a
more complicated structure than the vortex without pumping
and decay—the vortex becomes a spiral vortex, with both
radial and azimuthal currents; see Appendix A for further
discussion.

Considering a spinor condensate system with vortices in
both polarization components, there is an interplay between
the weak attractive coupling that invites the vortices to have
their cores aligned irrespective of their circulation, the Jo-
sephson coupling that discourages the alignment of vortices
of opposite circulation and the detuning that stabilizes such
alignment. To illustrate these possibilities we consider sev-
eral examples. The notation ��n , �m� refers to condensates
with vortices of topological charge �n ��m� in left �right�

condensate. From Eq. �2�, with v�r�=r2, the following set of
stability scenarios are found,

J=0: All ��1,0� and ��1, �1� vortex complexes are dy-
namically stable.

J�0, �=0: Solutions �+1,+1� are stable, ��1,0� and �
+1,−1� are unstable. Depending on the strength of J, vorti-
ces may start precessing around the center of the trap, move
beyond the boundary forming either a pair of rarefaction
waves with opposite velocities or a complex �+1,+1�, or
disappear at the condensate’s edge and bringing in two
aligned pairs of vortices �+1,+1� and �−1,−1�. Figure 5 il-
lustrates these possibilities for �=4.4, r0=3, =0.3 and J
=0.5,1 ,1.5,2.

J�0, ��0: For a given J, any sufficiently large � al-
lows the vortex complexes �+1,−1� and ��1,0� to stabilize.

FIG. 5. �Color online� The outcome of instability of the vortex
state �+1,−1� for �=4.4, =0.3, r0=3, �=0, and J=0.5 �top row�,
J=1 �second row�, J=1.5 �left bottom� and J=2 �right bottom�. The
initial state is ��=���2�TF−r2��x� iy� /�r2+1 / �2�TF�� where
�R=�−, �L=�+, 2�TF=3� /2 and � is the vortex core parameter;
see Appendix A. Depicted are the density plots and streamlines of
�L �left panels in first and second row, bottom row� and �R �right
panels in first and second row�. Luminosity of the background is
proportional to the magnitude of the density, and luminosity of the
streamlines is proportional to the velocity. The size of the pumping
is shown as a circle of radius r0=3. For J=0.5 the final state con-
sists of two precessing vortices of opposite circulation. For J=1 the
system evolves into a pair of two gray solitons. For J=1.5 the
vortex of the negative circulation in �R leaves and a vortex of
positive circulation enters the cloud. For J=2 both vortices leave
the condensate and two pairs of vortices of opposite circulation
enter. For J=1.5 and J=2 �L=�R, so only �L is shown.
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Figure 6 shows such stabilized �+1,−1� complex for J
=1, �=8.

The stationary state shown in Fig. 5 for J=1 is the
vorticity-free, but not radially symmetric, solution of Eq. �2�.
These are analogous to the rarefaction solitary waves of the
nonlinear Schrödinger equation discovered by Jones and
Roberts.54 In trapped two-dimensional �2D� condensates
these waves were also found:55 they form as two vortices of
opposite circulation disappear at the boundary of the conden-
sate. In the conservative GPE these waves propagate with
velocities exceeding the velocity of any vortex pair. In spinor
damped/driven condensates two such solutions induce flow
in opposite directions forming a stationary complex. The
plots of the real and imaginary parts of �L and �R shown in
the left panel of Fig. 7, and the density plots of Fig. 5 can be
compared to the bottom panel of Fig. 9 and the left panel of
Fig. 10 of Ref. 55. It also follows from simulations that
�L�x ,y�=�R�x ,−y�, so the found stationary state satisfies a
one-component Ginzburg-Landau equation,

2i�t� = 
− �2 + r2 + ���2 + i����r0 − r� − ���2���

+ J��x,− y� . �19�

This also suggests a way to generate solitary waves in spinor
condensates. The dark soliton �obtained by phase imprinting,
for instance� will undergo a transverse snake instability and
form two stationary pairs of vortices of opposite circulation,

whereas starting with a �+1,−1� complex one will obtain
stationary rarefaction pulses.

As � increases, the rarefaction waves in two components
lose their antisymmetry and the density minima move away
from the center as the right panel of Fig. 7 illustrates. For
intermediate �, complexes combining a rarefaction wave in

FIG. 6. �Color online� Stable state of cross-polarized vortices
�+1,−1� for �=4.4, =0.3, r0=3, �=8, and J=1. Depicted are the
density plots and streamlines of �L �left� and �R �right�. Luminosity
of the background is proportional to the magnitude of the density,
and luminosity of the streamlines is proportional to the velocity.
The size of the pumping is shown as a circle of radius r0=3.
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FIG. 7. �Color online� Real �thick lines� and imaginary �thin
lines� parts of �L �solid lines� and �R �dashed lines� of the rarefac-
tion wave complex as a stationary solution of Eq. �2� with v�r�
=r2 for �=4.4, =0.3, J=1 and �=0 �left� and �=0.4 �right� plot-
ted along the axis of density symmetry. The functions are antisym-
metric with respect to the origin �L�0,−y�=�R�0,y� for �=0, but
not for ��0.

FIG. 8. �Color online� Density plots ��L�2 �top row� and ��R�2
�bottom row� for the outcome of instability of cross-polarized vor-
tices obtained by numerical integration of Eq. �2� with v�r�=r2, �
=4.4, =0.3, J=1 and various �. The initial state is the same as in
Fig. 5. Luminosity is proportional to density. The size of the pump-
ing is shown as a circle of radius r0=3. For �=0.4 two rarefaction
pulses form a stationary complex. For �=2 a vortex of negative
circulation in the R component is coupled to a rarefaction pulse in
the L component. For �=4 the two vortices of opposite circulation
do not align their cores. For �=2 and �=4 the complexes precess
around the center with the individual vortices moving along an
epitrochoid; see also Fig. 9.
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FIG. 9. �Color online� Trajectories of vortices in the complex
�+1,−1� obtained by numerical integration of Eq. �2� with v�r�
=r2, �=4.4, =0.3, J=1, and �=4, and with pumping in a radius
r0=3. Lengths in units of l=�� /m
0. These parameters are the
same as for the density profiles in the right hand column of Fig. 8.
The trajectory of the vortex of positive �negative� circulation in the
left �right� component is shown as thick black �thin blue� line. The
start �end� points of the time interval plotted are shown as red/dark
�green/light� filled circles. Note that the vortex trajectories are not
closed.
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one component with a precessing vortex in the other compo-
nent emerge; for even larger � two vortices of opposite cir-
culation move around in the condensate. Finally, for even
larger �, their cores overlap and vortices move to the center
of the condensate. These possibilities are illustrated on Figs.
6 and 8. The cross-polarized vortices deform the condensate
to a slightly oblate form as seen in the density plots of Fig. 6.
The streamlines and the density plots indicate that the vorti-
ces coexist with rarefaction waves that rotate in the counter-
clockwise direction.

The vortex trajectories with pumping, decay and a spin
degree of freedom are nontrivial. For a one-component con-
servative GPE, a single vortex moves perpendicularly to the
background density gradient due to the Magnus force56,57

�the speed of the motion is however nonuniversal, and de-
pends on the global condensate shape55�. For a two-
component conservative GPE with vortices in both compo-
nents, there is an additional advection of each vortex by the
flow pattern of the other component. Including also pumping
and decay, the trajectories of the vortices are yet more com-
plicated, as illustrated in Fig. 9 for a �+1,−1� complex with
J=1, �=4. Both vortices move along trajectories closely
resembling epitrochoids, and the distance between the vorti-
ces varies quasiperiodically with time. Similarly complicated
cycloid trajectories of vortices are known for two-layer fluids
with one vortex in each layer—such behavior has been seen
for example in models of tropical vortices.58

VI. TRAPPED SYSTEM

We study the time-dependent problem defined by Eq. �2�
with a harmonic trapping potential v�r�=r2 by numerical in-
tegration, using a fourth-order, finite-difference approxima-
tion in space and a fourth-order Runge-Kutta method in time.
Pumping is restricted to a circular spot of radius r0 centered
at the bottom of the trap, as described at the end of Sec. II. In
all of the following, we take the experimentally realistic
parameters1,35,59 �=4.4 and =0.3. With this choice of pa-
rameters, the critical radius can be estimated from the
Thomas-Fermi approximation for the problem without
polarization35 as r0c

�4.7. This section will present and dis-
cuss the transition between synchronized and desynchro-
nized states, and the interplay with the instability to vortex-
lattice formation. Section VI A first addresses the value of �
for which a transition occurs, as one changes the size of the

pumping spot, and coupling J. Section VI B will then discuss
in greater detail the nature of the new attractors near the
critical � that occur when one includes spatial degrees of
freedom.

A. Critical �, bistability and internal Josephson effect

Let us start with the simplest trapped problem, taking J
=1.0 and r0=3.0. We study the behavior of the system as the
detuning � is increased in the following way: starting at �
=0 from a Gaussian initial state, we let the system evolve
until a steady solution is reached. We then increase � in
steps, taking for each new � the final state at the previous �
as the new initial state. For each value of �, the chemical
potentials of the two polarization components are calculated
�see Appendix C for details�. The result is shown in the left
panel of Fig. 10. The components stay synchronized, sharing
a common chemical potential, up to ��7.0. As the detuning
is increased further, the components desynchronize and AC
Josephson oscillations occur between them �Fig. 11�. Note
that as the components desynchronize, the chemical poten-
tials show an oscillatory time dependence. Figure 10 shows a
time average in this case.

In terms of a suitably defined, spatially averaged phase
difference � between the components �see Appendix C�, the
desynchronization transition corresponds to a transition from

a fixed point to a limit cycle in the �� , �̇� plane, in direct
analogy to the two-mode problem �see Fig. 12 and compare
with Fig. 1�.

The right panel of Fig. 10 shows the chemical potentials
of the two polarization components as the detuning is in-
creased stepwise in a system pumped in a spot with radius
r0=4.0. The progression from the synchronized solution at
small detunings to the desynchronized solution in the limit of
large detunings is now more complicated than for a small
pumping spot. r0=4.0 is too small a pumping radius for vor-
tices to form spontaneously in the corresponding one-
component system.35 Accordingly, the spinor system with
zero detuning develops circularly symmetric densities, iden-
tical in both components �but with different phases for the
two components�. For small enough detunings, the system
stays synchronized, the densities adjusting to accommodate
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the common, constant chemical potential �left-most panels of
Fig. 13�.

As the detuning increases beyond ��3.0 the rotational
instability of the high-angular-momentum modes35 reap-
pears, and a four-vortex lattice forms in both components. At
this point, the smaller component is sufficiently depressed by
the detuning that the effective critical radius is smaller than
the pumping radius. The suppressed component becomes ro-
tationally unstable and drags the larger component along.
This transition to a vortex-lattice solution causes the �com-
mon� chemical potential to drop, as shown in Fig. 10.

While the two components remain on average phase
locked, the drop in chemical potential at the formation of the
vortex lattice is accompanied by a time-dependence of the
chemical potentials, which oscillate together around a com-
mon mean. Due to the amplitude of the oscillations being
slightly larger in the larger component, the fixed point in the

�� , �̇� plane turns into a small limit cycle, but with only small
variations of � unlike the 2� periodic cycles in the desyn-
chronized phase. �Middle panels of Fig. 13.� Finally, as �
becomes large, the components desynchronize completely.

This situation is shown in the right-hand panels of Fig. 13.
The difference in space-averaged phase now traces out a
limit cycle winding through the full 2�.

The overall progression from synchronized solutions at
small � to desynchronized solutions with Josephson oscilla-
tions holds very generally for different values of the Joseph-
son coupling J and also for both small �no vortices� and large
�vortex lattice� pumping-spot sizes. The mechanism in both
cases is the same: the synchronized solution is upheld by
adjusting the densities and a steady interconversion current
forms. After desynchronization, the densities revert to pro-
files as for the single component condensate, with the aver-
age density set by the balance of pumping and decay, but
with an additional time-dependent interconversion current.
Figure 14 shows density profiles of typical synchronized so-
lutions with and without vortices, and also a snapshot of a
desynchronized solution.

We also performed calculations where we reset the initial
conditions to a Gaussian density profile, with equal phase of
the two polarization components for each value of �. Based
on the results of the two-mode model shown in Fig. 1, such
initial conditions would be expected to find the limit cycle
whenever it exists, whereas the stepwise increase of � dis-
cussed above is intended to follow the fixed point. In these
calculations with resetting of initial conditions, desynchro-
nized solutions generally develop at smaller �, as one should
expect if there is a region of coexistence of synchronized and
desynchronized solutions. Figure 15 shows the highest �
yielding synchronized solutions for different r0 and different
J, both for stepwise increased � �top left� and calculation
directly from Gaussian initial conditions �top right�. Compar-
ing the two plots gives an estimate of the region of coexist-
ence. An example �J=1.0, r0=3.0� showing the region of
bistability is given in the bottom left panel. Note that the
difference between stepwise increased � and reset to Gauss-
ian initial condition for each � vanishes for large detunings.
This need not be the case for larger r0 or larger J, where
more than one desynchronized, metastable state �distin-
guished by numbers of vortices� may be possible at high �.

Our calculations suggest that the spatially extended sys-
tem allows for a rich variation of behaviors. Notably, inter-
conversion due to the Josephson coupling between the com-
ponents need not be uniform in space. The interconversion
rate is easily calculated from the time-dependent local phase
difference ��r�=�R�r�−�L�r� as
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� ��L�r�
�t

�
J

= −� ��R�r�
�t

�
J

= J��L�r��R�r� sin
��r�� , �20�

familiar from the Josephson effect as found in any
textbook.29,60 Note that Eq. �4� describes the same physics
for the two-mode model. Figure 16 shows a map of the in-
terconversion rate �t�1 �J at two close points in time in the
large-time limit of the solution directly from Gaussian initial
conditions with J=1.0, r0=6.0, �=16.0. This solution is
desynchronized and exhibits Josephson oscillations. How-
ever, at any given time there is interconversion in both direc-
tions at different points in space.

Calculations directly from Gaussian initial conditions at
large detuning with a large pumping spot �r0=6.0� indicate
that solutions are possible in which the polarization compo-
nents develop counter-rotating vortex lattices. This leads to
rapid density modulations, particularly around the edge of
the cloud, and a corresponding pattern of interconversion in
opposite directions. In this case, the Josephson oscillations
are suppressed and the integrated �scaled� number density

n=����2d2r exhibits rapid, small-amplitude oscillations.
These effects are shown in Fig. 17.

B. Phase portraits of more complicated attractors

The spatial degree of freedom allows a number of behav-

iors of the �� , �̇� phase portrait that are not possible in the
two-mode problem, which only allows fixed points �synchro-
nized solutions� and limit cycles with winding number 1 �de-
synchronized solutions�. In the spatially extended system,
these behaviors are exemplified in Fig. 12 for a system with-
out vortices. Both these two classes of attractor can also be
seen when a vortex lattice exists. In addition, the spatial de-
gree of freedom gives rise to several new classes.

We have already noted in Fig. 13 an example of a syn-
chronized limit cycle. This can be distinguished from the

desynchronized limit cycle by the winding number, ��̇dt /2�,
over one period. The synchronized limit cycle has winding
number 0, and the desynchronized cycles have winding num-
ber 1. We also find an example of limit cycle with winding
number 2, shown in Fig. 18. This solution also exhibits an-
other behavior not possible in the two-mode model: a retro-
grade loop. This solution appears in calculation directly from
a Gaussian initial condition at �=6.4, which is barely above
�c for J=1.0, r0=3.0. For larger � the loop quickly be-
comes a cusp and then disappears.

The bottom panels of Fig. 18 show two other behaviors
found when stepwise increasing the detuning in a system
with a strong Josephson coupling �J=2.0�. Both these solu-
tions are basically synchronized �the time average of the
chemical potential is the same for both components�. How-
ever, the large detuning causes the chemical potentials to
differ at most instances in time, resulting in behaviors similar
to the limit cycles with winding number 0, but which appear
to have a chaotic attractor and/or quasiperiodic behavior.

VII. EXPERIMENTAL SIGNATURES

To directly observe rotating vortex lattices in experiments
would require time-resolved measurements on time scales of
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FIG. 15. �Color online� Top: highest � yielding synchronized
solutions plotted as a function of r0 for J=0.5, 1.0 and 2.0. Left: �
increased stepwise. Right: resetting initial conditions for each �.
Bottom left: bifurcation of chemical potentials �plotted as in Fig.
10� for the two approaches, indicating the region of bistability for
the example J=1.0, r0=3.0. Bottom right: sketch of regions of
stability of synchronized and desynchronized solutions for r0=3.0.
Compare with inset of Fig. 2.

FIG. 16. �Color online� Spatially nonuniform interconversion
rate �t�1 �J at two different, but close, times. J=1.0, r0=6.0, �
=16.0.
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FIG. 17. �Color online� Top: integrated �scaled� number density
n=����2d2r and chemical potentials for a desynchronized solution
with counter-rotating components. Bottom from left to right: densi-
ties of the L and R polarization components, and interconversion
rate �t�1 �J. �Note that the gray scale has been adjusted for each
component separately to accentuate the density modulations.� J
=1.0, r0=6.0, �=32.0.
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the order of the trap frequency, which would be challenging
with current experimental configurations. It is however pos-
sible to see signatures of a vortex lattice in the momentum-
and energy-resolved photoluminescence spectrum, which can
be directly measured in the far field. The spectral weight is
given by the modulus squared of the Fourier transform of the
wave function,

I�
,k� = �� d2re−ik·r� dte−i
t��r,t��2

. �21�

As an illustration of this, Fig. 19 shows the spectral weight
as a function of �
 ,kx ,ky =0�. The vortex lattice as well as
the desynchronization transition can be seen in the spectrum.
Figure 19 shows the spectra of the two polarization compo-
nents for two different solutions. The top panels show a syn-
chronized solution that exhibits a vortex lattice without a
central vortex. Each ring of vortices in the lattices shows up
as a side band in the spectrum. If there were no vortices, only
the bottom band would be present. As a contrast, the bottom
panels show a desynchronized solution that has a vortex lat-
tice with a central vortex. The presence of the central vortex
means that the spectral weight vanishes at kx=ky =0. Note
also that the desynchronization causes the spectra of the two
components to be shifted relative to each other, whereas in
the synchronized case, the two spectra are identical.

VIII. CONCLUSIONS

The interplay between the effects of pumping and decay
in setting the density profile, and the dynamics of the polar-
ization degree of freedom lead to a rich variety of possible
nonequilibrium steady states, as well as dynamical attractors

for the polarized polariton condensate in a harmonic trap.
Even neglecting spatial currents, the two-mode model shows
nontrivial behavior as a function of applied magnetic field:
with strong damping there is a simple transition between
synchronized and desynchronized states, whereas for weak
damping, a region of bistability exists, in which the state
established depends on the initial conditions.

Allowing for spatial fluctuations in a homogeneous sys-
tem, the plane-wave modes on top of the synchronized solu-
tion show a second class of transition: if the phase-locking
term for the spin degree of freedom is large enough, then at
weak magnetic fields, this term will provide sufficient restor-
ing force for spin fluctuations to give underdamped global
spin oscillations. As the magnetic field increases, the restor-
ing force for such spin waves decreases, eventually vanish-
ing when the synchronized solution becomes unstable. Be-
fore this instability occurs, there is a transition between
underdamped and overdamped spin oscillations, and at this
transition, the spin wave energies have a linear dispersion vs
momentum.

Introducing vortices, the phase-locking term favors
coalignment of vortices in the two spin polarizations, but at
sufficiently large � anti-aligned vortex pairs may become
stable. The phase-locking term also makes it possible to ob-
tain a stationary complex of rarefaction waves. The experi-
mental realization of such solitary vorticity-free waves
would demonstrate another aspect of superfluid behavior61,62

in the incoherently pumped polariton system.
Considering the transition between synchronized and de-

synchronized states in the inhomogeneous system, for suffi-
ciently small pump spots, the transition is similar to the two-
mode model. For larger pump spots however, an instability
to vortex-lattice formation may preempt desynchronization,
driven by the density imbalance required to sustain a syn-
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FIG. 18. �Color online� Top: Limit cycle with winding number 2
and retrograde loop. Right panel shows a blowup of the loop. A
numerical precession has been removed from these plots. �J
=1.0, r0=3.0, �=6.4.� Bottom left: possibly quasiperiodic behav-
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FIG. 19. Spectral weight at ky =0 for two vortex-lattice solu-
tions. Left and right panels show left- and right-polarized compo-
nents, respectively. Top: synchronized solution without a central
vortex. �J=0.5, �=3.5, r0=6.0.� Bottom: desynchronized solu-
tion with a central vortex. �J=0.5, �=16.0, r0=6.0.�

BORGH, KEELING, AND BERLOFF PHYSICAL REVIEW B 81, 235302 �2010�

235302-12



chronized solution. For both large and small pumping-spot
radius, the phase portraits near the critical detuning can be
more complicated, showing synchronized limit cycles with
winding number 0, desynchronized limit cycles with winding
number 2, and chaotic behavior. In conclusion, the results
presented here illustrate the wide variety of dynamical be-
havior that can arise in spinor polariton condensates, and
suggest that experimental efforts to investigate such behavior
should be feasible.
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APPENDIX A: SPIRAL VORTICES IN THE SINGLE
COMPONENT CONDENSATE

This appendix will discuss spiral vortices in the one-
component version of Eq. �2�, i.e., neglecting J and �. It was
shown in Ref. 35 that below the critical radius of pumping
for the formation of a vortex lattice there exist states with
one or a few spiral vortices. By combining vorticity with
pumping and decay, one has both radial and azimuthal super-
currents, both of which modify the density profile, and so
these currents interact. This is shown in Fig. 20, which
shows both the radial velocity �main figure� for vortex solu-
tions, and the density profile �inset�. The vortex solution re-
quires vanishing density at the origin, this makes the region
at small radii a region of net gain, and leads to an outward-
flowing current. Thus, in the vortex solutions, there exists
both a local maximum of radial current, and a point at finite

radius �of the order of the healing length� at which this cur-
rent vanishes.

In polar coordinates �r ,�� the wave function of a spiral
vortex of topological charge s in the one-component polar-
iton condensate takes the form �v= f�r�exp
i��r�+s��, with
the equations governing f and u�r�=���r� given by

d

rdr
�rf2u� = ����r0 − r� − f2�f2,

f� +
1

r
f� + �2� − u2 −

s2

r2 − f2 − r2	 f = 0. �A1�

Around the center of the trap f�r� and u�r� can be found
recursively in the form of the power series

f�r� = �
i=1

�

air
�s��2i−1�, u�r� = �

i=1

�

bir
2i−1. �A2�

To the leading order u�r��� /2�s+1�r showing that the
stronger the pumping the larger the outward velocity is in the
vortex core. Only vortices of topological charge 1 are dy-
namically stable. For these, a1�2�� , a3=−a1� /4. . . , b2
= �2��−8a1

2� /48. . ., where the numerical value of the vor-
tex core parameter ��0.583 was first calculated by
Pitaevskii63 for the straight line vortex of uniform Gross-
Pitaevskii condensate.

APPENDIX B: IRREGULAR VORTEX LATTICES

We note that around and above critical detuning, solutions
to Eq. �2� may exhibit irregular density profiles and irregular
vortex lattices. This happens most frequently when solutions
are found starting from Gaussian initial conditions, but it
may also happen for large r0 when � is increased stepwise.
As an example, we show a solution obtained from Gaussian
initial conditions at J=1.0, r0=6.0, �=6.0 in Fig. 21. This
solution shows an irregular vortex lattice, reminiscent of tur-
bulent behavior.

APPENDIX C: CHEMICAL POTENTIALS, PHASE
PORTRAITS AND NUMERICAL PRECESSION

In order to numerically find the chemical potential of a
condensate with a rotating vortex lattice, it is useful to use
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r

FIG. 20. �Color online� Radial velocity, u�r�=���r�, of the vor-
tex solutions of Eq. �A1� for �=1, =0.01. The numbers next to
the lines indicate the winding numbers of the vortices �1 and 2� and
the ground state �0�. The TF approximation of the gradient flow of
the ground state for small � and  u�r�=−r�2�−r2� /6, is given by
the dashed line. The inset compares the density, ��r�, of a vortex
solution for �=4, =0.27 
2�=30.28, gray �red� line� with the
density of the GPE vortex ��=0, =0� with the same number of
particles �2�����2rdr=1000, 2�=25.68, black line�. Both vortex
solutions have topological charge 1.

FIG. 21. Density of the left- and right-polarized components,
respectively, showing an irregular vortex lattice. J=1.0, r0

=6.0, �=6.0.
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� − s� =
� eis�i�t��r�d2r

� eis���r�d2r

�C1�

along with the equation,

� − �Lz� =
� ���r�i�t��r�d2r

� ���r��2d2r

. �C2�

In many cases, Eq. �C1� with s=0 is sufficient to determine
�. However, when there is a vortex at the center of the cloud,
the numerator and denominator both vanish, whereas one of
s= �1 will give a well defined value. In such cases, it is then
necessary to use Eq. �C2� and the integral for �Lz to elimi-
nate �.

For plotting the phase portraits, it is necessary also to
calculate the associated phase, � such that �̇=�. This can
similarly be defined as

� � Im�ln�� ��r�d2r�� . �C3�

However, when there is a central vortex, the same difficulty
will arise. To avoid this problem, two possible approaches

are used. In most cases it is sufficient to calculate �̇=�L
−�R, and numerically integrate this equation to find ��t�.
Numerical errors in evaluating �L,R can however introduce

unphysical precession into the plot of � , �̇. To avoid this, in
those cases where the nature of the portrait is simple, we use

�i+1=�i+ �̇�dt� f , with f �1 adjusted to remove the spuri-
ous precession. This method has been used in Figs. 12 and
13 �right hand panel� and 18.

Where the phase portrait involves finer structure, such as
the middle panel of Fig. 13, the phase portrait has instead
been obtained by

� = Im�ln�� eis��R�r�d2r� − ln�� eis��L�r�d2r�� ,

�C4�

with s=0, �1 according to whether there is a central vortex.
Since the two components are corotating in this case, such a
definition satisfies

�̇ = ��L − s�� − ��R − s�� = �L − �R �C5�

as required.
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