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Dynamics of quantum vortices in a toroidal trap
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The dynamics of quantum vortices in a two-dimensional annular condensate held under a toroidal trapping
potential composed of a harmonic term plus Gaussian term are considered by numerically simulating the
Gross-Pitaevskii equation. Families of solitary wave sequences are reported, both without and with a persistent
flow, for various values of interaction strength. It is shown that in the toroidal geometry the dispersion curve
of solutions is much richer than in the cases of a semi-infinite channel or uniform condensate studied previ-
ously. In particular, the toroidal condensate is found to have states of single vortices at the same position and
circulation that move with different velocities. The stability of the solitary wave sequences for the annular
condensate without a persistent flow is also investigated by numerically evolving the solitary wave solutions in
time. In addition, the interaction of vortex-vortex pairs and vortex-antivortex pairs is considered and it is
demonstrated that the collisions are either elastic or inelastic depending on the magnitude of the angular
velocity. The similarities and differences between numerically simulating the Gross-Pitaevskii equation and

using a point vortex model for these collisions are elucidated.
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I. INTRODUCTION

A Bose-Einstein condensate (BEC) offers an excellent
quantum system to investigate both experimentally and theo-
retically. Experimentally, virtually all of the physical param-
eters can be controlled and thus the dynamics of quantum
systems on a macroscopic scale are readily observed. It is a
challenge, theoretically, to devise relevant and accurate mod-
els to accompany the increasing number of physical phenom-
ena currently being reported. Quantum vortices are one of
such nonlinear physical phenomena that have been observed
in BECs [1-6] and that have been investigated theoretically
(see, for instance, [7-9]). In a BEC, the vortices have quan-
tized circulation and their interactions on an inhomogeneous
density background have been studied extensively [10-14].

Recent experimental interest [15-17] has shifted to focus
on BECs in toroidal trapping potentials which are now more
experimentally accessible. A BEC in a toroidal trap will form
a ring shaped condensate. The first experimental observation
of spontaneous vortex formation as the alkali gas is cooled
through the transition temperature to create a BEC has been
reported in [17] for both a toroidal and a harmonic trap. In
previous studies vortex formation through the transition tem-
perature could be attributed to a number of different factors
such as stirring of the condensate by a laser beam. The con-
ditions under which a ring condensate exists and the manipu-
lation of a condensate in a toroidal trap has recently been
considered in [ 18] and the generation of solitary waves have
been studied in [19]. Experimental interest in the dynamics
of superfluids in a ring is not new. Donnelly and Fetter [20]
noted that, in superfluid “He, vortices appear in the ring at a
particular angular velocity when vortices can first compen-
sate for the difference in irrotational velocity between the
inner and outer boundaries of the ring. Experimentally, rota-
tion of the condensate will create instabilities around the
edge of the condensate. As the rotation velocity is increased
the instabilities continue to grow and eventually form vorti-
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ces (see [21,22]). A three-dimensional toroidal trapping po-
tential composed of a harmonic term plus Gaussian term,
which creates a ring shaped condensate, might provide the
necessary energy requirements to ensure stationary solitary
wave solutions exist.

In a recent experiment, the observation of persistent flow
in a toroidal trap and the existence of vortices has been re-
ported in [16]. Persistent flow in a BEC is the persistent
circulation facilitated by the frictionless flow of a superfluid
system. A useful way to view persistent flow is to consider a
single vortex pinned to the center of the ring shaped conden-
sate. The energy at the center is a (local) minimum and as
such it will cost too much energy for the vortex to drift away
from the center. The vortex creates a constant circulation
around itself: a persistent flow. A persistent flow in a BEC is
also referred to as a supercurrent. The properties of a persis-
tent flow in a toroidal trap have been theoretically considered
in [23]. It is thought that studies on persistent flows in a BEC
held under a toroidal trap could lead to crucial insights into
the features of the critical velocity in superfluid “He and to
the fundamental relationship between superfluidity and
Bose-Einstein condensation [16].

A two-dimensional condensate with external potential trap
of the form used in [15,16] is considered,

Veud(,,2) = 3m(@i® + @3y?) + Vg exp[= 20 + y?)/wi],
(1)

for a constant potential V,,, waist wy, (the axial distance from
the laser beam’s narrowest point), mass m, and harmonic
frequency components {w,,w,} which will create the re-
quired ring shaped condensate. Reduction to a two-
dimensional condensate is equivalent to a tightly trapped, or
confined, condensate in the axial coordinate. Such a confine-
ment is experimentally achievable and reduction to two-
dimensional condensates has been theoretically considered in
[24]. Previous theoretical investigations [25-28] have con-
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centrated solely on solitary wave solutions in the absence of
a persistent flow, in particular vortex solutions, in an ideal-
ized two-dimensional annular shaped condensate where the
density is uniform within the annulus and zero outside of the
annulus (a “boxlike” toroidal trap). Their analysis uses estab-
lished point vortex model techniques from classical hydro-
dynamics and has shown that the motion of vortices is simi-
lar to the motion of classical vortices in an annular shaped
domain [29]. Trapping potential (1) creates an inhomoge-
neous condensate that is markedly different to a boxlike con-
densate.

Solitary wave sequences have previously been considered
in both two- and three-dimensional homogeneous conden-
sates [30,31], a three-dimensional cigar-shaped condensate
[32-34], and also a two-dimensional channel condensate
[10]. The toroidal geometry considered here ensures that
there are no phase differences in the condensate. As a result,
the dispersion curve of the solitary wave sequences is far
richer than has previously been seen.

This paper will focus solely on the dynamics of solitary
wave solutions in a two-dimensional condensate held under a
toroidal trapping potential. Section II will introduce the re-
quired mathematical formulation for the annular condensate
without a persistent flow. The families of solitary wave se-
quences that exist are then reported in Sec. III. In Sec. IV, the
stability of the solitary wave sequences is numerically inves-
tigated and in Sec. V the evolution and collisions of vortex-
vortex pairs and vortex-antivortex pairs are considered. Sec-
tion VI adds a persistent flow to the annular condensate and
reports the families of solitary wave sequences. Finally, the
paper ends with a conclusion (Sec. VII).

II. FORMULATION

The dynamics of an annular shaped condensate are accu-
rately described by the time-dependent dimensional Gross-
Pitaevskii (GP) equation in terms of the macroscopic wave
function ¢=iAr, 0,1),

L0y R, 2
lh_ =-——V l;b_ [Ev - Vext(r9 0) - U0|¢| ]lﬁ’ (2)
at 2m

for two-dimensional external potential trap V., (r,6). The
two-dimensional coupling constant is Uy, the mass of a bo-
son is m, and E, is the chemical potential of the system. The
external potential trap is taken to be solely in the radial di-
rection such that

Vi1, 0) = Vo (r) = Vg exp(— 2r2/w§) + %mwzr2 (3)

for a constant potential V,, waist w,, frequency
o (0=w,=0,, ©,=0), and where r>=x>+y2. For small r the
exponential term will dominate over the harmonic term and,
for a sufficiently tuned V/, a circular hole in the center of the
condensate, an inner boundary, is created where no atoms
will be present. Conversely, at larger values of r the har-
monic term will dominate causing the condensate to form an
outer boundary. Note that the toroidal trap can also be mod-
eled by an external potential trap of the form
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1 rt
Vexe(r) = —mwz()\— + 0'r2> 4)
2 b,
for o0=—1 as has been considered by many authors (see, for
example, [22]) for oscillator length b, and relative strength
of the quartic term A. Furthermore, an annular geometry can
be created by using Eq. (4) with o=+1 and placing the con-
densate into rapid rotation. Above a certain critical angular
velocity of rotation, a central hole is created in the conden-
sate resulting in an annular geometry (see [35-38]). However
only Eq. (3) will be used throughout this paper.
Equation (2) can be nondimensionalized according to

n1/2
lﬂ_’ _lp’, t— = 1,

r—a,r, (5)
a; V2w

where the transverse oscillator length is a, =(%/\2mw)!"
and the number density of the ground state is
n=gh?/(2mU,) where the nondimensional coupling potential
g has been introduced. Thus the nondimensional GP equation
describing the dynamics in the annulus is

zii—f == V2= [p—V(r) - glf’1y (6)

for chemical potential u= \EEEU/ fiw, coupling constant
g= \f'2nU0/ﬁwa2L, and where the external potential trap is

V(r) = A exp(= Pr?) + 37° (7)

for _ potential A= \EVO/ how and  inverse  waist
I=(\N2h/mwwd)". Equation (6) is a four parameter system
{g.A,l,u} and is subject to the normalization,

J ly*rdrd 6= 2wf |Prdr=1, (8)
% Vv

where V is the entire spatial domain.

A good approximation to the ground state for a particular
choice of parameters, {g,A,l, u}, can be garnered from the
Thomas-Fermi (TF) approximation, given by

12
{M—V(F)} for wu > V(r)
prp(r) = g )

0 otherwise.

The four parameter set {g,A,[, u} can be reduced to three by
substitution of TF approximation (9) into normalization con-
dition (8), i.e.,

1
w—A exp(— 1) - =1
27TJ
% 8

such that the value of the chemical potential w (say) is de-
termined by the choice of {g,A,}. An example of the ground
state for g=500, A=100, and [=0.9 is shown in Fig. 1. Note
that since Thomas-Fermi profile (9) is only an approximation
to the ground state, a numerical procedure, described in Sec.
I11, is required to find the exact ground state ¢, for a particu-
lar choice of {g,A,l}. The corresponding chemical potential
is found, by the same numerical procedure, to be u=14.72.

rdr=1, (10)
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FIG. 1. (Color online) The ground states of a condensate acting
under toroidal potential trap (7) for g=500, A=100, and /=0.9.
Frame (a) is a contour plot of the exact ground state iy, while (b) is
a slice along constant 6 of the exact ground state iy (solid line) and
the Thomas-Fermi approximation g (9) (dashed line). Distances
are measured in units of @ ; and density in units of n/azl.

The energy functional and angular momentum for the in-
homogeneous condensate are given, respectively, by [10,30]

1
E= J Vol + V)~ el + Elgléraran, (1)
v

LN PRI AN L
p=3 | -y - -y a2

The energy of the solitary waves can be determined from
E=E;—E,, where E, is the energy of the ground state in the
absence of any solitary waves and is found numerically by
evaluating Ey for ¢=1y. Alternatively, an approximate ana-
lytical expression for E, is found by evaluating E, for
=g

If solitary wave solutions are found to exist it is entirely
plausible that a multitude of possible solutions could exist
for various 6. A restriction to the type of solutions sought is
therefore taken so that only solutions with density minima
along 6= * /2 will be considered. Despite this restriction,
the essential dynamics of solitary waves in an annulus will
still be reflected.

III. SOLITARY WAVES

Solitary wave solutions of Eq. (6) that preserve their form
and move with a constant angular velocity () at constant r
subject to external potential (7) are sought. A typical ex-
ample of such a solitary wave solution is a single vortex,
which will move in the inhomogeneous condensate because
of the velocity field created by the surface of the condensate.
Other solitary waves that are sought are a vortex pair, dark
(gray and black) solitons, and finite amplitude sound
waves—rarefaction waves. Thus, Eq. (6) is recast in the
frame rotating with the solitary wave using 6’ = 8-t so that
dldt——-03d/36". Hence
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.Y
20070 =V + [ = V() = glyf1, (13)
where 6’ is replaced by 6 for convenience and is solved
subject to boundary conditions

i(r,0,1) — (r)

In the above statement for the boundary conditions, the
ground state wave function at r={0,%} is zero, i..,
#0(0)=yy(2) =0.

The solitary wave solutions are found numerically by a
Newton-Raphson iteration technique. In order to numerically
model the shape of the condensate, a cut in the infinite two-
dimensional domain is taken along #=0 and the domain is
unfurled so that the new two-dimensional rectangular do-
main in (r,6) occupies the upper half plane. This semi-
infinite numerical domain is mapped by the transformation
F=tan™!(Dr) to a finite grid (0,7/2) X (0,27), where D is a
constant chosen to lie in the range D~ 0.4—0.8. The bound-
ary conditions at #=0 and #=2 are taken to be periodic.
The resulting equations are expressed in second-order finite-
difference form. Taking 201 X200 grid points in the finite
domain, the discretized nonlinear equations are solved in po-
lar coordinates on the rectangular grid by a Newton-Raphson
iteration procedure using a banded matrix linear solver based
on the biconjugate gradient stabilized method. The accuracy
of the obtained solutions is verified by evaluating various
integral identities. Indeed, an alternative expression for the
energy can be found by taking 6— b6 for constant b in the
expressions for energy and angular momentum (11) and (12)
and considering the variational relationship

as r— {0,0}. (14)

d
—(E=Qp)|p=1 =0. 15
HE= )]s (1)
The result is an alternative expression for the energy
1| dy|?
E=J L1ov drd®, (16)
yr

which can be used as a check on the numerical results. The
accuracy of the numerical scheme is found to be excellent to
two decimal places. In Sec. IV, a time evolution of the GP
equation [Eq. (6)] in Cartesian geometry is described and can
be used as an additional check on the numerics of this sec-
tion, particularly the validity of the rectangular grid that is
used.

An initial ansatz for the numerical procedure for wave
function ¢ can be obtained from

(!/: wolr/lsol’ (17)

where ¢ is the exact ground state wave function (obtained
numerically from the TF approximation #rg) and i, is mo-
tivated by the “Tsuzuki” dark soliton solution in homoge-
neous [39] and inhomogeneous [10,33] condensates,

(18)

for constants ¢, ¢,, and ¢3 to be chosen. Notice that Eq. (18)
creates a soliton at cos #=0 to ensure that solitary wave so-
lutions exist only along 6= =* /2. An alternative ansatz

lr/,so] = icl %) tanh(c3r Ccos 0),
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which looks directly for vortex solutions can be found from
¢= ¢0¢U7 (19)
where the wave function for the vortex at (ry, 7) is

rcos O+ i(rsin 8- rg)

= . (20)
" VP2 cos? 0+ (rsin 0—ry)+2/u

Additional vortices can easily be included into Eq. (19) by
writing lﬂU:Hfi]wi, where N is the number of vortices, as
required. The position of the vortex is detected numerically
by finding zeros of the real and imaginary parts of the wave
function.

As a vortex moves close to the boundary of the conden-
sate, where y— 0, it becomes impossible to distinguish be-
tween a rarefaction wave and a vortex solution. In what fol-
lows the solitary wave solution is referred to as a “rarefaction
wave” when the numerics cannot resolve whether or not the
real (imaginary) part of ¢ changes its sign along the polar
angle (see also [10] for discussion).

An asymptotic expression for the group angular velocity
is obtained from the variation y— ¢+ ¢ in Egs. (11) and
(12) and allows a comparison with the results of the numer-
ics to be made. On use of the GP equation [Eq. (13)] one

obtains
oFE
dp

with the derivatives taken along the direction of propagation
of the solitary waves. To obtain an approximation to the an-
gular velocity () as a function of r, the position of the vortex
[Eq. (21)] is rewritten as

_JE _ JEldr,
“ap aplar,

(22)

for the energy and angular momentum given as in Egs. (16)
and (12), respectively.

Of the three parameters contained within the system
{g,A,l} (the value of u is determined from the other three),
the interaction strength g can be considered to be the domi-
nant factor. The interaction strength directly determines the
number of healing lengths that span the condensate and thus
in turn directly determines the number of solitary wave
solutions, along a constant €, which can be present in the
condensate. A range of values of g has been simulated
(30<g<1000) which two typical examples will be detailed
below. In each example the energy-angular momentum dis-
persion curve is symmetric about p=0. The effect of this
symmetry is to simply consider solitary wave solutions that
move with the opposite circulation. In order to aid the analy-
sis throughout this section different shades of colors will be
used. Shades of black will represent a condensate with one
solitary wave solution present, shades of dark gray (red) will
represent a condensate with two solitary wave solutions
present, and shades of light gray (green) will represent a
condensate with either three or four solitary wave solutions
present.
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FIG. 2. (Color online) The energy-angular momentum disper-
sion curve for the annular condensate governed by the GP equation
[Eq. (13)] for parameter set {g,A,[}={150,40,1}. A single vortex
solution for #=7/2 is represented by the thick solid black line
while the thick dashed black line represents a rarefaction wave for
0=m/2. The thick dashed dark gray (red) line corresponds to a
rarefaction wave for @= = 7/2. The dispersion curve is symmetric
about p=0. Energy is measured in units of 7w and angular momen-
tum in units of (mhw)"2.

A. Low interaction strength

A condensate with a low interaction strength will first be
considered with the values of the parameters taken as
{g,A,0}={150,40,1} with the corresponding value of the
chemical potential ©=8.59. The complete family of solitary
wave solutions in the annulus is then found and the energy-
angular momentum dispersion curve is shown in Fig. 2. Two
distinct solutions are found to exist. The first is a single
vortex (thick solid black line) of positive circulation (p>0)
which exists for angular velocity —0.29 =) =<0.40 and along
0=/2 [40]. The vortex will transcribe circles around the
origin for constant angular velocity and for constant radius
ro- At 2=0.38, the single vortex loses its circulation and
becomes a rarefaction wave which is present for increasing
angular velocities until the termination angular velocity is
reached (for the range of parameters chosen here, the termi-
nation angular velocity is ¢=0.40). No solutions are present
above the termination angular velocity.

A plot of the angular velocity of the vortex against dis-
tance, r(, from the center of the condensate is shown in Fig.
3. The shape of the curve is qualitatively similar (in the bulk
of the condensate) to that observed in a boxlike toroidal con-
densate (see [25,27]). However, at the boundaries of the con-
densate there is no qualitative agreement: the curve of Fig. 3
reaches finite values for the angular velocity at the inner and
outer boundaries. Notice that the vortex has zero angular
velocity when ry=1.61.

For ()<<-0.29 the single vortex solution does not exist.
Instead a cusp is formed similar to that observed in semi-
infinite cigar-shaped condensates [10,33]. Over the cusp,
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FIG. 3. The angular velocity () plotted against the distance r of
the single vortex of positive circulation depicted in Fig. 2 for
p>0. The inner edge of the condensate is at r=R;=0.78 and the
outer edge of the condensate is at r=R,=4.65. Angular velocity is
measured in units of (w/m)'? and distance in units of .

where now the angular velocity is increased, a second solu-
tion is found to exist as two rarefaction waves along
0= = /2 [thick dashed dark gray (red) line in Fig. 2]. The
two rarefaction wave solution exists all the way to p=0
where a maximum on the dispersion curve is attained and the
solution corresponds to a black soliton.

A sample of the two distinct solutions on the dispersion
curve is provided by the contour plots in Fig. 4. The single
vortex of positive circulation at 1=0.1 [frame (a)] and the
two rarefaction waves at 1=0.2 [frame (b)] are depicted.
Note that by Eq. (21), the angular velocity is the gradient of
the energy-angular momentum dispersion curve.

B. Midrange interaction strength

As the interaction strength is increased new features are
seen to develop in the energy-angular momentum dispersion
curve that are unexpected. An example of the features ob-
served to occur can be seen by taking the parameter set
{g.,A,1}={500,100,0.9} with the corresponding value of
chemical potential u=14.72. The dispersion curve is given in

0.01 0.02

FIG. 4. (Color online) Two contour plots depicting two
solutions of the GP equation [Eq. (13)] for parameter set
{g.,A,1}={150,40,1}. Frame (a) contains a single vortex at Q=0.1
(rp=2.49) and frame (b) pair of rarefaction waves along
0= = /2 for (1=0.2. Distances are measured in units of a | .
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FIG. 5. (Color online) The energy-angular momentum disper-
sion curve for the annular condensate governed by the GP equation
[Eq. (13)] for parameter set {g,A,l}={500,100,0.9}. There are
seven distinct branches (i)—(vii) (the others can be obtained by sym-
metry about p=0). Branch (i) corresponds to a single vortex of
positive circulation (thick solid black line), branch (ii) corresponds
to two vortices on #=/2 [thin solid dark gray (red) line], branch
(iii) corresponds to a single vortex of negative circulation (thin solid
black line), branch (iv) corresponds to two vortices at symmetric
distances on 6= = 7/2 [thin dashed-dotted dark gray (red) line],
branch (v) corresponds to the four-vortex solution [thick solid light
gray (green) line], branch (vi) to a three-vortex solution [thin
dashed-dotted light gray (green) line], and branch (vii) corresponds
to two vortices at antisymmetric distances on 6= = 7/2 [thick solid
dark gray (red) line]. Units of energy and angular momentum are as
in Fig. 2.

Fig. 5 and selections of contour plots for the different solu-
tions of the dispersion curve are given in Figs. 6 and 7. Note
that the dynamics within this particular system are much
more diverse than for the low interaction strength g=150
detailed in Sec. III A. The reason for the increase in the
number and type of solutions realized is the increase in the
condensates’ spatial extent. It is now possible for the conden-
sate to contain at least two solitary wave solutions for any
0=+ 7/2.

The dispersion curve contains seven distinct branches
with each branch allocated labels (i)—(vii). At zero energy
and zero angular momentum there is no solitary wave solu-
tion; however an increase in energy and (positive) angular
momentum will create a single solitary wave solution mov-
ing near the termination angular velocity at the far edge of
the condensate along #=/2. The solitary wave solution is a
single vortex of positive circulation. As the angular velocity
is decreased, branch (i) in the dispersion curve is transcribed
and the position of the vortex is seen to move toward the
center of the condensate. At ()=-0.11 a kink develops in the
single vortex solution branch with energy and angular mo-
mentum given by (E,p)=(0.13,0.70). The same single vor-
tex of positive circulation solution is found to be continuous
over the kink. The solution is present until 1=-0.12 at
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FIG. 6. (Color online) Contour plots of the three different con-
figurations (i)—(iii) given on the dispersion curve (Fig. 5) for angu-
lar velocities 1=0.1, =0, and Q=0.1, respectively. Distance is
measured in units of a .

which point the branch terminates with the vortex at
T 022.35.

A new solution is found to exist that joins with branch (i).
The new branch, (ii), is characterized by the creation of a
new vortex of negative circulation at the far edge of the
condensate on f=m/2 [see Fig. 6, frame (ii) for a contour
plot of the new solution]. Branch (ii) exists for —0.12=<()
=0.13 and includes a solution where 1=0. As the angular
velocity increases both the vortex of positive circulation
(near the inner edge) and the vortex of negative circulation
(near the outer edge) move toward the origin. At (1=0.13,
where the branch terminates, the positive vortex reaches the
inner edge of the condensate and is lost while the negative
vortex is at ry=2.77.

A new cusp is formed on the dispersion curve at
(E,p)=(0.13,0.34). As the angular velocity is decreased a
new branch is traced out [branch (iii)] which is characterized
by the existence of a single vortex of negative circulation.

PHYSICAL REVIEW A 79, 043620 (2009)

v)

-5

0.005 0.01

FIG. 7. (Color online) Contour plots of the four different con-
figurations (iv)—(vii) given on the dispersion curve (Fig. 5) for an-
gular velocities 1=0.2, Q=0.1, Q=0.1, and Q=0.1, respectively.
Distances are measured in units of a | .

Further decreasing the angular velocity shifts the single vor-
tex toward the outer edge of the condensate until at
0 =-0.30 the vortex is lost and the branch terminates.

A further solution can be found by increasing the angular
velocity and creating a new branch, (iv). Branch (iv) is char-
acterized by the appearance of two identical vortices at the
far edge of the condensate on 6= * /2 [see Fig. 7, frame
(iv)]. The cusp formed by branches (iii) and (iv) is unique to
all the other cusps in the dispersion curve. At the cusp the
dynamics contain no solitary wave solutions, similar to the
termination point of branch (i) at the termination speed
(p=0). In the experimental procedures it is possible that dis-
turbances caused outside the far edge of the condensate
could theoretically manifest into forming solutions exhibited
by branch (i), (iii), or (iv).

The angular velocity range of existence of branch (iv) is
—0.30=0=0.13 during which the energy and angular mo-
mentum change considerably. As the angular velocity is in-
creased the two vortices move toward the inner edge of the
condensate each keeping the same fixed distance from the
origin. The solution can be viewed as a symmetric pair of
vortices on f= = 77/2 [there is symmetry about y=0]. The
solution is present to negative angular momentum and termi-
nates when (E,p)=(0.23,-0.38) with the vortices at
T 022.54.

At this point the dispersion curve forms a three-way cusp.
Choosing to follow the thick solid light gray (green) curve in
Fig. 5 [branch (v)] and thus decreasing the angular velocity
result into two new vortices being created at the edge of the
condensate on 6= = /2 to produce a four-vortex configura-
tion [see Fig. 7, frame (v)]. The two new vortices are of
opposite circulation compared to the two existing vortices.
As the angular velocity is decreased toward zero the four
vortices all move toward the inner edge of the condensate
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FIG. 8. (Color online) Contour plots for {1=0 for branches (v)
and (vi) on the dispersion curve (Fig. 5) showing the occurrence of
a black soliton. Distances are measured in units of a | .

(the positions of the vortices on #=7/2 always remain sym-
metric to those on #=—1r/2). When the angular velocity be-
comes zero, two black solitons occur [see Fig. 8, frame (v)].
For negative velocities the dynamics are symmetric to those
for positive velocities such that when the branch terminates
at 0=-0.13 for (E,p)=(0.23,0.38), the configuration is
identical to that at (E,p)=(0.23,-0.38).

Starting at (E,p)=(0.23,0.38) and instead choosing to
follow the thin dashed-dotted light gray (green) curve in Fig.
5, and thus tracing out branch (vi), the penultimate configu-
ration is realized. Here the dynamics consists of three vorti-
ces, with the new vortex appearing at the edge of the con-
densate for 6=m/2 (say). Thus the configuration consists of
two vortices on §=1/2 and a single vortex on #=—1/2 [see
the contour plot of Fig. 7, frame (vi)]. Increasing the angular
velocity will cause all the vortices to gradually move toward
the center of the condensate until at zero angular velocity
when the two vortices on f=/2 decay to form a black
soliton while the single vortex on #=—7/2 remains [see Fig.
8, frame (vi)]. For positive velocities the single vortex con-
tinues to move toward the center of the condensate, but the
other two vortices now move toward the outer edge of the
condensate. As the branch terminates at (1=0.13, the furthest
of these two vortices reaches the outer edge of the conden-
sate and disappears. Meanwhile the two remaining vortices
(on opposite sides of the condensate) are at different radii.

The final realizable configuration is mapped out by branch
(vii) [see Fig. 7, frame (vii)]. The two vortices can be de-
scribed as an antisymmetric pair since they are at different
radii (r;=2.61, r,=3.38 for the vortices on #=+m/2 and
0=—/2, respectively, for {1=0.1) and their dynamics be-
have differently. As the angular velocity is decreased, the
vortex at r; will move toward the inner edge of the conden-
sate while the vortex at r, will move toward the outer edge of
the condensate. At zero angular velocity r;=r, (note that
there is no black soliton here).

C. Effect of A and [

This section will consider in more detail the typical effect
that changing the values of the parameters A and / has on the
dynamics. As explained before, the interaction strength g is
the parameter that is most responsible for the width of the
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condensate and is thus the crucial parameter determining the
type of dynamics that can be exhibited in the condensate. As
a result it is thus expected that a change in A and [/ will not
change the number of solitary waves that can span the con-
densate at any one time (since changing A and [ is expected
to only have a minor effect on the width of the condensate,
and thus the number of healing lengths that span the conden-
sate).

Thus consider potential trap (7). Taking the derivative
with respect to r and searching for the minimum one obtains

v
Prl 2APr exp(=I*r*) +r=0=r= +1"'[In(2A1*)]"?,
P

(23)

where the positive root is chosen and 2A2>1, both to en-
sure r>0. Thus the value of A and [/ effectively shift the
position of the minimum of the potential and hence shift the
position of the maximum of the density of the condensate.
The effect will be to alter the range of angular velocities
which a particular solitary wave solution exists; however it is
expected that A and / will have only a minor effect on the
width of the condensate, which is dominated by the har-
monic term in Eq. (7).

A comparison of the energy-angular momentum disper-
sion curve for two different parameter sets is shown in Fig. 9
for g=500 and parameter sets: (a) {A,l}={50,0.9} and (b)
{A,1}={50,1.5}. The dispersion curves can then be compared
to Fig. 5 where {A,[}={100,0.9}. The value of g for all pa-
rameter sets is the same. Parameter sets (a) and (b) vary,
respectively, one of the parameters {A,l} of Fig. 5 while
holding the other fixed. Thus a direct comparison into how A
and [/ affect the dynamics of the condensate can be achieved.

As can be seen in Fig. 9 the effect of changing A is almost
negligible [compare Figs. 5 and 9(a)]. Perhaps the only no-
ticeable difference is a slight increase in the maximum en-
ergy, Eo . as A is decreased. The increase in E,,, is to be
expected since decreasing A will increase the width of the
condensate slightly. The effect of changing / is again fairly
minimal [compare frames (a) and (b) of Fig. 9]. However
there are a couple of points that can be made. First, increas-
ing / has the effect of increasing E,,, fairly considerably
[from E,,,=0.28 on frame (a) to E,,,=0.35 on frame (b)].
Second new features have developed in the dispersion curve
for the three [thin dashed-dotted light gray (green) curves]
and four [thick solid light gray (green) curves] vortex solu-
tions. Ignoring mirror symmetry about p=0, the dispersion
curve in frame (a) contains a single three-vortex configura-
tion and a single four-vortex configuration. In contrast the
dispersion curve in frame (b) now contains two distinct
three-vortex configurations and four distinct four-vortex con-
figurations [see the blowup of the region near E,,,, on Fig.
9(b)]. Again the new configurations are to be expected;
changing / will shift the position of the maximum density of
the condensate without altering the width of the condensate
much.

The additional configurations that occur by changing / are
important, but the essential dynamics of the problem are un-
altered; merely a few new configurations to already existing
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FIG. 9. (Color online) A comparison of the energy-angular
momentum dispersion curve for two different parameter sets with
g=500. Frame (a) has {A,[}={50,0.9} and frame (b) has
{A,[}={50,1.5}. The colors are as in Fig. 5. Units of energy and
angular momentum are as in Fig. 2.

solutions are found (for instance, the effect of increasing g
might be to create new solutions where greater than four
vortices in the condensate are present). Indeed as g is raised
to high interaction strengths many more distinct solutions
will be present.

D. Discussion

The dynamics of a condensate held under a toroidal trap-
ping potential have been described for two particular cases:
{g,A,1}={150,40,1} and {g,A,[}={500,100,0.9}. For
{g.,A,1}={500,100,0.9} the solutions on branch (i) and
branch (iii) have both been labeled vortex solutions (see Fig.
5) with the vortex on branch (i) possessing positive circula-
tion and the vortex on branch (iii) possessing negative circu-
lation. The contour plots of the two branches [see Fig. 6,
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0.1F

FIG. 10. The angular velocity () plotted against the distance r;
of the solutions of branches (i) (thick line) and (iii) (thin line) de-
picted in Fig. 5 for p>0. The inner edge of the condensate is at
r=R;=1.22 and the outer edge of the condensate is at r=R,=5.78.
Units of angular velocity and distance are as in Fig. 3.

branches (i) and (iii)] indicate that the solutions are vortices.
However this raises an interesting anomaly. Figure 10 shows
the angular velocity against distance plot for branches (i) and
(iii). There is one point on the figure in which the curves
intersect. At this intersection, the values of the angular ve-
locity and the distances from the center of the condensate are
equal for both branches, however the vortices possess differ-
ent circulations.

A plot of the real and imaginary components of the wave
function (y=u+iv), Fig. 11 for the two branches, shows that
they do indeed contain vortex solutions (with the plots of the
wave function across the direction of propagation confirming
that the vortices have opposite circulation). However, closer
inspection of the plots around =7 shows that the solution of
branch (i) depletes to the ground state at a larger value of r
than the solution of branch (iii). This indicates that branch
(iii) possibly contains both a vortex solution and another
embedded solution. Recall that branch (iii) was created when
one of the vortices of branch (ii) reached the inner edge of

type I type IT
0.2 0.2

-0.1

-0.2 -0.2

2T _0'20

2m

<5
< 5

FIG. 11. Plots of the real (solid line) and imaginary (dashed
line) components of the wave function (a) across the direction of
propagation and (b) along the direction of propagation of the vortex
for {g,A,[}={500,100,0.9} and for the two single vortex cases type
I and type II [branches (i) and (iii) in Fig. 5, respectively)] for
)=0.1. Distance is measured in units of a , .

043620-8



DYNAMICS OF QUANTUM VORTICES IN A TOROIDAL TRAP

the condensate and decayed into sound waves [in fact, the
vortex that decays into sound waves is the vortex of branch
(i)]. Therefore, the further solitary wave solution contained
in branch (iii) is the remnants of the rarefaction waves cre-
ated when this vortex decayed. Thus the solution of branch
(i) can indeed be called a (true) vortex. However the solution
of branch (iii) is actually a vortex with rarefaction waves
embedded in the condensate.

To highlight their differences but at the same time to
stress their similarities, the vortex of branch (i) will be de-
noted “type I” and the vortex and rarefaction waves of
branch (iii) will be denoted “type IL.” Type II solutions will
often be referred to as vortex solutions in order to emphasize
the similarities with type I solutions.

For an annular shaped condensate the method of images
will produce two infinite sequences of image vortices. To see
this consider a single vortex of positive circulation in the
condensate at position r=r, with the inner edge of the con-
densate at R; and the outer edge at R, so that R; <ry<R,.
First consider the image of the vortex with the inner edge of
the condensate. By the Milne-Thomson circle theorem [41]
the image vortex, named [;;, will be of negative circulation
and will be at r:R%/ ro- The image vortex [;; will itself have
an image vortex, of positive circulation, associated with the
outer edge of the condensate. The new image will be at
r:R%rO/R% and is named /,,. The process can be repeated
with 1, now producing an image vortex with the inner edge
of the condensate and so on.

Second consider the image of the vortex with the outer
edge of the condensate. The image vortex, named /,;, will be
of negative circulation and be at position r=R%/ ro- The im-
age vortex [/,; will have an associated image vortex with the
inner edge of the condensate to produce a vortex of positive
circulation, named /,,, at r=R%r0/ R%. Again the process can
be repeated.

The upshot is that two infinite sequences of image vorti-
ces are produced. For <R, the first two terms of the se-
quence of image vortices are

R’r, R?
< 1_2()(+) < i (G < Rl’ (24)
R; To

where a sign (=) has been added to indicate the circulation

of the vortex. For R, <r, the first two terms of the sequence
of image vortices are

R3ro R

. >—2<+>>—( )>R2.

1 To

(25)

It was seen in [42] that the effect of a boundary in an
inhomogeneous condensate was to alter the position of the
image vortex by an amount equal to the depletion in density.
The result was used in [10] for a channel condensate to find
an estimate for the velocity of the vortex as a function of
distance from the center of a channel. In the annular shaped
condensate there is an asymmetry of the image vortices since
the inner edge of the condensate is depleted by an exponen-
tial term and the outer edge of the condensate is depleted by
a quadratic term. The geometry of the problem unfortunately
does not lend itself to easy calculation of an analytical ex-
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pression for the angular velocity of a vortex as a function of
distance r from the center of the annulus. Various simplifi-
cations can be made in the hope of attaining an expression,
among them being to consider only the two closest image
vortices (I;; and I,,;). However it has been out of reach to find
an analytical expression for the angular velocity.

IV. STABILITY

The stability of the solitary wave sequences raises an in-
triguing question. Because quantized vorticity is an impor-
tant feature of condensate systems, the manipulation and ob-
servation of vortices are crucial features of any experiment
involving vorticity. Here, a numerical approach is taken to
investigate the stability of the solitary wave sequences in
Sec. III.

Families of solitary wave sequences were found in Sec.
III for different values of the parameters {g,A,[}. The stabil-
ity analysis in this section will concentrate on the parameter
set {g,A,[}={500,100,0.9} which was described in detail in
Sec. III B. This parameter set is a typical example of the
dynamics found in an annular condensate and the energy-
angular momentum dispersion curve is displayed in Fig. 5.

To elucidate the stability of the seven distinct branches, a
time evolution of the found solutions is performed. Specifi-
cally, the time-dependent nondimensional Gross-Pitaevskii
equation describing the dynamics in annular condensate (6)
with toroidal trap (7) is solved using fourth-order finite dif-
ference and fourth-order Runge-Kutta scheme. The station-
ary solutions found in Sec. III B were found on an irregular
polar grid. To translate the solutions to a regular Cartesian
grid, cubic splines are used. This different numerical scheme
can additionally be used to check the validity of the rectan-
gular grid of Sec. III and therefore the validity of the time-
independent solutions of Sec. III.

The solutions in each branch, for various angular veloci-
ties, are evolved in time until 7~ 150, a long enough time
period to ensure a number of full revolutions of the solutions.
It is expected that, over the course of a few revolutions, the
unstable solutions will show one of two features: either they
will decay into sound waves or in the case of vortices will
drift toward the inner or outer edge of the condensate. The
stable solutions are expected to be unchanged after the time
evolution. It is emphasized that the approach taken here does
not prove the stability, or instability, of the respective
branches of the energy-angular momentum dispersion curve,
but this approach gives a strong indication to the respective
stability of the different solutions.

Of the seven branches of Fig. 5, it is observed that four
branches are stable—branches (i), (iii), (iv), and (vii)—while
three branches are unstable—branches (ii), (v), and (vi). The
relative stability of the different branches is summarized in
Fig. 12. The motions of the single vortex of types I and II
[branches (i) and (iii) of Fig. 5, respectively] are both stable.
A plot of the position of the vortex in each case is shown in
Fig. 13 for angular velocity 2=0.1. One of the other stable
branches, branch (iv), will be considered in more detail in
Sec. V A.

Turning now to the unstable solutions, branch (v), where
there are four vortices of alternate circulation along
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FIG. 12. The energy-angular momentum dispersion curve for
the annular condensate for parameter set {g,A,[}={500,100,0.9} of
Fig. 5. The relative stabilities of the different branches are indi-
cated: stable (solid line); unstable (dashed line). Units of energy and
angular momentum are as in Fig. 2.

0= = /2, is considered as an example of the dynamics ob-
served. Figure 14 shows snapshots of the contour profile at
different intervals of time for angular velocity =0.1. As is
seen, slight disturbances to the velocity profile cause the
four-vortex solution to decay. Initially, instabilities occur
(t=11), causing the four vortices to decay into two single
vortices and sound waves (¢=12). After a short time interval,
two vortices are observed to remain in the condensate which
is now filled with sound waves (r=26). The decay of the
vortices in branches (ii) and (vi) is similar.

The relative stabilities of the seven branches are to be
expected. Vortex rings and pairs in an infinite homogeneous
condensate were found to be stable [31,43] as well as vortex
rings and pairs in a semi-infinite channel condensate [33].
However multiple vortex rings and pairs are unstable in these
geometries. For the case considered in this paper, the un-
stable solutions are ones which there exist two (i.e., multiple)
vortices along the same polar angle. The two vortices will

511 5l 1l
>0 0
-5 -5
-5 0 5 -5 0 5
T T

FIG. 13. The path (gray lines) of the single vortex solutions of
type I and type II for 2=0.1 for integration forward in time. The
vortices are at r=3.11 and r=2.87, respectively, and are expected to
be stable. The edges of the condensate are the black lines and are at
r=R,=1.22 and r=R,=5.78. Distance is measured in units of a | .
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FIG. 14. (Color online) Contour profiles of the stationary solu-
tion for Q=0.1 of branch (v) for four vortices placed along
6= = /2 at different intervals in time. The decay of the solution
over time indicates instability. Distance is measured in units of a | .

decay into a single vortex and sound waves (see Fig. 14). In
contrast, solutions that contain only a single vortex along a
polar angle are stable. Indeed, for branch (vi) where there are
two vortices along #=/2 and one vortex along O=-m/2,
the instability develops along 6=/2 while the single vortex
along #=—m/2 remains stable. However, over time the sound
waves from the decay of the two vortices along O=/2
propagate through the condensate and render the single vor-
tex unstable.

V. EVOLUTION AND COLLISIONS OF SOLITARY WAVES

The evolution of vortices in multiply connected domains
has received much attention over the years. The majority of
the focus has been on modeling classical fluid dynamical
situations of interest, for example, the motion of a vortex
around islands [44] or through a gap in a wall [45,46]. Tra-
ditional hydrodynamical methods for solving such situations
revolve around a point vortex model which enables a reduc-
tion in the dimension of the system while capturing all the
essential dynamics. Point vortex models can also be success-
fully applied to annular condensates (see [25-28]). However
the point vortex model relies on incompressible dynamics so
the density in the bulk of the condensate is constant and is
zero outside of the condensate. Thus, interactions between
the background condensate and the vortices are forbidden
and so the transfer of energy between the vortices and the
background condensate does not occur. Instead, vortices ini-
tially in the condensate will remain in the condensate. Decay
of vortices is therefore not possible using a boxlike trap and
a point vortex model. It has already been seen (Sec. IV) that
interactions with the background condensate can have a sig-
nificant effect on the dynamics. Figure 14 shows that the
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interactions between the background condensate and the four
vortices result in an instability developing and the decay of
two of the vortices into sound waves.

Experimentally, collisions of three-dimensional solitary
waves have been observed in [47] and a recent theoretical
study [48] considered the head-on collisions of vortex rings
and solitons in a cigar-shaped condensate. It was observed in
[48] that, depending on the speed of approach, the interac-
tions of the solitary waves can be elastic or inelastic, with the
solitary waves either repelling, passing through, or annihilat-
ing each other. Collisions where the solitary waves pass
through each other (elastic collision) are also forbidden by
point vortex models.

In a recent paper, Li er al. [14] considered vortex-
antivortex pairs in a two-dimensional harmonically trapped
condensate. In such a condensate it becomes difficult to
simulate vortex-vortex or vortex-antivortex collisions. In-
stead a toroidal geometry explicitly allows this possibility.
This section will consider the evolution of vortex-vortex
pairs and vortex-antivortex pairs in the annular condensate
by numerically simulating the GP equation [Eq. (6)] by the
same method employed in Sec. I'V. It is noted that, by solving
Eq. (6) with toroidal trap (7), the bulk condensate density is
not constant and thus the simulations in this section will
provide a comparison with the point vortex models em-
ployed in previous papers [25-28].

The parameters of the condensate are again chosen to be
{g,A,0}={500,100,0.9}. The evolution and collisional dy-
namics of two vortices are the main focus and thus the initial
states for the condensate will contain two vortices, one along
O=m/2 and one along f#=-m/2. As detailed before, there
exist two distinct single vortex solutions denoted type I and
type II [branch (i) and branch (iii) on Fig. 5, respectively].
The solutions on these branches are isolated (note that it is
not the vortex solution that is isolated, but the complete so-
lution in the absence of the ground state). The initial state
can then be formed from = o, W, for ground state
and vortex states ¢, [Eq. (20)] for vortices along
6= = /2. Different combinations and different circulations
of the single vortex solutions of type I and type II are con-
sidered.

A. Vortex-vortex pair

Consider first the evolution of two vortices of type I of the
same circulation and placed at equal radii on opposite sides
of the condensate. As expected, the vortices traverse paths of
constant radius and move with the same angular velocity.
The paths of the vortices are shown in Fig. 15(a) for vortices
placed at r,=3.82 where the angular velocity is 1=0.2. Also
shown in Fig. 15(b) is the identical situation but now for
vortices of type II placed at radii ry=4.38 where the angular
velocity is 1=—-0.2. Note that the construction of these mod-
els forms condensates that are identical to branch (iv) of the
dispersion curve in Fig. 5 which was shown to be numeri-
cally stable. However, for a given radii of the two vortices,
the angular velocity is different in all cases.

B. Vortex-antivortex pair

Next, the interactions of type I and type II vortices are
considered. A vortex of type I at §=—=/2 and a vortex of
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FIG. 15. The path (gray lines) of vortices placed initially on
opposite sides of the condensate with the same circulation. Frame
(a) contains two vortices of type I of Fig. 5 at ry=3.82 at
0=+ /2 and frame (b) contains two vortices of type II at
ro=4.38. The edges of the condensate are the black lines and are at
r=R;=1.22 and r=R,=5.78. Distance is measured in units of a .

type II at 6=m/2 are placed at opposite radial position
ro=3.62. The vortices have opposite circulation, however at
ro=3.62, the vortex of type I has positive angular velocity
(2=0.18), whereas the vortex of type II has negative angular
velocity (0=-0.1). Thus the vortices are expected to move
toward one another but with different magnitudes of angular
velocity. Indeed, as time evolves, the vortices begin to ap-
proach each other along the same radii with their initial an-
gular velocities. However as the distance between the vorti-
ces decreases, the vortices begin to lose angular velocity and
move toward the center of the condensate. They continue to
move toward the center of the condensate until they reach
the inner boundary where they both decay into sound waves.
A selection of snap shots of the contour profile in Fig. 16 at
different time intervals shows the process.

The collision of the two vortices of type I and type II, has
opened up the question as to whether there is an analogy
with the collisional properties outlined by Komineas and
Brand [48]. For solitary waves in a cigar-shaped trap, the
head-on collisions were elastic for low and high velocities of
approach but were inelastic for intermediate values of veloc-
ity. To investigate the elasticity of the collisions in an annular
condensate, a series of simulations for different angular ve-
locities was considered for two vortices both taken to be of
type I and placed on opposite sides of the condensate at the
same radius but with opposite circulations. The three angular
velocities chosen are 1=0.1 (with corresponding ry=3.11),
0=0.2 (ry=3.82), and Q=0.3 (ry=5.15). The three simula-
tions are outlined in Figs. 17-19, respectively.

When the angular velocity is small ((2=0.1), initially the
vortices approach one another with constant angular velocity.
However as the distance between the vortices begins to re-
duce, their influence on each other begins to take effect and
dominate the flow in the condensate. At such time, the angu-
lar velocity is reduced and the vortices move to a new radius
where they begin to separate again at a new constant angular
velocity. The process is repeated when the vortices next meet
at the opposite side of the condensate; however now the vor-
tices move back to the original radius and angular velocity.
The process continues forever and is therefore elastic: the
vortices upon collision merely transfer to a new energy and
angular momentum configuration. In Fig. 17, a plot of the
paths of the vortices is provided.
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FIG. 16. (Color online) Contour profiles of the evolution of one
vortex of type I placed at §=—m/2 of Fig. 5 and one vortex of type
II at #=m/2. Both vortices are initially at r=3.62 and have opposite
circulation. Distance is measured in units of a | .

As the angular velocity is increased to {1=0.2, the vorti-
ces again upon collision slow down and move to a smaller
radius. However, the vortices now possess too much energy
to simply find a new radius to move along. Instead the vor-
tices propel each other toward the inner edge of the conden-
sate where they decay into sound waves. A similar process
was observed to occur for the vortex-antivortex pair consid-
ered in Fig. 16. Contour plots in Fig. 18 at different time
intervals for (1=0.2 show the inelastic collision and decay
process.

Further increasing the angular velocity will cause the col-
lisions to become elastic again. Taking 1=0.3 as a typical
example of the dynamics observed, the vortices now pass
through one another and continue in their original direction
of motion. However, during each collision a fraction of the
energy of the vortices is lost to sound waves. Over time,

-5
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x

FIG. 17. The path (gray lines) of vortices of type I of Fig. 5
placed initially on opposite sides of the condensate with opposite
circulation and with radius ry=3.11. The edges of the condensate
are the black lines and are at r=R;=1.22 and r=R,=5.78. The
angular velocity is 1=0.1. Distance is measured in units of a | .

PHYSICAL REVIEW A 79, 043620 (2009)

5 t=0 5 t=7
= 0 0
-5 -5

-5 -5

Ko
8

0.005 0.01 0.015 0.02

FIG. 18. (Color online) Contour profiles of the evolution of
vortices of type I of Fig. 5. Both vortices are initially at ry=3.82
and have opposite circulation. The angular velocity is 1=0.2. Dis-
tance is measured in units of a | .

therefore, the vortices slowly begin to lose energy. The en-
ergy lost during the collision to sound waves can be deter-
mined by
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FIG. 19. (Color online) Contour profiles of the evolution of
vortices of type I of Fig. 5. Both vortices are initially at ry=5.15
and have opposite circulation. The angular velocity is (1=0.3. The
vortices pass through each other between r=5 and 7=6. Distance is
measured in units of a | .
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(26)

where E, is the energy before collision and E,, is the energy
after collision and where E, is inferred from the angular
velocity of the vortices after the collision. The value of the
energy loss has been calculated after a number of collisions
for 1=0.3 and is found to be always less than 1%. Figure 19
shows contour plots of the initial collision (between =5 and
t=6) and a plot of the state of the system after a long evo-
lution (r=150).

The correspondence of the dynamics with the dynamics
observed in [48] for the cigar-shaped condensate is evident.
For the annular condensate, high and low angular velocities
possess elastic collisions, whereas intermediate values of an-
gular velocity possess inelastic collisions.

Another striking feature of the interaction of the dynamics
in the annular condensate is the similarity of Figs. 13, 15,
and 17 to the dynamics observed in [25,28] by a point vortex
model. Here, the figures show the motion of the vortices as
time is evolved. In inhomogeneous condensates where the
density varies over all space, the motion of the vortices is
because of the density gradients’ depletion at the boundary
(see [10]). The model detailed in Sec. IV and this section to
find the evolution of vortices considers the depletion of the
density gradient. However, the point vortex model does not
take into account the density gradient. The two models give
the same trajectories but different velocities for each trajec-
tory for both type I and II solutions. The point vortex model
therefore provides a qualitative but not quantitative represen-
tation of the dynamics of the elastic collisions. Furthermore
the point vortex model will not be able to capture any of the
inelastic collisions.

VI. PERSISTENT FLOW

A persistent flow (supercurrent) has been observed to oc-
cur in a toroidal trap in [16], where the creation of vortices
was also seen. The dynamics of solitary waves in a toroidal
trap with a persistent flow present are readily obtained by a
simple adaptation of the theory presented in Sec. II. As noted
before, a persistent flow can be characterized by the exis-
tence of a vortex at the origin. Therefore take the nondimen-
sional GP equation [Eq. (6)] with the same trapping potential
(7). Now consider the transformation of the wave function

=1 exp(if) which is equivalent to placing a singly quan-
tized vortex at the origin. Then, the modified GP equation
now reads

KL . 2idy ( . 1>A
2i— =-V2+ S— = - V() - gli> - = | .
Ly W+ 250 V(r) - gyl 2 ¥

(27)

Transfer to the rotating frame using 6 =60-¢, so that
d/dt——-0d/d6', and such that Eq. (27) becomes
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where the hat (') notation for ¢ and the dash ( ') notation for
0 have been dropped for convenience of notation. From now
on ¢ will refer to the wave function in the condensate with a
persistent flow. Equation (28) describes the dynamics of soli-
tary wave solutions in a toroidal trap with a persistent flow.
Solitary wave solutions that move with a constant angular
velocity () at constant r are sought by the same numerical
procedure introduced in Sec. IIL.
Normalization condition (8) is unchanged,

f |yrdrdo=2m f |?rdr=1, (29)
V y

where V is the entire spatial domain. The Thomas-Fermi ap-
proximation is now updated to be given by

1 1 1/2
u—A exp(- lzrz) - 51’2 -3

Yop(r) = .
8

while the modified energy functional is

(30)

1 1 i (.9
Ep= EJ Vil + (V(r)—ﬂ+—2>|¢f|2+iz<l/f*—w
Vv r

%

A
20~ Va0 )
8 14
+E|<ﬂ| rdrd, (31)
which can be obtained from the transformation
— pexp(if) in Eq. (11). The energy is then obtained from

E=E;—E,, where E, is the ground state energy and is evalu-
ated as Eg=Ef|¢0. Note that as expected

1%
Zz—lp = 5—Ef (32)
a oY

The form of the angular momentum, however, is not so
clear. Applying the transformation y— i exp(i6) to Eq. (12)
will give

i PN N
Pl—zfv(w lﬁo)ae (¥ %)(90 |¢ ¢o| drdo

(33)

for ground state ¢,. However this particular form of the an-
gular momentum will be rejected and instead the following
form [note its similarity to Eq. (12)] of angular momentum
will be used,
i w9
== - — (" = ) —drdé.
p 2jv<¢ e = =)

(34)

The reason for the rejection of Eq. (33) is to ensure that the
angular momentum of the elementary excitations is found
and not the angular momentum of the elementary excitations
plus the angular momentum caused by the persistent flow.
Additionally it allows the group relationship Q=0E/dp to be
satisfied for energy given by Eq. (31) and angular momen-
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FIG. 20. The energy-angular momentum dispersion curve for
the annular condensate with persistent flow governed by the GP
equation [Eq. (28)] for parameter set {g,A,l}={30,15,0.5}. Rar-
efaction waves are represented by the thick black dashed line. The
dispersion curve is symmetric about p=0. Units of energy and an-
gular momentum are as in Fig. 2.

tum given by Eq. (34). Finally, an alternative form for the
energy can be obtained by taking #— b6 for constant b in the
expressions for energy and angular momentum [Egs. (31)
and (34)] and considering variational relationship (21) to

give
J.!
E=| -
yvr

The dynamics of solitary wave solutions in a toroidal trap
with a persistent flow have been simulated for a range of
values of interaction strength 30 <<g <750 and parameters A
and /. The results for two typical examples are detailed be-
low for ¢g=30 and g=150. As before, in each case the
energy-angular momentum dispersion curve is symmetric
about p=0. The same color scheme used in Sec. IIT will
again be employed here.

oy
30

+2< 20~ Vg ) |drde- (35)

A. Interaction strength g=30

The first case study will focus on a parameter range with
a low interaction strength: {g,A,[}={30,15,0.5} with the
corresponding value of the chemical potential u=8.24. The
complete family of solitary wave solutions in the annulus is
then found and the energy-angular momentum dispersion
curve is shown in Fig. 20. For the particular choice of pa-
rameters there is only one distinct solitary wave solution
which exists in the range —0.08 <) =0.09 and is comprised
solely of a single rarefaction wave along #=/2 (see the
thick black dashed line in Fig. 20). At no energy or angular
momentum does the rarefaction wave develop vorticity.

B. Interaction strength g=150

The dispersion curve for {g,A,[}={30,15,0.5} was a typi-
cal example of the dynamics of the condensate in a persistent

PHYSICAL REVIEW A 79, 043620 (2009)

0.35

0.3f b

FIG. 21.

(Color online) The energy-angular momentum
dispersion curve for the annular condensate with persistent flow
governed by the GP equation [Eq. (28)] for parameter set
{g,A,1}={150,40,1}. There exist two distinct single vortex solu-
tions: thick solid black and thin solid black lines with corresponding
rarefaction waves (dashed thick black and thin black lines, respec-
tively). In addition there is a two-vortex solution [thin dashed-
dotted dark gray (red) line] with corresponding rarefaction wave
[thin dashed dark gray (red) line]. The dispersion curve is symmet-
ric about p=0. Units of energy and angular momentum are as in
Fig. 2.

flow for low interaction strength. By increasing the interac-
tion strength, a wider range of dynamical solutions will be
exhibited. The second choice of parameter set is chosen to be
{g.,A,1}={150,40,1} with chemical potential u=8.75. Note
that this is the same parameter set as chosen in Sec. III A,
however the chemical potentials are different. For the param-
eter set there exist three distinct solitary wave solutions
which can be seen in the energy-angular momentum disper-
sion curve plotted in Fig. 21. A plot of the angular velocity of
the vortex solutions against distance from the origin is given
in Fig. 22.

To describe the dynamics exhibited consider first the point
(E,p)=(0,0) where no solutions exist. If the energy and an-
gular momentum are increased (to positive values) then a
rarefaction wave develops along #=+/2 and exists in the
range of angular velocity 0.08=0=0.33. At 1=0.08 the
rarefaction wave develops vorticity such that the solution is
now a single vortex of positive circulation. The single vortex
solution exists until )=-0.31 at which point (E,p)
=(0,0.68) and the solution terminates. The rarefaction wave
and the single vortex solution just described form the first
branch of the dispersion curve.

A cusp develops at (E,p)=(0,0.68) and a new second
branch is formed epitomized by the onset of two vortices of
opposite circulation at the edge of the condensate, one along
0=+ /2 and the other along §=—m/2 creating an antisym-
metric two-vortex solution. The dynamics over the cusp are
continuous (see Fig. 22). The new branch that is formed
exists for —0.31=0=0.15 and is subdivided into two re-
gions: the first region where the two-vortex solution exists
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FIG. 22. (Color online) The angular velocity against distance of
the three different vortex solutions of {g,A,l}={150,40,1}. A slice
along 6= = /2 is taken. Colors refer to the different branches on
the dispersion curve (Fig. 21). Units of angular velocity and dis-
tance are as in Fig. 3.

(=0.31=0=0.06) and the second region where the two vor-
tices lose circulation and become a pair of rarefaction waves
(0.07=0=0.15).

The second branch terminates at {1=0.15 at which point a
cusp develops over which the dynamics are again continu-
ous. Note that the continuity of the dynamics cannot be seen
in Fig. 22 since at the cusp the solutions are rarefaction
waves. Tracing out the new third branch in the dispersion
curve gives a system that contains a single rarefaction wave
that exists in the range 0.04 =0 =0.15. At (1=0.04 the rar-
efaction wave develops vorticity and the solution is thus a
single vortex which is present all the way until the branch
terminates at (E,p)=(0,0).

The dispersion curve for the parameter range chosen here
therefore contains two distinct single solitary wave solutions
(thick black and thin black curves in Fig. 21) as was previ-
ously seen in annular condensates with no persistent flow
present (Sec. IIT). Note however that at (E,p)=(0,0) where
the branches of the two single solitary wave solutions meet
the dynamics are not continuous, as can be seen in Fig. 21
where the first branch contains a rarefaction wave (thick
black dashed line) and the third branch which contains a
single vortex solution (thin black solid line).

The two case studies ({g,A,[}={30,15,0.5} and {150, 40,
1}) have concentrated on low to midrange interaction
strengths. For higher g the energy-angular momentum dis-
persion curves become too complicated to be described in a
detailed yet concise fashion. However it can be appreciated
that the net result of increasing g will be to produce new
distinct solitary wave solutions and thus many branches in
the dispersion curve. A further result of increasing g will be
in the decrease in the range of angular velocities which the
rarefaction waves exist.

VII. CONCLUSION

This paper has investigated the dynamics of a two-
dimensional condensate held under a toroidal trapping poten-
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tial of the form harmonic plus Gaussian. A toroidal trapping
potential creates an annular condensate with richer and
broader range of the solitary waves in comparison with the
semi-infinite channel geometries [10,33].

The toroidal condensate is dependent on three indepen-
dent parameters (that can be set experimentally) {g,A,}, of
which the interaction strength g is the dominant parameter.
Changing the value of g determines the number of different
types of solutions on the dispersion curve. For low values of
g there are two fundamental branches of solutions (see Fig. 2
for {g,A,1}={150,40,1}). For a larger value of g, the num-
ber of fundamental branches of solutions increases. The pa-
rameter set {g,A,[}={500,100,0.9} has been detailed exten-
sively in this paper. There are seven fundamental branches of
solutions (see Fig. 5) which contain up to four vortices in the
condensate. An interesting scenario arises in which there ex-
ist two different branches each of which contains a single
vortex with the vortices of opposite circulation. There is a
solution where the two branches possess a vortex with the
same angular velocity and are at the same distance from the
origin. Since the vortices have opposite circulation, such a
result seems rather surprising. One of the solutions was de-
termined to contain not just the vortex but in addition rar-
efaction waves embedded in the background of the conden-
sate which resulted from the decay of a vortex from a
different branch on the dispersion curve.

In a recent paper [15], a condensate trapped by a qua-
dratic plus Gaussian potential was placed into fast rotation.
The authors, in order to relate to theoretical results, approxi-
mate this potential trap as being quadratic plus quartic,
where the quartic term is small. However, the experimental
condensate is achieved using the Gaussian and can thus pro-
vide appropriate values for the parameters of this paper,
namely, {g,A,l}. Taking the values given in [15] for the re-
spective frequencies and waist one finds that the interaction
strength of this paper g ~2000 with A ~ 35 and [~ 0.06. The
value for g is mildly above those taken in this paper, how-
ever the profit in simulating to higher g, when considering
the numerical cost, is not warranted: the dynamics in the
annular condensate are clearly understood. It is anticipated
that should experimental procedures take smaller values for
g (effectively equivalent to decreasing the strength of the
Gaussian term) then the dynamics described here should be
tractable.

The stability of the seven fundamental branches of the
parameter set {500, 100, 0.9} was also investigated by evolv-
ing the solitary wave solutions forward in time. The solutions
were evolved until three of four complete revolutions were
completed or the solutions decayed into sound waves. It was
determined numerically that, if the solitary wave sequence
contains more than one vortex for any given angle, then the
branch is unstable. All the other branches were determined to
be stable.

By isolating the solitary waves from type I and type II
solutions it is possible to investigate the possible range of
collisional effects and compare them with a point vortex
model. The solutions in this paper are all obtained by nu-
merically simulating the Gross-Pitaevskii equation for the
inhomogeneous condensate, whereas point vortex models
consider a boxlike condensate where the density is uniform
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in the annular region and is zero outside this region. It is seen
in this paper that collisions of the vortices result in two dis-
tinct behaviors: either the vortices collide elastically or col-
lide inelastically. Elastic collisions occur for low angular ve-
locities where the vortices repel each other or for high
angular velocities where the vortices pass through one an-
other. For intermediate angular velocities, the vortices collide
inelastically and decay into sound waves. Point vortex mod-
els are only able to capture the collisions for low angular
velocities.

PHYSICAL REVIEW A 79, 043620 (2009)

Finally, a separate condensate is considered where now a
persistent flow is included into the condensate. It is interest-
ing to note the similarities and differences between the an-
nular condensate without a persistent flow (Sec. III) and one
with a persistent flow (Sec. VI).
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