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We elucidate the self-evolution of two Bose gases from a strongly non -
equilibrium initial state. Large scale numerical simulations of the coupled
nonlinear Schrödinger equations are used to follow the evolution of the sys-
tem from weak turbulence to strong turbulence to superfluid turbulence in
the long-wavelength region of energy space with a formation of a tangle of
topological defects. The addition of the second gas increases the number of
condensed particles in the first gas. It is shown that the large wavelength
part of the fields evolves into coherent structures identified as solitary wave
complexes of the coupled nonlinear Schrödinger equations. The families of
the solitary waves moving on uniform background or along the topological
defects are obtained as solutions of the coupled Gross-Pitaevskii equations.
It is shown that there exist three continuous families of such solutions with
or without the cusp in energy-momentum space.
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1. INTRODUCTION

The systems of the coupled nonlinear Schrödinger (NLS) equations are
fundamental and universal systems that have been used to describe motions
in conservative systems of weakly nonlinear dispersive waves in continuum
mechanics, plasma physics, nonlinear optics and condensed matter. The
coupled NLS equations have been receiving a lot of attention with recent ex-
perimental advances in multi-component Bose-Einstein condensates (BECs)
formed by simultaneous trapping and cooling of atoms in distinct spin or
hyperfine levels 1 or of different atomic species 2. There is also an inter-
est in the condensation and dynamics of multi-component BECs within the
COSLAB framework: multi-component BECs offer the simplest tractable
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microscopic models in the proper universality class of cosmological systems
3.

When a weakly interacting Bose gas is so rapidly cooled below the criti-
cal BEC temperature that the particles remain in a strongly nonequilibrium
state, an accurate microscopic description of the BEC formation is given by
the NLS equation 4. The kinetics of the initial weak turbulent state has been
analysed in detail 5–7 revealing a quasi-particle cascade from high energies
to low energies in the wave number space. The regime of weak turbulence
breaks down in a low-energy region when the superfluid short-range order
sets in leading to a state of superfluid turbulence with a tangle of quantised
vortices. The transition between the different regimes was elucidated using
large scale numerical simulations of the NLS equation in 3D 8,9 and 2D 10.

The system is initially in the weak turbulence regime and is described
by the Boltzmann kinetic equation. The system evolves in a self-similar fash-
ion in which the quasi-particles cascade to lower and lower energies until the
assumption of a random-phase approximation breaks down and the system
enters the coherent regime (strong turbulence). In this regime the phases of
the complex Fourier amplitudes become strongly correlated, the periods of
their oscillations and the evolution times of the occupation numbers become
comparable. During this regime the quasi-condensate is formed with a tan-
gle of well-defined quantised vortices. The tangle relaxes during superfluid
turbulence regime which is the final stage of the field evolution which has
been studied in detail 11.

In this paper we consider the condensation of two Bose gases. In the
limit of weak interactions and strong nonequilibrium initial condition, the
key stage of ordering dynamics (the formation of superfluid turbulence) is
universal and corresponds to the process of self-ordering of classical matter
fields according to the evolution of the coupled NLS equations.

When two weakly interacting Bose gases are simultaneously rapidly
cooled below the transition temperature their evolution is described by the
coupled NLS equations in analogy with a single component Bose gas

ih̄
∂ψ1

∂t
=

[
− h̄2

2m1

∇2 + V11|ψ1|2 + V12|ψ2|2
]
ψ1,

ih̄
∂ψ2

∂t
=

[
− h̄2

2m2

∇2 + V12|ψ1|2 + V22|ψ2|2
]
ψ2, (1)

where ψ1 and ψ2 are complex-valued classical fields that specify the indices
of the coherent states of two gases, mi is the mass of the atom of the ith gas,
and the coupling constants Vij are proportional to scattering lengths aij via
Vij = 2πh̄2aij/mij , where mij = mimj/(mi +mj) is the reduced mass. The
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energy functional of the system (e.g. [12]) is

E =

∫ [ 2∑

i=1

{ h̄2

2mi
|∇ψi|2 +

1

2
Vii|ψi|4} + |ψ1|2V12|ψ2|2

]
dV. (2)

We assume that upon a fast cooling there arises an isolated system that
consists of N1 particles of one Bose gas and N2 particles of another Bose gas
with the energy per particle much less than the critical BEC temperature
that corresponds to the given particle densities. Without loss of generality
we shall also assume that N2 ≤ N1.

We are interested in the evolution of two strongly nonequilibrium fields:

ψ1 =
∑

k

ak exp(ik · r), ψ2 =
∑

k

bk exp(ik · r), (3)

where the phases of the complex amplitudes ak and bk are distributed ran-
domly.

In this paper we consider two questions (1) what effect does the addition
of the second component has on the process of condensation? and (2) what
coherent structures are formed during the condensation? We shall show
that the presence of the second gas dramatically increases the number of
condensed particles in the first gas if the equilibrium temperature of the
second gas alone is lower than that of the first gas. This increase is maximal
when N2/N1 ≈ 1/2. The number of condensed particles in the second gas is
lowered in comparison with the condensation of this gas alone.

The paper is organized as follows. In Section 2 we derive the kinetic
equation for the evolution of occupation numbers of two components and
analyze the wave spectrum. Large-scale numerical simulations are used to
show the formation of condensates with a tangle of topological defects. In
Section 3 we study the families of solitary wave solutions to which the con-
densates evolve in the process of turbulence decay. Solitary waves moving
along the topological defects are found in Section 4. We conclude with a
summary of our findings in Section 5.

2. CONDENSATION IN A COUPLED GROSS-PITAEVSKII

MODEL

In this section we consider the problem of self-organization in a cou-
pled NLS model (1) starting with random initial conditions (3). For such a
random field we can derive an irreversible kinetic equation for the averaged
wave spectrum.
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The NLS equations (1) written for the Fourier components ak and bk
take the form

iȧ1 = ǫ1a1 +
∑

234

(V11a
∗

2a3a4 + V12b
∗

2b3a4)δ1;3+4−2, (4)

iḃ1 = ǫ2b1 +
∑

234

(V12a
∗

2a3b4 + V22b
∗

2b3b4)δ1;3+4−2, (5)

where ǫi = ki/2mi, h̄ = 1 and the notation ki → i was used, so that for
instance, δ1;3+4−2 = δ(k1+k2−k3−k4). The occupation numbers nk = |ak|2
and lk = |bk|2 obey

ṅ1 = 2Im
∑

234

(V11a
∗

1a
∗

2a3a4 + V12a
∗

1b
∗

2b3a4)δ1;3+4−2, (6)

l̇1 = 2Im
∑

234

(V12b
∗

1a
∗

2a3b4 + V22b
∗

1b
∗

2b3b4)δ1;3+4−2. (7)

We shall exclude the terms with coinciding momenta and, in view of the
initial conditions (3), take an ensemble average of Eqs. (6-7). To ob-
tain the non-vanishing contribution from the correlation functions Q1234 =
〈a∗1a∗2a3a4〉, L1234 = 〈a∗1b∗2b3a4〉, M1234 = 〈b∗1a∗2a3b4〉, and P1234 = 〈b∗1b∗2b3b4〉
we differentiate them with respect to time and use Eqs. (4-5). The resulting
equations contain six-order correlation functions that simplify to the expres-
sions in terms of the occupation numbers after the application of Wick’s
theorem and using k1 + k2 = k3 + k4, since only these terms contribute to
Eqs. (6-7). The differential equations for Q1234, L1234,M1234 and P1234 take
the form

Q̇1234 = i∆11ǫQ1234 + i2Q̃1234,

Ṗ1234 = i∆22ǫP1234 + i2P̃1234, (8)

L̇1234 = i∆12ǫL1234 + iL̃1234,

Ṁ1234 = i∆21ǫM1234 + iM̃1234,

where

Q̃1234 = V11[n2n3n4 + n1n3n4 − n1n2n3 − n1n2n4],

P̃1234 = V22[l2l3l4 + l1l3l4 − l1l2l3 − l1l2l4], (9)

L̃1234 = V12[l2l3n4 + n1l3n4 − n1l2l3 − n1l2n4],

M̃1234 = V12[n2n3l4 + l1n3l4 − l1n2n3 − l1n2l4],

and ∆ijǫ = (k2
1/mi + k2

2/mj − k2
3/mj − k2

4/mi)/2. The kinetic approach
is valid if the frequencies of the oscillations of the phases of the complex
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amplitudes ak and bk are much larger than the energies of the non-linear
interactions, therefore, we can assume that the energies ǫi are much larger
than the inverse time of the variations of the functions Q̃, P̃ , L̃, and M̃ . This
implies that the solutions of Eqs. (8) are

Q1234 ≈ 2πQ̃1234δ(∆11ǫ),

P1234 ≈ 2πP̃1234δ(∆22ǫ), (10)

L1234 ≈ πL̃1234δ(∆12ǫ),

M1234 ≈ πM̃1234δ(∆21ǫ).

Finally, we replace the summation over momenta with integration to arrive
at the kinetic equations for the smooth ensemble averaged values of the
occupation numbers

ṅ1 =

∫
dk2dk3

32π5

(
2δ(∆11ǫ)V

2
11

[
(n1 + n2)n3n4 − n1n2(n3 + n4)

]

+δ(∆12ǫ)V
2
12

[
(n1 + l2)l3n4 − n1l2(l3 + n4)

])
, (11)

l̇1 =

∫
dk2dk3

32π5

(
2δ(∆22ǫ)V

2
22

[
(l1 + l2)l3l4 − l1l2(l3 + l4)

]

+δ(∆21ǫ)V
2
12

[
(l1 + n2)n3l4 − l1n2(n3 + l4)

])
, (12)

where k4 ≡ k1 + k2 − k3.
The kinetic equations (11-12) describe the evolution of the wave spec-

trum towards the Rayleigh-Jeans equilibrium distribution 13

neq

k =
T

k2 − µ1

leqk =
T

k2 − µ2

, (13)

where µi is the chemical potential of i−th gas. The parameter T can be asso-
ciated with the temperature at equilibrium. It depends on the initial states
of the gases and can be found by fitting the distribution of the occupation
numbers obtained from numerical integration of Eqs.(11)-(12) to Eq.(13).
Dissipation, diffusion or viscosity introduce a frequency ultraviolet cut-off of
large wavelength and therefore regularize these formally divergent at k → ∞
solutions. The numerical simulations introduce a frequency cut-off through
the spatial discretization.

Similar to the case of the condensation of one-component Bose gas 13,
8 we are interested in the evolution of the singular particle distribution

nk = n0(t)δ(k) + φ1k(t),

lk = l0(t)δ(k) + φ2k(t), (14)
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where n0 and l0 are the number of particles in condensates and φik are the
uncondensed particles. In the equilibrium we expect

φik ≈ T

k2
, (15)

which corresponds to the distribution (13) with zero chemical potentials.
To see how the nonlinear interactions change this distribution we per-

formed large scale numerical simulations of the dimensionless form of Eqs.
(1) starting with a strongly nonequilibrium initial condition (3). The numer-
ical scheme involves the fourth-order finite differences discretization in space
and the fourth order Runge-Kutta in time, so is globally 4th order accurate.
This scheme corresponds to the Hamiltonian system in the discrete variables
ψjkn

i , where i = 1, 2 such that

iψ̇jkn
i = ∂H/∂ψjkn∗

i , (16)

where

H =
∑

jkn

∑

i

(
ψjkn∗

i [ 1
12

(ψj+2,k,n
i + ψj−2,k,n

i + ψj,k+2,n
i

+ψj,k−2,n
i + ψj,k,n+2

i + ψj,k,n−2
i ) − 4

3
(ψj+1,k,n

i

ψj−1,k,n
i + ψj,k+1,n

i + ψj,k−1,n
i + ψj,k,n+1

i + ψj,k,n−1
i )

+15
2
ψjkn

i ] + 1
2
Vii|ψjkn

i |4
)

+ V12

∏
i |ψ

jkn
i |2, (17)

where it is understood that Vii′ are now the dimensionless coupling constants,
dx = dy = dz = 1 and j, k, n = 1, ..., N . In the numerical simulations we use
dt = 0.01 and N = 64 or N = 128. The kinetic equations (11-12) conserve
the number of particles N1 = V

∫
nk(t) dk, N2 = V

∫
lk(t) dk and the kinetic

energies of each gas E1 = V
∫
k2nk(t) dk and E2 = V

∫
k2lk(t) dk. In the

numerical simulations we had to decrease the number of parameters in the
system by considering equal masses and equal intercomponent interaction
constants. The final number of particles in the condensates depends strongly
on the energy H of the system and on the total number of particles in
each condensate. Our numerical simulations confirmed the existence of the
condensation process for sufficiently low energy densities. On FIG.1 we show
the time evolution of the number of particles in condensates for V12/Vii = 0.1,
H/V = 1, N1/V = 1/2, and N2/V = 1/4 in comparison with the case of the
condensation of two gasses starting with the same initial condition, such that
Ekin1 = 2Ekin2, but with no interaction between particles of different gasses,
so that V12 = 0. The number of particles in the first condensate is increased
and the number of particles in the second condensate is decreased due to
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Fig. 1. (colour online) The time evolution of the density of the condensed
particles n0/N1 (left panel) and l0/N2 (right panel) for H/V = 2, N1/V =
1/2, N2/V = 1/4. Black lines give the density of the condense particles
in the presence of the intracoupling interactions V12/Vii = 0.1. Red lines
correspond to the case of two gasses with no intracoupling interactions V12 =
0, where the initial kinetic energies of two gases satisfy Ekin1 = 2Ekin2.
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interactions. We found this effect to be more pronounced for intermediate
energies and when N2/N1 ≈ 1/2.

The condensate fractions as functions of the total energy density H/V
are plotted on FIG.2. Note that the presence of interactions between gases
increases (decreases) the largest value of energy for which the condensation
occurs in the gas with the larger (smaller) number of particles. The reason
for such striking change in condensation is that if two gasses do not interact
(V12 = 0), each gas reaches the equilibrium characterized by its own tem-
perature that depends on the total density and energy of that gas alone. In
the presence of interactions, however, both gasses equilibrate at the same
temperature (15) which lies between temperatures of two isolated gases in
equilibrium. As the result, the number of condensed particles increases for
one gas and decreases for the other gas.

When both gases condense, the system passes through the stages of
weak turbulence to superfluid turbulence with a tangle of topological de-
fects (see FIG. 3) previously identified in the mixtures of two BECs 14 as
vortex ring-vortex ring and slaved wave - vortex ring complexes clearly seen
on the last time snapshot of FIG.3. The number of various complexes gener-
ated during condensation greatly varies depending on the initial state of the
system. Complexes interact among each other and change from one type to
another. For instance, a vortex ring – vortex ring complex may lose energy
to sound waves and move to a lower branch in pE-space shown in FIG.4 to
become a vortex ring – slaved wave complex. Alternatively, two vortex ring
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Fig. 2. (colour online) Condensate fractions n0/N1 (black solid line) and
l0/N2 (green solid line) as functions of the total energy density H/V for
N1/V = 1/2, N2/V = 1/4, and V12/Vii = 0.1. Condensate fractions for
two gases with V12/Vii = 0 are shown by dashed lines. The initial kinetic
energies of two gases satisfy Ekin1 = 2Ekin2.
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– slaved wave complexes may interact transferring energy from one complex
to another, so that one of the complexes gains energy and becomes a vortex
ring – vortex ring. A similar exchange of energy occurs between two rarefac-
tion pulses of one component condensate leading to a creation of a vortex
ring 15.

The evolution of the system is reminiscent of the Kibble-Zurek sce-
nario 16 of a formation of the topological defects when the system is quickly
quenched below the point of the second-order transition. The process that
we have just described would correspond to the formation of the cosmolog-
ical vortons and springs that are analogous to the vortex ring-slaved wave
and vortex ring-vortex ring complexes correspondingly 14. The similarity
between these types of defects is topological: consider a two component
system which is described by two complex scalar fields ψ1 and ψ2 with an
approximate U(2) symmetry. This symmetry can be broken down to form
string loops (vortices) in ψ1 with ψ2 condensing inside the core. This con-
struction would correspond to a vorton. If ψ2 field condenses as a string loop
inside the core of a vortex formed by ψ1 it becomes analogous to a spring
defect. From these topological consideration the complexes we consider here
are non-relativistic counterparts of topological defects extensively studied in
high-density QCD, cosmology and high-temperature superconductivity.
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Fig. 3. (colour online) Evolution of topological defects in the long-wavelength
parts ψ̃i, with i = 1 (green, light grey) and i = 2 (red, dark grey) of the fields
ψi in the computational box 1283. The defects are visualised by isosurfaces
|ψ̃i|2 = 0.04〈|ψ̃i|2〉. High-frequency spatial waves are suppressed by the
factor max{1−k2/k2

c , 0}, where the cut-off wave number is chosen according
to the phenomenological formula kc = 9 − t/1000.

t = 500 t = 1000

t = 1500 t = 2000

3. COHERENT STATES

In this section we study the solitary wave solutions of the coupled GP
model (1). Many solitary wave structures have been recently identified in
two-component one-dimensional BECs 18 such as bound dark-dark, dark-
bright, dark-antidark, dark-grey, etc. complexes. In higher dimensions,
domain walls 19 and skyrmions (vortons) 20 have been found. Previously we
14 determined the complete families of solitary waves in miscible condensates
in the case of equal masses and intracomponent scattering lengths. In what
follows we extent these results to a more general case of nonequal masses,
nonequal coupling constants and to 2D.

To study the equilibrium properties the energy functional (2) has to be
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minimized subject to the constraints on the conservation of particles lead-
ing to introduction of two chemical potentials µ1 = V11n1 + V12n2, µ2 =
V12n1 + V22n2, where ni = |ψi|2 is the number density in equilibrium. The
dispersion relation between the frequency ω and the wave number k of the
linear perturbations (∝ exp[ik · x − iωt]) around homogeneous states is ob-
tained as

(ω2 − ω2
1)(ω

2 − ω2
2) = ω4

12, (18)

where ω2
i (k) = c2i k

2 + h̄2k4/4m2
i coincides with a one-component Bogoliubov

spectrum with the customary defined sound velocity c2i = niVii/mi and
ω2

12 = c212k
2 where c212 = n1n2V

2
12/m1m2. The system is dynamically stable

if the spectrum (18) is real and positive which implies that V11V22 > V 2
12,

Vii > 0 for stability 12. The acoustic branches of Eq. (18) are ω± ≈ c±k
with the corresponding sound velocities

2c2± = c21 + c22 ±
√

(c21 − c22)
2 + 4c412. (19)

The solitary waves we seek below are all subsonic, so their velocity U is less
than c−.

A dimensionless form of (1) is obtained by introducing the chemical
potentials ψi → ψi exp[−iµit/h̄] and using dimensionless units

x → h̄

(2m1µ1)1/2
x, t→ h̄

2µ1

t, ψi →
√

µ1

V11ni
ψi. (20)

This leads to the system of nonlinear Schrödinger equations

−2i
∂ψ1

∂t
= ∇2ψ1 + (1 − |ψ1|2 − α1|ψ2|2)ψ1

−2i
∂ψ2

∂t
= γ∇2ψ2 + (1 − α1|ψ1|2 −

α1

α2

|ψ2|2 − Λ2)ψ2, (21)

ψ1 → ψ1∞, ψ2 → ψ2∞, as |x| → ∞,

where αi = V12/Vii, γ = m1/m2 and Λ2 = (µ1 − µ2)/µ1 is the measure of
asymmetry between chemical potentials (where we assume that µ1 > µ2).
Note that the use of Feshbach resonances to vary the interactions between
atoms makes this entire range of parameters experimentally accessible. The
condition of dynamic stability becomes α1α2 < 1. To also ensure stability
against collapse when only the density of one component is varied, the final
stability criterion becomes

0 < α1α2 < 1. (22)

The acoustic branches (19) are

c2± =
1

2

(
ψ2

1∞ +
α1

α2

γψ2
2∞ ±

√
(ψ2

1∞ − α1

α2

γψ2
2∞)2 + 4α2

1γψ
2
1∞ψ

2
2∞

)
. (23)
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To find solitary wave solutions moving with velocity U in positive z−direction,
we solved

2iU
∂ψ1

∂z
= ∇2ψ1 + (1 − |ψ1|2 − α1|ψ2|2)ψ1

2iU
∂ψ2

∂z
= γ∇2ψ2 + (1 − α1|ψ1|2 −

α1

α2

|ψ2|2 − Λ2)ψ2, (24)

ψ1 → ψ1∞, ψ2 → ψ2∞, as |x| → ∞.

We are interested in the case when both condensates have nonzero uniform
states. The values of the wave-functions of the solitary waves at infinity in
(21) are given by

ψ2
1∞ = (1 − α2 + α2Λ

2)/(1 − α1α2), (25)

ψ2
2∞ =

α2

α1

(1 − α1 − Λ2)/(1 − α1α2), (26)

so that we will assume that

α1 < 1 − Λ2, α2 <
1

1 − Λ2
. (27)

In a compact form the equations (24) can be written as

2iU
∂ψi

∂z
=
m1

mi
∇2ψi + fi(ψ1, ψ2)ψi, i = 1, 2 (28)

where we used the notation

f1(ψ1, ψ2) = 1 − |ψ1|2 − α1|ψ2|2,
f2(ψ1, ψ2) = 1 − α1|ψ1|2 −

α1

α2

|ψ2|2 − Λ2. (29)

3.1. Integral Identities

Each solitary wave complex that belongs to a family of the solitary wave
solutions for a chosen set of (α1, α2, γ,Λ

2) is characterised by its velocity,
U , vortex radii bi, momenta pi = (0, 0, pi), and energy. The impulse of the
i−th component 14 is

pi =
1

2i

∫
[(ψ∗

i − ψi∞)∇ψi − (ψi − ψi∞)∇ψ∗

i ] dV. (30)

We form the energy, E , by subtracting the energy of an undisturbed system
of the same mass for which ψi = const everywhere, from the energy of the
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system with a solitary wave, so that the energy of the system becomes

E =
1

2

∫
{|∇ψ1|2 + γ|∇ψ2|2 +

1

2
(ψ2

1∞ − |ψ1|2)2

+
α1

2α2

(ψ2
2∞ − |ψ2|2)2} dV +

α1

2

∫ 2∏

i=1

(ψ2
i∞ − |ψi|2) dV. (31)

Alternatively, we can write

E =
1

2

∫ ∑{
m1

mi
|∇ψi|2 +

1

2
fi(ψ1, ψ2)(ψ

2
i∞ − |ψi|2)

}
dV. (32)

By performing the variation ψi → ψi + δψi in the integrals for E and pi and
discarding surface integrals that vanish provided δψi → 0 for |x| → ∞ one
gets

δpi =
1

i

∫ (
δψ∗

i

∂ψi

∂z
− δψ

∂ψ∗
i

∂z

)
dV, (33)

δE = −1

2

∫ 2∑

i=1

δψ∗

i

(
m1

mi
∇2ψi + fi(ψ1, ψ2)ψi

)

+ δψi

(
m1

mi
∇2ψ∗

i + fi(ψ1, ψ2)ψ
∗

i

)
dV, (34)

where the notation (29) is used. By making use of (24) and its complex
conjugate, we obtain δE = Uδ(p1 + p2), or U = ∂E/∂(p1 + p2), where the
derivative is taken along the solitary wave sequence. The same expression is
obeyed by the sequences of classical vortex rings in an incompressible fluid
and by the solitary waves of one component GP equation 21.

Next we replace ψi → ψi − ψi∞ in the first two terms of (31) and
integrate by parts using (24) and (30) to simplify the resulting expressions.
The result is the integral identity

E = U(p1 + p2) +
1

4

∫ ∑
fi(ψ1, ψ2)|ψi∞ − ψi|2 dV. (35)

We multiply (24) by s∂ψ∗

i /∂s, the complex conjugate of (24) by s∂ψi/∂s

where s =
√
x2 + y2 in 3D and s = x in 2D, and add. After some integration

by parts we get

2U(p1 + p2) =

∫ ∣∣∣∣
∂ψ1

∂z

∣∣∣∣
2

+ γ

∣∣∣∣
∂ψ2

∂z

∣∣∣∣
2

dV −
∫ ∣∣∣∣

∂ψ1

∂x

∣∣∣∣
2

+ γ

∣∣∣∣
∂ψ2

∂x

∣∣∣∣
2

dV

+
1

2

∑∫
fi(ψ1, ψ2)(ψ

2
i∞ − |ψi|2) dV (36)
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in 2D and

2U(p1 + p2) =

∫ ∣∣∣∣
∂ψ1

∂z

∣∣∣∣
2

+ γ

∣∣∣∣
∂ψ2

∂z

∣∣∣∣
2

dV

+
1

2

∑ ∫
fi(ψ1, ψ2)(ψ

2
i∞ − |ψi|2) dV (37)

in 3D. Similarly, we multiply (24) by z∂ψ∗

i /∂z, their complex conjugate by
z∂ψ∗

i /∂z, add the resulting equations together and after integration by parts
we get

∫ ∣∣∣∣
∂ψ1

∂z

∣∣∣∣
2

+ γ

∣∣∣∣
∂ψ2

∂z

∣∣∣∣
2

dV =

∫
|∇⊥ψ1|2 + γ|∇⊥ψ2|2 dV

+
1

2

∑∫
fi(ψ1, ψ2)(ψ

2
i∞ − |ψi|2) dV (38)

where ∇⊥ is the gradient orthogonal to z−axis. From (32) and (36) in 2D
and (32) and (37) in 3D we get

E =

∫ ∣∣∣∣
∂ψ1

∂z

∣∣∣∣
2

+ γ

∣∣∣∣
∂ψ2

∂z

∣∣∣∣
2

dV. (39)

From (35), (36) and (39) we get

U
∑

pi =
1

2

∫ ∑
fi(ψ1, ψ2)(ψ

2
i∞ − |ψi|2)dV

E =
1

4

∫ ∑
fi(3ψ

2
i∞ − ψi∞(ψi + ψ∗

i ) − |ψi|2) dV,

in 2D and from (35), (37) and (39) we get

E =

∫ 2∑

i=1

fi(ψ1, ψ2)(2ψ
2
i∞−ψi∞(ψi + ψ∗

i )) dV

2U
2∑

i=1

pi =

∫ 2∑

i=1

fi(ψ1, ψ2)(3ψ
2
i∞−ψi∞(ψi + ψ∗

i )−|ψi|2) dV (40)

in 3D.
In the integrals above we understand that dV = sdsdz in 3D and dV =

dxdz in 2D. These integral identities are used to check the numerical accuracy
of the solutions.
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3.2. Solitary Waves in 3D

Previously we 14 obtained the families of solitary wave complexes in
three dimensions for miscible two-component condensates. The axisymmet-
ric solitary waves were found by rewriting (24) in cylindrical coordinates
(s, θ, z) for the deviations from the solutions at infinity Ψi = ψi − ψi∞.
Stretched variables z′ = z and s′ = s

√
1 − 2U2 were introduced and the

infinite domain was mapped onto the box (0, π
2
) × (−π

2
, π

2
) using the trans-

formation ẑ = tan−1(Dz′) and ŝ = tan−1(Ds′), where D ∼ 0.4− 0.5. Trans-
formed equations (24) were expressed in second-order finite difference form
using 1002 grid points, and the resulting nonlinear equations were solved
by Newton-Raphson iteration procedure using banded matrix linear solver
based on bi-conjugate gradient stabilised iterative method with precondi-
tioning. The solutions were classified according to the structure of the wave-
function in each component. Several families of solitary wave complexes were
found: (1) vortex rings of various radii in each of the components (VR-VR
complexes), (2) a vortex ring in one component coupled to a rarefaction soli-
tary wave of the other component (VR-RP and RP-VR complexes), (3) two
coupled rarefaction waves (RP-RP complexes), (4) either a vortex ring or a
rarefaction pulse coupled to a localised disturbance of a very low momentum
(slaved wave) (VR-SW, SW-VR, RP-SW, SW-RP complexes). The contin-
uous families of such waves were shown in the momentum-energy plane for
various values of the interaction strengths and the relative differences be-
tween the chemical potentials of two components. FIG.4 presents the dis-
persion curves of three families of the axisymmetric solitary wave solutions
for γ = 1, α1 = α2 = 0.1 and Λ2 = 0.1 and FIG.5 gives the density isosurface
and density contour plots of a VR-VR solution with γ = 1, α1 = α2 = 0.5,
Λ2 = 0.25.

Next we consider non-equal masses γ = 2, but keep intracomponent
interaction potentials equal, α1 = α2. This choice of parameters is close to
experimental values for the mixture of 41K-87Rb 2. In experiments m1/m2 =
1.462 and a11/a22 = 99/60 where m1, a11 and m2, a22 are masses and scat-
tering lengths of Rb and K correspondingly. This gives γ = 2.13 and
α1/α2 = 1.29.

In comparison with the equal masses case, the solitary wave in the
second component possesses significantly larger impulse (4-5 times larger for
U ∼ 0.3−0.5) and the vortex ring of the second component has much larger
radius (about 2-2.5 times larger for U ∼ 0.3− 0.5). FIG.6 shows the isoplot
of the VR-VR solution of (24) with α1 = α2 = 0.1, Λ2 = 0.1 and γ = 2
that moves with U = 0.5. In contrast with families depicted on FIG. 4,
SW -VR family is now above VR(RP)-SW family. The speed of sound is
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Fig. 4. (colour online) The dispersion curves of three families of the ax-
isymmetric solitary wave solutions of (24) with γ = 1, α1 = α2 = 0.1 and
Λ2 = 0.1. The numbers next to the dots give the velocity of the solitary
wave solution. The top (black) branch corresponds to VR-VR (VR-RP for
U = 0.58) complexes. The middle (green) branch shows p vs E for VR-SW
complexes and the bottom (red) branch is the dispersion curve of SW-VR
(SW-RP for U = 0.58) complexes.
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increased from 0.6169 for γ = 1 to 0.6703 for γ = 2. As a result there is a
well-pronounced upper branch in each family. Remarkably, the vortex ring
in the second component exists on the upper branch in both VR(RP)-VR
family and SW-VR family. There are no vortex rings on the upper branch
in one-component condensates.

Finally, we considered the case of non-equal intracomponent interaction
potentials of equal masses. The parameters we used were α1 = 0.2, α2 =
0.1, Λ2 = 0.1 and γ = 1. This time the radii of the vortex rings in two
components coincide to two significant digits with the radii of the vortex
rings if α1 = 0.1, but the impulse of the second component is increased by a
factor of about 2.

3.3. Solitary Waves in 2D

For completeness we obtained the solitary waves of the coupled GP
model (24) in two dimensions. In the limit α→ 0, two components become
uncoupled, in which case the solitary wave sequence for each component fol-
lows the dispersion curve of the one-component GP equation 21. The family
of solitary waves in 2D is represented by a pair of point vortices (VP) of
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Fig. 5. (colour online) Density isosurface (left panel) and density contour
plots (middle and right panels) at |ψ1|2 = 1

10
ψ2

1∞ and |ψ2|2 = 1
10
ψ2

2∞ for the
VR-VR complex for γ = 1,α1 = α2 = 0.5, Λ2 = 0.25 that is moving with
U = 0.3. The radii are b1 = 5.194 and b2 = 4.796.
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opposite circulation if Uc < 0.56ci. These vortices are separated by distance
2bi ∼ U−1 for small U . As the velocity increases, the wave loses its vorticity
and becomes a rarefaction pulse. As U → ci both energy and momentum per
unit length approach zero and the solutions asymptotically approach the 2D
rational solution of Kadomtsev-Petviashvili Type I equation. The sequence
merges tangentially with the phonon branch of the dispersion curve in each
of the uncoupled components. For α 6= 0 we have c1 6= c2, so different
components become RPs at different critical values of U and a variety of
complexes becomes possible. Table 1 gives an example of various transitions
from one complex to another as the velocity U increases in the system with
α = 0.05 and Λ2 = 0.1.

Table 1. The velocity, U , energy, E , momenta, pi, and half-separations between centres

of the point vortices, bi, of the solitary wave solutions of Eqs. (24) with α = 0.05 and

Λ2 = 0.1. The sequence terminates at U = c− ≈ 0.646.

U E p1 p2 b1 b2 complex

0.40 14.7 13.8 12.1 0.915 0.498 VP-VP
0.43 13.7 12.5 10.9 0.184 – VP-RP
0.45 13.0 11.7 10.2 – – RP-RP
0.5 11.4 9.90 8.46 – – RP-RP
0.6 7.68 6.29 5.36 – – RP-RP

Next we will consider the cases of more intermediate values of intercou-
pling interaction strength. Similarly to the three-dimensional case, in addi-
tion to the VP-VP, VP-RP, and RP-RP complexes, there are new classes of
solitary waves that have no analog in one-component condensates. In these
complexes the disturbance of a very low impulse (slaved wave, SW) in one
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Fig. 6. (colour online) The dispersion curves of three families of the ax-
isymmetric solitary wave solutions of (24) with γ = 2, α1 = α2 = 0.1 and
Λ2 = 0.1 (left panel). The numbers next to the dots give the velocity of
the solitary wave solution. The top (black) branch corresponds to VR-VR
or VR-RP complexes. The middle (red) branch is the dispersion curve of
SW-VR and SW-RP complexes. The bottom (green) branch shows p vs E
for VR-SW complexes. On the right panel the density isoplot of the VR-VR
solution moving with U = 0.5 is shown.
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condensate is dragged by either VP or RP structure of the other compo-
nent. The density of SW is maximal where the density of either VP or RP
is minimal and vise versa. For fixed values of α1, α2 and Λ2 the system has
three families of solitary wave complexes: VP(RP)-VP(RP), SW-VP(RP)
and VP(RP)-SW as FIG. 7 illustrates. Also, FIG.7 shows the dispersion
curves of several other families of the solitary wave solutions in the system
when two out of three parameters (α1 = α2,Λ

2 and U) are kept fixed.

4. SOLITARY WAVES ON A VORTEX LINE

Similar to the one-component condensate 23, two-component conden-
sates can support families of solitary waves that travel along the topological
defects. We shall use the ansatz

ψ1 = (R1(s) + χ1(s, z)) exp(iθ),

ψ2 = R2(s) + χ2(s, z), (41)

in the coupled GP model (24), where R1(s) is the amplitude of the straight
line vortex of the first component of one unit of circulation placed along
the z−axis, R2(s) is the amplitude of the second component and χi are
the localized disturbances moving with a constant velocity U in the positive
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Fig. 7. (colour online) The dispersion curves of several families of the solitary
wave solutions of Eqs. (24). The solid lines show three families of solutions
with α1 = α2 = 0.5 and Λ2 = 0.1. The numbers next to the dots give
the velocity of the solitary wave. The top (black) branch corresponds to
VP-VP complexes. The middle (green) branch shows p vs E for VP-SW
complexes and the bottom (red) branch is the dispersion curve of SW-VP
complexes. The dashed (blue) line across the solid black branch shows the
VP-VP complexes for U = 0.2, Λ2 = 0.1 as the intercoupling parameter
α1 = α2 increases in increments of 0.1 from 0.1 (top point) to 0.7 (bottom
point). The light grey (magenta) dashed line shows the VP-VP complexes
for U = 0.2 and α1 = α2 = 0.5 with the asymmetry parameter Λ2 taking
values 0.05 (top point), 0.1, 0.2, 0.3 (bottom point). The insets show the
plots of z = |ψ1(x, y)|2 (top) and z = |ψ2(x, y)|2 (bottom) for the VP-SW
complex with U = 0.2, α1 = α2 = 0.5, Λ2 = 0.1.
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z−direction. For simplicity in this section we let α1 = α2 = α and γ = 1.
The amplitudes of the ground state satisfy the following ordinary differential
equations:

R
′′

1 +
R

′

1

s
− R1

s2
+ (1 −R2

1 − αR2
2)R1 = 0,

R
′′

2 +
R

′

2

s
+ (1 − αR2

1 −R2
2 − Λ2)R2 = 0. (42)

The solutions of Eqs. 42 are shown graphically on FIG.8 for a variety of
values of α and Λ2. The asymptotic behaviour at infinity is easily obtained
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Fig. 8. (colour online) The solutions of Eqs. (42) for the amplitudes of the
ground state consisting of a straight line vortex in the first component. The
inserts show the values of the parameters used in the order of the plots (from
the top to the bottom).
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as

R1 ∼ ψ1∞ − 1

2ψ1∞s2
,

R2 ∼ ψ2∞ ±K0(2ψ
2
2∞s) ∼ ψ2∞ ± exp(−2ψ2

2∞s). (43)

When ansatz (41) is used in Eqs. (24) the equations on χi become

2iU
∂χ1

∂z
=

1

r

∂

∂r

[
r
∂χ1

∂r

]
+
∂2χ1

∂z2
− χ1

r2

+(1 − |R1 + χ1|2 − α|R2 + χ2|2)(R1 + χ1) − (1 −R2
1 − αR2

2)R1,

2iU
∂χ2

∂z
=

1

r

∂

∂r

[
r
∂χ2

∂r

]
+
∂2χ2

∂z2

+(1 − α|R1 + χ1|2 − |R2 + χ2|2 − Λ2)(R2 + χ2) (44)

−(1 − αR2
1 −R2

2 − Λ2)R2.

These equations were solved by Newton-Raphson iterations to give the fam-
ilies of the localized disturbances that move along the vortex line with a
constant velocity and preserving their form. FIG. 9 gives the dispersion
curves of these families for α = 0.1 and Λ = 0.1. FIG. 10 shows the density
isosurfaces of various solitary waves.

5. CONCLUSIONS

In summary, we considered the coupled GP (NLS) equation as a model
of two-component Bose gas. We showed that this model exhibits a conden-
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Fig. 9. (Colour online) The dispersion curves of three families of the ax-
isymmetric solitary wave solutions moving along a vortex line as solutions
of Eq. (24) with γ = 1, α = 0.1 and Λ2 = 0.1. The energy Ê is calculated by
subtracting the energy of the vortex from the energy of the complex. The
numbers next to the dots give the velocity of the solitary wave solution. The
top (black) branch corresponds to VR-VR and VR-RP complexes. The mid-
dle (green) branch shows VR-SW complexes and the bottom (red) branch is
the dispersion curve of SW-VR and SW-RP complexes.
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Fig. 10. (Colour online) The density isosurfaces of various solitary wave
solutions that propagate along the vortex line. The isosurfaces shown are
ρ1 = 1
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sation process in 3D. Starting with a random stochastic initial condition we
derived the kinetic equation that describes the initial time evolution of the
system. The system evolves into the state of thermodynamical equilibrium
with condensates in either both components or in a single component only.
The addition of the second gas increased the number of condensed particles
in the first gas. The condensates are formed with a tangle of topological
defects. During the decay of the tangle the large wavelength part of the
system evolves into solitary wave structures. We found the families of these
structures in uniform 3D and 2D condensates as well as the families of the
disturbances moving along the topological defects. The process of the clas-
sical wave condensation with the formation of solitary wave structures can
be viewed as an analog of the Kibble-Zurich transition.

ACKNOWLEDGEMENTS

NGB thanks Boris Svistunov for a useful discussion and EPSRC(UK)
for financial support. CY is grateful to PPARC for his studentship.

REFERENCES

1. C.J. Myatt et al., Phys. Rev. Lett. 78, 586 (1997); D.S.Hall et al., Phys. Rev.
Lett. 81, 1539 (1998); D.M. Stamper-Kurn et al., Phys. Rev. Lett. 80, 2027
(1998) and J. Stenger et al., Nature 396, 345 (1998).

2. G.Modugno et al., Phys. Rev. Lett. 89, 190404 (2002).
3. G. Volovik, ”The Universe in a Helium Droplet,” Clarendon Press, Oxford

(2003).
4. E. Levich and V. Yakhot, J. Phys. A: Math. Gen. 11, 2237 (1978) and Yu. Kagan

and B.V. Svistunov, Phys. Rev. Lett. 79, 3331 (1997).
5. V.E.Zakharov, S.L. Musher, and A.M.Rubenchik, Phys. Rep. 129, 285 (1985)

and S. Dyachenko, A.C. Newell, A. Pushkarev and V.E.Zakharov, Physica D 57,
96 (1992).

6. B.V. Svistunov, J. Moscow Phys. Soc. 1, 373 (1991).
7. Yu. Kagan, B.V. Svistunov, and G.V. Shlyapnikov, Zh. Eksp. Teor. Fiz. 101,

528 (1992) [Sov. Phys. JETP 75, 387 (1992)]; Yu. Kagan and B.V. Svistunov,
Zh. Eksp. Theor. Fiz. 105, 353 (1994) [Sov. Phys. JETP 78, 187 (1994)].

8. N.G.Berloff and B.V. Svistunov, Phys. Rev. A 66, 013603 (2002).
9. M.J.Davis, S.A. Morgan, and K. Burnett, Phys. Rev. Lett 87, 160402 (2001) and

Phys. Rev. A 66, 053618 (2002).
10. S. Nazarenko and M. Onorato, arXiv:nlin.CD/0507051, (2005)
11. M.Kobayashi and M.Tsubota, Phys. Rev. Lett. 94, 065302 (2005).
12. C.J. Pethick and H.Smith,“Bose-Einstein Condensation in Dilute Gases”, Cam-

bridge University Press (2002).



Natalia G. Berloff and Chen Yin

13. C. Connaughton et al, Phys. Rev. Lett. 95, 26901 (2005).
14. N.G. Berloff, Phys. Rev. Lett. 94 , 120401 (2005).
15. N.G. Berloff, J. Phys. A: Math. Gen. 37, 1617 (2004).
16. T.W.B. Kibble, J. Phys. A 9, 1387 (1976) and W. H. Zurek, Nature 317, 505

(1985).
17. P. Tommasini et al, Phys. Rev. A 67, 023606 (2003).
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