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This paper describes the fluid mechanics of the natural ventilation of a space 
connected to a large body of stationary ambient fluid. The flows are driven by 
buoyancy differences between the interior and exterior fluids. Connections with the 
ambient fluid are high level and low level openings. Two main forms of ventilation 
are identified : mixing ventilation and displacement ventilation. Mixing ventilation 
occurs when the incoming ambient fluid mixes with the fluid within the space, as is 
the case if dense fluid enters through a high level inlet. In this case vertical 
stratification is weak. Displacement ventilation occurs when dense fluid enters at low 
levels and displaces the lighter fluid within the space out through high level openings. 
A strong stable Stratification develops in this case, and there is little mixing between 
the incoming fluid and that in the interior. Both of these modes of ventilation are 
studied theoretically and the results are compared with laboratory experiments. 
Transient draining flows which occur when a space initially contains fluid of a density 
different from the ambient are examined. 

The presence of internal sources of buoyancy allows steady states to be established, 
and the effects of point, line and vertically distributed sources are studied. Thesc 
steady states are extensions of filling box models, with the addition of continuous 
exchange of fluid with the environment outside the space. A major result of this work 
is that the form of the stratification within the space depends on the entrainment 
caused by the convective elements (plumes) produced by the buoyancy sourcesiJbut 
is independent of the strength of the sources. The strength of the stratification and 
the magnitudes of the velocities do, however, depend on the source strength. The 
effects of opening size(s) and configurations are determined, and criteria for 
producing a particular stratification within the space are established. Applications of 
this work to the ventilation of buildings are presented. 

1. Introduction 
Natural ventilation is the exchange of fluid between the interior of some space and 

its exterior environment when the flow is produced by naturally occurring pressure 
differences. It is the means by which most houses are ventilated. The pressure 
differences are produced by the action of the wind or by temperature differences 
between the internal and external air. The purpose of ventilation is to remove air 
contaminated with excess heat, humidity, carbon dioxide, toxins and other unwanted 
substances, and to provide clean air a t  a comfortable temperature and humidity. 
Modern buildings are very ‘tight’, both in terms of small rates of air infiltration 
through cracks in the building skin, and also in terms of high thermal insulation and 
low heat loss. The main problem to be overcome by the ventilation systems in such 
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buildings is to keep the air temperature experienced by the occupants from rising 
above a comfortable level. Mechanical ventilation is costly to install and maintain, 
and there have been cases where the ventilation has failed to provide clean air, 
resulting in the so-called ‘sick building ’ syndrome. 

In  the last few years, as a result of these drawbacks with mechanical ventilation 
systems, architects have returned to natural ventilation (Penz 1983), particularly in 
buildings where large temperature differences may occur. One example, which is 
currently fashionable, is the ventilation of atria. These are popular as a means of 
providing a well-lit, covered environment within a group of buildings such as a 
shopping complex. Atria, typically, enclose quite tall, open plan spaces, and with the 
high solar gains during the summer and convective cooling during the winter, the 
design of an efficient ventilation system is a complex task. Connections to the outside 
air may occur a t  a number of levels, and significant thermal stratification has been 
measured within atria (Penz 1986). 

The purpose of this paper is to elucidate the fluid mechanics of the processes that 
can occur in naturally ventilated systems. Much of the work is motivated by the need 
to obtain a deeper understanding of the fluid flows within buildings caused by 
temperature differences, and the cases we consider reflect this motivation. It also has 
applications to other problems of practical interest such as the accumulation of gas 
following a gas leak and the strategy for the efficient flushing of a space. Another 
example, on a different scale, concerns the replenishment of magma chambers with 
molten magma. 

Attention is restricted to flows driven by temperature or other buoyancy 
differences between the interior and the exterior fluid. The effects of wind, while 
undoubtedly important to building design, are excluded from the discussion, 
although a few remarks will be made in the final section of the paper. Two main cases 
are considered. Firstly, the transient flow which develops when the interior is initially 
at a different temperature to the exterior and one or more vents are opened is 
examined. Secondly, the effects of constant internal heat sources such aa heating 
equipment, machinery, occupants (about 100 W per sedentary person) or sunlight 
heating interior surfaces (a maximum value of approximately 800 W m-2 a t  mid- 
latitudes under glass) are studied. 

In both of these cases, the ventilation flows can be divided into two basic 
categories called mixing ventilation and displacement ventilation. In a mixing system 
the fresh air is introduced in such a way as to  mix throughout the ventilated space. 
The inlets and outlets are arranged so that relatively cool air enters a t  high levels or 
relatively warm air enters at low levels within the space, so that buoyant convection 
produces the mixing; see figure 1 (a) .  In some cases a single vent may act as both inlet 
and outlet. In  displacement ventilation relatively cool, and thus dense, air is 
introduced into the space near the floor and the warm air is extracted near the 
ceiling; see figure l ( b ) .  I n  this case a stable stratification is produced by the 
ventilation flow and vertical mixing is minimal. I n  reality many systems are 
intermediate between these two, but we shall show that most cases can be discussed 
in terms of one or other of these categories. 

A mathematical model of this flow is described in which the effects of internal 
sources of heat are modelled as turbulent plumes, using the entrainment assumption 
of Morton, Taylor & Turner (1956). Displacement flows are discussed in $2, and 
mixing flows are analysed in $3. Laboratory experiments designed to illustrate and 
compare with the theory are described in $4, and the results are given in $5. The 
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FIGURE 1.  (a) Mixing ventilation and ( b )  displacement ventilation. In both cases warm air leaves 
the space near the ceiling: in the former cool air enters near the ceiling, mixing up the air in the 
space m it falls ; in the latter cool air enters near the floor, displacing warm air upwards with little 
mixing. 

applications of the work to building ventilation, and scaling laws for model studies, 
are discussed in $6, and the conclusions are given in $7 .  

2. Mathematical model for displacement flows 
Consider a turbulent, entraining plume rising from a source of buoyancy in a closed 

space. The light fluid in the plume will reach the ceiling, spread to the sidewalls and 
descend in the space between the sidewalls and the plume, as shown in figure 2(a ) .  
Since the upper part of the plume is now surrounded by, and thus entrains, lighter 
fluid the plume becomes lighter than if it were surrounded by fluid of the initial 
density, and a stable stratification develops in the fluid. This ‘filling box ’ mechanism 
was first described in detail by Baines & Turner (1969) and has also been studied by 
Worster & Huppert (1983); figure 2 ( b ) ,  taken from the latter paper, shows the 
density profiles in the region outside the plume a t  successive times. 

If openings are now made in the floor and ceiling of the space, the layer of buoyant 
fluid near the ceiling will drive a flow through the openings, since the hydrostatic 
pressure difference between the top and bottom of the layer will be smaller than that 
between the same heights in the denser fluid outside the space. It will be assumed 
that the difference between the density of the ambient fluid, p,  and that of the fluid 
in the space, p - Ap, is relatively small, and we shall write g‘ = gAp/p for the reduced 
gravity. The flux driven through the openings will depend, in general, on some 
integral of g‘ throughout the space, I[g’ : space] say. There will be inflow through the 
openings at the floor and outflow through the openings a t  the ceiling, imposing a 
general vertical flow within the space. After some time a steady state will be 
achieved: there will be a constant level below which all the fluid outside the plume 
will be dense ambient fluid and above which the fluid will be lighter than ambient, 
as shown in figure 3. Within the plume, fluid will be rising, and outside the plume the 
horizontal component of velocity will be towards the plume, because of entrainment 
by the plume. Above the interface and outside the plume the vertical component of 
velocity will be downward, decreasing to zero as the interface is approached, while 
below the interface the vertical component of velocity will be upward, again 
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FIGURE 2. (a) A plume rising from a source of buoyancy in a closed box. The plume entrains fluid 
from the surroundings as it rises. On reaching the ceiling the buoyant fluid spreads and then 
descends, with a front between the buoyant fluid and the fluid still a t  the original density. (a) 
Calculated density profiles in the region outside the plume a t  successive times. Note the sharp jump 
in density across the descending front and the variation in density between the front and the 
ceiling, with most of the density change in the region just above the front. (The steps in the density 
profile are an artefact of the numerical scheme, the expected profile would be smooth except a t  the 
front.) This figure is taken from Worster & Huppert (1983). 

FIQURE 3. Steady displacement flow in a box with an internal source of buoyancy. The rising plume 
entrains fluid both above and below the interface. Outside the plume and below the interface the 
vertical component of velocity is upward : outside the plume and above the interface the vertical 
component of velocity is downward. Buoyant fluid leaves the space through the upper opening and 
ambient fluid enters through the lower opening. 

decreasing to zero at the interface. Note that, although the interface is stationary, 
there is a horizontal component of velocity towards the entraining plume there, and 
the fluid a t  the interface is constantly refreshed from above and below. We shall write 
x for the vertical distance from the floor, with the steady interface a t  x = h and the 
ceiling at x = H .  

The vertical volume flow rate through any horizontal plane must be constant so 
that, in particular, the volume flow rate through the openings, F say, must be equal 
to the volume flow rate in the plume a t  the interface height, Mi say. Also the 
buoyancy flux through the upper opening, g: F say, must equal the buoyancy flux in 
the plume a t  the interface height, G;Mi say. Thus g: a t  the upper opening must equal 
Gf in the plume a t  the interface height so that g' must have the same value 
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throughout the region above the interface, both inside and outside the plume, and 
therefore the plume is a momentum jet in this region. For plumes in an unstratified 
ambient fluid the buoyancy flux, G ( x ,  B)M(x ,  B),  is constant, equal to the buoyancy 
flux, B,  at the source ; G ( x ,  B) ,  the value of g’ within the plume, decreases with height 
x ,  and M(x,  B ) ,  the volume flux within the plume, increases. Here ‘ top-hat ’ profiles 
for the density and velocity across the plume have been assumed. To find the steady 
interface height, and thus determine the flow in the space, we match the volume flux 
within the plume with the volume flux that is driven through the openings by the 
layer of light fluid above the interface. The density of this light fluid is determined 
by equating it with the density of the plume fluid at the interface height. Using g’(x)  
to denote the value of g’ in the region above the interface and outside the plume, we 
can write this argument as follows : 

equating volume fluxes F =Mi, ( 2 . l a )  

where 

equating buoyancy fluxes gLF = G;Mi, (2 . lb)  

where g: = g’(z = H )  and Gi = G ( x  = h,B) .  

h < x < H 

O < x < h .  

F = F(l[g’(x) : h < x < HI) and Mi = M ( x  = h, B )  ; 

[Gi = G ( x  = h,B) ,  
Hence g’(x) = I()’ (2.lc) 

Having determined g’(x), we find that I = G;(H-h)  and we can substitute this into 
the expression for F and equate F withM, to find h. To solve the problem, then, we 
need to know the flux driven through the openings by a layer of light fluid of uniform 
density as a function of the depth of the layer and g’, and also the properties of a 
plume (in particular the volume flux and G’) as a function of the distance above the 
source. We treat this problem in two parts as follows. 

2.1. Simple draining flows 

Consider the emptying of a space initially filled with relatively light fluid, of uniform 
density, through a pair of openings, one in the ceiling of area a, and one in the floor 
of area a2. We shall write u1 and u2 for the velocity of the fluid through these openings 
and H for the (constant) height of the ceiling from the floor. It will be assumed that 
the incoming fluid does not mix with the fluid in the space but forms a layer of 
increasing depth, h, on the floor of the space, and that the horizontal area of the 
space, S (independent of height), is much larger than the area of either opening so 
that the velocity of the interface between the dense and light fluid is negligible : see 
figure 4. 

At some horizontal level, between the interface and the ceiling, the hydrostatic 
pressure will be equal inside and outside the building. This level is known as the 
‘neutral level’. Writing z for the vertical distance between this level and the 
interface, and using Bernoulli’s theorem we have 

u; = 2g’(H-h-z), ( 2 . 2 ~ )  

u,” = 29’2. (2.2b) 

After flowing through an orifice the flow will contract and so these equations should 
only be applied to the velocities and areas after contraction. Also the flows are not 
dissipationleas so Bernoulli’s theorem is not strictly applicable. In particular, there 
will be a drop in head following the streamline through the inlet and we can use the 

11-2 
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FIGURE 4. Displacement flow from a box initially containing fluid of density p - Ap.  The velocity 
of the fluid through the openings is shown, together with the area of each opening. The horizontal 
dashed line denotes the ‘neutral level ’ a t  which the pressure inside and outside the space are equal. 

momentum theorem (see, for example, Batchelor 1967, chapter 5) to replace equation 
(2.2 b )  with 

where c is a constant lying between one half, for a sharp expansion a t  the inlet (with 
a2 g S ) ,  and unity, for a perfectly smooth expansion. 

If the fluid is incompressible the volume flux into the space must equal the flux 

(2.3) 
out, so that 

Eliminating z from (2.2) and using (2.3) gives 

u; = Zcg‘z, (2 .2c )  

F = u1 a, = u2 u2. 

F = A*(g’(H-h))i, ( 2 . 4 ~ )  

where (2 .4b )  

is an ‘effective area’ of the openings. Note that if a, < u2 then A* < a,1/2, while if 
a, > u2 then A* < a 2 d ( 2 c ) .  Thus A* is largely dependent upon the smaller of a, and 
u2, so increasing the size of the openings at one level once they are already larger than 
the openings a t  the other level achieves little extra flow. The buoyancy flux, B, is 
given by 

Now 

2 h 
and so, if h = 0 when t = 0 

- =  H l-(l-;), 

where the time, t,, for the space to empty is given by 
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2.2.  Effects of continuous sources of buoyancy at one level 

The second part of the problem is to determine the effects of continuous sources of 
buoyancy. We consider particular sources of buoyancy, and begin with a point 
source. The equations for a buoyant plume in a large body of stationary, unstratified, 
ambient fluid are given in Morton et al. (1956).  From equations ( 4 )  of that paper the 
buoyancy and volume fluxes, B and M ,  and 9’ can be recovered, thus 

B = G’M = constant, ( 2 . 9 ~ )  

M(x ,  B)  = C(Bx5)%, (2.9b)  

G ( x ,  B )  = (B2xp5)+/C,  ( 2 . 9 ~ )  

where x is the vertical distance from the source (which we shall assume to be on the 
floor), and C = $z(+)$; is a universal constant dependent on the entrainment 
constant a. 

Equating volume fluxes from (2 .4 )  and (2 .9 )  we find 

A*(g’(H - h));  = C&hi. (2.10) 

Writing f ;  for h/H and equating 9’ with G’(x = h, B)  from (2 .9 )  we obtain 

g’(h < x < H )  = G ( x  = h, B )  = (B2h-5)i/C. 

( 2 . 1 1 ~ )  

(2.1 1 b) 

Note that ( 2 . 1 1 ~ )  is a relation between two geometric quantities: the height of the 
interface as a fraction of the ceiling height and the area of the openings non- 
dimensionalized with respect to the square of the ceiling height. There is no 
dependence of the interface height on the strength of the source, nor on the floor area 
S. 

Consider now n equal sources all on the same vertical level and sufficiently far 
apart that their plumes do not interact. It is clear that multiplying the area of the 
openings by the number of plumes will result in the same interface height with the 
same density difference between the incoming air and the air above the interface. 
Thus for multiple sources 

- 

1A* 
n H 2  

(2.12)  

It is a simple matter to adapt this analysis for a two-dimensional line plume. For 
such a plume the volume flux per unit length, ML, and 9’ are given in terms of the 
(constant) buoyancy flux per unit length, B,, by 

( 2 . 1 3 ~ )  

(2.13 b )  

where D = ( 2 ~ ) ;  is a universal constant, dependent on the entrainment constant a. 
Writing A; for the effective area of the openings per unit length and equating volume 
fluxes and 9’ as before, we find 

( 2 . 1 4 ~ )  

g’(h < x < H )  = G’(x = h,B,) = &L/(hD). (2.14b) 
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FIQURE 5. Steady displacement flow in a box containing two sources of buoyancy of differing 
strengths. There are two layers of relatively light fluid above a layer of ambient fluid. The middle 
layer will have the same density as that of the weaker plume at the lower interface, the upper layer 
will have the same density as that of the stronger plume at the upper interface. Note, however, that 
the stronger plume entrains fluid lighter than ambient where it passes through the middle layer. 

Note that multiple line sources can be treated as for multiple point sources, and also 
that a line source against a vertical wall can be approximated as half of a line source 
whose buoyancy flux is twice that of the true source. 

The position of the lower openings does not alter the position of the interface, 
provided they are below the interface, nor will their position affect the flow in the 
plume or plumes, though it  may affect the vertical velocity in the region outside the 
plume or plumes below the interface. Plumes from sources other than points or lines 
can be approximated by considering the source to be a t  the apparent origin of the 
buoyant plume shape to which all plumes tend. Thus H should be interpreted as the 
distance of the ceiling from this apparent origin. Note that the part of the space 
below the interface does not influence the flow rate or the position of the interface. 
There will be a more detailed discussion of plumes and entrainment in the concluding 
section. Where there are unequal multiple sources the density difference between 
each plume and the incoming fluid will be different for different plumes a t  any given 
height. The steady solution will have layers of decreasing density towards the ceiling 
with sharp interfaces between the layers; this situation is sketched in figure 5.  In  
general, then, the flow from a distribution of sources will be complex. However, all 
entraining flows of this type have the important property that the volume flux 
increases with height while the density difference decreases. A thicker layer of lighter 
fluid will drive a larger volume flux through the openings, and so a displacement flow 
will always be set up with a layer or layers of light fluid above an interface, below 
which there will be entraining plumes flushing the lower region. 

In the analysis above it has been assumed that the sources of buoyancy were all 
below the level of the lowest interface. This need not be the case and we shall now 
investigate the flow due to  a regular arrangement of sources spread over the full - - 
height of the space. 

2.3. Effects of vertically distributed sources 
Consider the case in which a source of buoyancy is uniformly distributed over a 
vertical wall. In  this situation we would expect a plume to form against the wall and 
the system to adjust to a steady state in a manner similar to that described for point 
and horizontal line sources above. However, if an interface forms at  some height 



t 
Ah 

there will be a source of buoyancy above the interface and a second plume will form. 
This gives rise to the possibility of stratification more complicated than the two-layer 
profiles discussed above, At any level where the volume flux in the plume is not equal 
to the volume flux out of the box there must be a net vertical motion exterior to the 
plume, and for the state to be steady fluid elements exterior to  the plume must move 
along surfaces of constant density (assuming diffusion to be negligible). This suggests 
that the steady state will have a layered density profile with the interfaces a t  levels 
a t  which the volume flux in the plume is exactly equal to the flux through the box. 
Such a state is depicted in figure 6. 

The theory described above for point and horizontal line sources can be easily 
extended to consider this case, if we make the following idealizations : (i) a t  each level 
the plume is well mixed and of uniform density; (ii) if the density of the plume is 
equal to the density of the fluid exterior to the plume a t  the same height, then all 
fluid from the plume detrains at that level and a new plume starts immediately (see 
figure 6). 

Again the problem is solved by equating the volume flux F through the box due 
to the difference in hydrostatic pressure between the inside and outside of the 
space and the volume flux across each interface within the turbulent plumes Mi. 
This requires that the depth of each layer, with the exception of the uppermost layer, 
must be the same. We shall write Ah for the layer depth and Ag‘ for the change in 
buoyancy between adjacent layers. 

The relation (2.4) for the volume flux, F ,  out of the box may be generalized for 
arbitrary density profiles as follows : 

F = A * (  rg’dz):. (2.15) 

If we make the additional assumption that the top layer is the same depth as the 
other layers then 

F = A*($Ag’AMV(N+ l))t, (2.16) 

where N is the number of interfaces. 
Experimentally it is easier to consider a vertical line source than a planar source 

and so we consider here the case of a vertical line source with buoyancy flux B, per 
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unit length. It can be shown that, if the entrainment assumption is valid, g' and the 
volume flux within a plume are given by 

G ( x ,  B H )  = (2B&/z2):(ax)-' and M = (+z2BH)hc2, (2.17) 

where x is the height above the base of the source. 

expression for the number of layers, 
Now substituting x = Ah in (2.16) and (2.17) and equating F with Mi we obtain an 

H 4  
A*2 

N(N+ 1 ) 6  = a3z2-. (2.18a) 

The change in g' across each layer is 

Ag' = G'(x = Ah, B H )  = ( 2 B & / ~ 2 ) ~ ( ( a A h ) - ' .  (2.18b) 

Note that increasing the area of the openings decreases Nand hence the volume flux 
F increases only slowly. The applicability of the entrainment assumption is 
uncertain, particularly to the case of a heated wall. However, if the volume flux 
increases with height and g' decreases with height we should expect layers to form 
but the size of the layers will be different. 

3. Mathematical model for mixing flows 
In  the previous section it was assumed that there was a clear distinction between 

openings through which fluid flowed into the space and those through which fluid 
flowed out of the space. Consider now a single opening high in a vertical wall of the 
space. In this case the neutral level a t  which the pressure is equal inside and outside 
the space will be a t  approximately half the height of the opening, and there will be 
a controlled exchange flow through the window as described, for example, by Dalziel 
(1988) and Linden & Simpson (1985), giving a volume flux through the window of 

F = kA(g'd)i, (3.1) 

where A is the area and d the height of the opening ; g' is evaluated just inside the 
opening. For a vertical window the constant Ic = 0.25. 

The dense incoming fluid will flow into the space, descending to the floor as a 
curved plume. The resulting flow will be an inverted version of the filling box process 
described above. Once the front of dense fluid has reached the level of the opening 
the stratification in the space will be weak and for this analysis it will be assumed 
that the fluid in the space is well mixed. Even if there are small openings a t  lower 
levels there may still be inflow through such an opening, and the following analysis 
will apply. 

Consider first the case where the space is initially filled with light fluid and an inlet 
is opened. Here Ap will be the density difference between the space and the ambient 
air, V the volume of the space and subscript 0 will denote initial values of quantities 
at time t = 0. From conservation of mass we find 

Integrating (3.2) gives (3.3a) 
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where the mixing timescale 7 is given by 

2 v  
kA 

7 = - (9; d)- t  (3.3b) 

Defining ti to be the time for g’ to reduce to half its initial value, 

Q = ( 2/2 - 1) 7. (3 .4)  
It is also possible to have an exchange flow with a single opening in the horizontal 

surface of the ceiling. The flow in this case differs from the previous case of a window 
in a vertical wall since there is no preferred arrangement of the incoming and 
outgoing fluid. On dimensional grounds one again expects the flux through such an 
opening to be given by equation (2.1), where here d is the longest length of the 
opening and k a constant dependent on the opening shape. For circular openings 
Epstein (1988) found a value of k = 0.055 and Brown, Wilson & Selvason (1963) give 
k = 0.051 for a square window where d in (3.1) is taken to be the diagonal. Compared 
with the equivalent value of one quarter for openings in a vertical wall this shows 
that the ceiling opening is only about one fifth as efficient as a window. 

When there are sources of buoyancy in the space a steady state will be achieved 
in which the buoyancy flux through the opening is equal to that produced by the 
internal sources, B say. The arrangement of the sources within the space is 
unimportant, thus 

(3 .5a)  B = Fg‘ = kAd$$, 

and so (3.56) 

where g; is the value of g’ at the level of the openings in the steady state. 
The incoming ambient fluid creates a descending plume within the box. If the 

ascending and descending plumes are sufficiently far apart that they do not interact 
a steady two-layer stratification will be set up within the space. The density of the 
lower layer will be that of the descending plume a t  the interface, while the density 
of the upper layer will be that of the ascending plume a t  the interface. This 
arrangement is shown in figure 7 .  The value of g’ for the upper layer is that given for 
g& in (3 .5b) .  The volume flux in the ascending plume a t  the interface must equal that 
for the descending plume at the interface. Noting that the fluid surrounding the 
plumes is of different density in the two layers, and is in both cases different from the 
density of the fluid outside the space, we can calculate the position of the interface 
and the density of the two layers in a similar manner to that described earlier for 
displacement flows. 

If the area of the openings is small compared to the square of the height of the box 
then we can model the openings as No plumes each originating from a point source 
on the top of the box and each of buoyancy flux BIN,, where B is the total buoyancy 
flux from the N, point sources on the bottom of the box and No is the number of 
openings. If the interface is situated at a height h above the bottom of the box then, 
equating the volume flux of the ascending plumes a t  the height of the interface with 
that of the descending plumes at  the same level, we have 

clv, ( h5- :)i =CN0 ( (H-h)5-  :J , 

and so 
h M0 H=m’ (3.7) 
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FIGURE 7 .  Steady flow in a closed box containing equal and opposite sources of buoyancy at the 
floor and ceiling. Both plumes entrain fluid from their surroundings. The vertical component of 
velocity in the region outside the plumes is downward above the interface and upward below. The 
density of the upper layer is equal to that in the rising plume at the interface : the density of the 
lower layer is equal to that in the descending plume at the interface. 

Thus increasing the number of openings moves the interface nearer the top, and 
increasing the number of sources moves the interface nearer the bottom. The change 
in g' across the interface is given by 

(B2/E h5)) 
c *  Ag' = 

4. Experiments 
The experiments were undertaken in a large reservoir of fresh water (0.6 m x 

0.6 m x 13 m), within which was suspended a small Perspex box. Three boxes, each 
with a different geometry, have been used, but for most of the experiments to be 
discussed here a Perspex box 25 cm high, 30 cm long and 20 cm wide was used. A 
number of holes of diameter 1.8 cm or 5.5 cm were drilled in both the top and the 
bottom of the box. The holes could be opened or closed during the experiments using 
plastic plugs. The two other boxes are slightly larger in size and have more complex 
geometry. These are scale models of real buildings and have most of the openings in 
the sides rather than the top and bottom. Buoyancy-driven flows are created in the 
apparatus using brine which is denser than fresh water, therefore the buoyancy 
forces act downwards in contrast to the theoretical calculations in $$2 and 3 where 
the buoyancy forces act upwards. The large size of the reservoir ensured that fluid 
around the outside of the box remained at a constant density throughout the 
experiment. 

Two types of experiments have been performed. In  the first type the box is filled 
with brine of known density. Fluid within the box is thus initially of a uniform 
density greater than that of the fresh water in the reservoir. Plugs in either the 
bottom, or in the bottom and the top, are then opened and the resulting flow is 
examined. In  the second type of experiment, fluid within the box is initially of 
uniform density equal to that of the ambient fluid. Brine is then introduced through 
a source in the box. This fluid descends forming a turbulent plume, and drives a flow 
within the box and an exchange with the exterior. The transient behaviour and the 
steady states are then examined for various configurations of openings. Three 
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different sources have been used. These were a ‘point source’, a small downward 
pointing tube covered in foam rubber; a ‘horizontal line source’, a perspex tube 
extending across the full width of the box (20 cm), in which holes are drilled a t  
uniform intervals along the lower side; and a ‘vertical line source’, for which the 
perspex tube was vertical and holes were drilled on four sides of the tube at uniform 
intervals along the length. The length of the latter tube was equal to the height of 
the box (25 cm), and the tube was covered in foam. In  all three cases the volume flux 
in the plume is, except within a few centimetres of the top of the box, much larger 
than volume flux from the source, so that the flow is driven by the flux of buoyancy 
and the source of volume is not significant. Typical values for the volume and 
buoyancy fluxes from the source are 20 om3 s-l and 1000 om4 s - ~ .  

The flows were visualized by adding dye to the brine and by use of the 
shadowgraph technique. Samples were taken using syringes to measure the density 
within the box and a conductivity probe was used in some of the experiments to 
measure the density profile. 

5. Results 
We shall mainly confine the discussion to the experiments in the simple rectangular 

box, though we shall occasionally refer to results from experiments in the scale 
models. The experiments fall into two categories of flow type, displacement flows and 
mixing flows ; these can be further divided according to whether there were or were 
not internal sources. 

5.1. Displacement flows 

Displacement flows resulted when openings were made both in the top and in the 
bottom of the box. 

Draining j b w s  
In  this first set of experiments fluid within the box was initially a t  a uniform 

density, and a number of plugs were removed from the top of the box. The 
experiment was then started by removing plugs a t  the bottom of the box. This 
resulted in an inflow through the top and an interface was established between the 
incoming fluid and the dense fluid below. The interface fell displacing the dense fluid 
from the box through the lower openings. The rate of descent of the interface was 
observed to decrease as it fell. The development of a typical experiment is shown in 
figure 8. In  figure 9 the position of the interface is depicted as a function of time for 
a number of different experiments and compared with the predictions (equation 
(2.7)). The two curves on the graphs correspond to the cases c = 1 and c = t. The 
experimental results lie between the two curves as is expected. However, when the 
area of the openings in the top was smaller than the area of openings in the bottom 
the large velocity of the inflow resulted in a jet which caused the entrainment of 
buoyant fluid across the interface. In  this case the interface descends significantly 
faster because of the greater density of the fluid above the interface (results from 
these experiments are not included on figure 9). When comparing experiments with 
significant entrainment with those in which very little mixing occurred, it should be 
noted that in the latter when the interface reaches the bottom there is no dense fluid 
within the box but in the former the box is not completely drained of dense fluid. 

Very similar results were obtained using the other boxes. However, when the 
upper openings were not a t  the top of the box but some way down the wall, the 
amount of initial mixing was greater, and the interface was more diffuse. 
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FIGURE 8. Displacement flow from a box initially containing dense fluid. The box was filled with 
dense fluid and lowered into the large reservoir of fresh water. Four large plugs (diameter 5.5 cm) 
were removed from the top of the box and the experiment was started by removing two small plugs 
(diameter 1.8 cm) from the bottom of the box. The photographs are at  (a )  t / t ,  = 0.07, ( b )  0.29, (c) 
0.50 and (d )  0.86. The emptying time t ,  is 139 s. Pu’ote the descending sharp interface between the 
clear, ambient fluid and the dark, dense fluid. These and subsequent photographs are of side views 
using the shadowgraph technique : the dense fluid is dyed. 

Internal sources on one level 
In this set of experiments openings a t  both the top and bottom were used, with 

internal sources of dense fluid a t  the top of the box (point source and horizontal line 
source). 

Once an experiment is started a turbulent plume descends from the source. The 
plume entrains ambient fluid as it descends until it  reaches the bottom of the box 
where it spreads horizontally. The dense fluid then begins to rise in the region outside 
the plume. This layer creates a flow through the box. There is outflow only through 
the lower openings and inflow only through the upper openings. A two-layer 
stratification is set up and the density of the lower layer increases as it deepens until 
a steady state is established in which the buoyancy flux out of the bottom balances 
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FIGURE 9. Emptying box by displacement flow. The dimensionless height, h / H ,  of the interface 
below the top of the box as a function of time. Results are shown for two experiments: (i) a, = 
23.8 cm2, u2 = 52.7 cm2 (A);  (ii) a,  = 5.1 cm2, u2 = 28.9 om2 (V). The height h is scaled by H, the 
height of the box, and the time t is scaled by t ,  (equation (2.8)) when c takes the value 1 .  The solid 
line is the prediction (2.7). The dashed line is the prediction for the case c = t and u2 < a,. 

that from the source. An example of such a flow is shown in figure 10 and 
corresponding density profile is shown in figure 11. In  this steady state ambient fluid 
enters through the upper openings before being entrained into the plume and so 
transported across the interface. 

The theory shows that the height of the interface is not dependent upon the 
buoyancy flux but only upon the geometry of the sources and openings (equation 
(2.11a)). However, if after a steady state is reached the buoyancy flux is reduced, 
there will be a transient state in which the interface is displaced. The buoyancy and 
volume fluxes of the plume are both reduced, but initially the volume flux out of the 
box remains the same, and so the interface begins to descend. This results in an 
increased volume flux across the interface (the volume flux in the plume increases 
with distance from the source) and decreased flux out of the box (as the hydrostatic 
pressure is reduced). Eventually the volume flux in the plume exceeds that out of the 
box and the interface rises to its original level : the equilibrium is re-established with 
a reduced density in the lower layer. Similarly, if the buoyancy flux is increased the 
interface rises initially before returning to its original position, but with an increased 
density in the lower layer. 

The depth, h, of the upper layer and the value ofg' in the lower layer are presented 
in figures 12 and 13 €or point sources and line sources respectively, and compared 
with the theoretical predictions (equations (2.1 1) and (2.14)). Good agreement is 
found, both for point sources and line sources. As the value of A* is increased the 
height of the interface, h, rises and the value of g' in the lower layer decreases. The 
rate of change of h and g' with A* is very much smaller for large values of A* than 
for small values ofA*; for example, in the case of a point source, whenA*/H2 = 0.01, 
h/H = 0.5, but to raise h / H  to 0.9 requires A*/H2 = 0.10. 

Very similar results were obtained from the measurements using the scale models. 
In some of these cases, however, windows opened a t  levels close to the interface had 
exchange flows and not purely inflow or outflow. It was also found that with a very 
small area of openings a t  the top and a large area of openings a t  the bottom an 
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FIGURE 10. The development of steady displacement flow in a box with an internal source. The 
source here is a horizontal line source. Initially the box contains ambient fluid; four large plugs 
have been removed from the top and one small plug from the bottom. The experiment is started 
by starting the flow from the source. The photographs are a t  ( a )  t = 10, ( b )  30, (c) 90 and (d) 
240 s. Note the rising interface in the region outside the plume in the early part of the flow, the 
sharpening of the interface and the darkening of the fluid below the front later in the experiment. 
The dark, vertical tube in the box to the right of the plume is a conductivity probe : in this figure 
the measuring tip of the probe is near the bottom of the box. 

exchange flow could be established through the lower vents causing the height of the 
interface to be raised. In this case the plume remains negatively buoyant in the lower 
layer. 

Vertically distributed sources 
We now discuss the results of experiments with displacement flows and vertical 

line sources. As for the previous case a steady flow is established after some time, 
with an upper interface above which all the fluid outside the plume consists of 
incoming fresh water. Below this level, however, the fluid is not a t  a uniform density 
as it had been when the source was entirely above the interface. Figure 14 shows a 
photograph of the flow in the steady state, and density profiles, obtained using a 
conductivity probe, are presented on figure 15. There is significant stratification 
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FIGURE 11. Density profile of a steady displacement flow with an internal source. This profile is 
from the experiment shown in figure 10 and was measured just after photograph (a) was taken. The 
density (which has not been calibrated) was measured using a vertically traversing conductivity 
probe (+, upward traverse; x , downward traverse). Note the interface at 22 cm and the 
uniformity of the density below 17 cm. 
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FIGURE 12. Displacement flows with a point source: (a) h / H  us. A * / H B ;  (b )  g ' / G k  vs. A*/H2.  The 
lines represent the predictions of (2.11a, b). The value c = 1 is used when calculating A* and 
G;, = G(z = H,B)  ( see ( 2 . 9 ~ ) ) .  

below the level of the interface and in some cases an indication of a second interface 
near the bottom, but this appears to be associated with the fluid from the plume 
spreading across the bottom as a gravity current. The theory, outlined in $2.3, would 
suggest the formation of perhaps three or four layers when the area of the openings 
is small, but this is not observed. 

Several factors appear to contribute to this discrepancy. Firstly, the model is 
based on the entrainment assumption and on 'top-hat' profiles of density and 
velocity across the plume. In the experiments the plume was not fully turbulent and 
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FIQURE 13. Displacement flows with a line source: (a) h / H  vs. AZ/H;  (b )  g'/Gg ws. AZ/H. The lines 
represent the predictions of (2.14a, b).  The value c = 1 is used when calculating A* and GL = 
G'(z = H , B )  (see (2.136)). 

a laminar region adjacent to the source was present. This region did not mix with its 
surroundings and carried buoyancy across the interface. Secondly, a fairly strong 
circulation in the region outside the plume was observed. This caused a significant 
amount of vertical mixing, which is not accounted for in the model. 

5.2.  Mixing flows 
These flows were observed in experiments in which openings in the bottom of the box 
only were used. 

Draining JEows 
In this set of experiments the box initially contained fluid of a uniform density 

greater than the density of the ambient fluid. The experiment was started by 
removing one or more plugs from the lower openings. A plume is seen to descend from 
the box into the exterior from each opening. The volume flux out of the box due to 
the escaping fluid is balanced by the inflow of ambient fluid, which generates rising 
turbulent plumes within the box. The density of these plumes increases as they 
entrain fluid from their surroundings. On reaching the top of the box the fluid from 
the plumes spreads across the top before displacing denser fluid downwards: a 
circulation is thus set up within the box. The volume flux of this circulation is much 
greater than the volume flux out of the box and most of the fluid is recirculated 
within the plume. This recirculation ensures that fluid within the box is of roughly 
uniform density. Note, though, that  this is only true if the depth of the box, H ,  is 
much greater than the lengthscale of the openings. An example of an experiment 
typical of the mixing flows is shown in figure 16. When, as in figure 16, more than one 
hole is open the flux through any one opening is primarily inflow or outflow with the 
sense of the flow changing periodically in time. This appears to be due to the 
interaction of the circulation within the box and the flow through the openings (see 
also Baines, Turner & Campbell 1990). Measurement of g' vs. t are shown in figure 17 
and compared with the predictions of equation (3.3). The results agree well, though 
the rate of decrease of g' is slightly slower than expected. 

Experiments conducted with the scale models were also in good agreement with 
the theory. In  these cases the openings were in the sides of the boxes and so, as noted 
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FIQURE 14. Steady displacement flow with a vertically distributed source. The source is against the 
left sidewall. Four large plugs from the top and one small plug from the bottom have been removed. 
Note the darkening of the fluid below the interface towards the floor and the horizontal lines 
showing variations in the stratification. 

in $3, the exchange flow is greater resulting in a faster reduction of g’ for a similar 
sized opening. When the openings were not a t  the bottom of the box, an interface 
formed a t  the level of the bottom of the windows. Fluid below the interface remained 
a t  its initial density and the density of the fluid above the interface decreased as 
predicted by the theory. Results from these experiments indicated that the rate of 
change of density does not increase linearly with the total area of openings as is 
expected. This is probably the result of the plumes occupying a larger fraction of the 
box as the number of openings is increased. 

Internal sources 
In  this final set of experiments the fluid within the box was of the same density as 

the ambient fluid and dense fluid was introduced through a point source within the 
box. The development of the flow is illustrated in figure 18. A plume descends from 
the source creating a dense layer on the bottom of the tank as described in the section 
on displacement flows. The resulting exchange flow is very different, however. As the 
density of the fluid at the bottom of the box increases, an exchange flow is set up 
through the opening in the bottom similar to that discussed in the first part of this 
section. When there was a single opening in the bottom there was observed to be, 
once the steady state had been reached, an interface at h /H - 0.3. As more vents 
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FIGURE 15. Density profile of a steady displacement flow with a vertically distributed internal 
source. This is from a steady state similar to that shown in figure 14. Here four large plugs from 
the top and three small plugs from the bottom have been removed. Note that the density is not 
uniform below the interface, nor is it uniformly stratified, having, rather, alternating regions of 
stronger and weaker stratification. The density (which has not been calibrated) was measured using 
a vertically traversing conductivity probe (+ , upward traverse; x , downward traverse). 

were opened the interface moved towards the bottom, in accordance with the 
prediction of equation (3.7), and became more diffuse. 

After some time a steady state is reached in which the source of buoyancy within 
the box is balanced by the outflow of dense fluid through the openings. The steady- 
state value of g‘ a t  the bottom of the box, g;, is then given by equation (3.5). The 
timescale for reaching the steady state is given by T from equation (3.3), with 
gh = gk. Samples were taken in the lower half of the box in an experiment with a point 
source for various numbers of openings. The measurements corresponding to the 
steady states are shown in figure 19. The observed values of g‘ are less than the 
predictions of the theory, which suggests that the stratification is in fact more 
complex than the two-layer profile suggested by the analysis. 

6. Applications to building ventilation 
A major application of this work, as noted in the introduction, is to the natural 

ventilation of buildings. In  this paper attention has been restricted to thermally 
driven flows, and the effects of wind have been ignored. The flows described above 
correspond both to the flushing of air out of an initially hot or cold space, and to  the 
effects of continuous inputs (or the continuous removal) of heat. In  temperate and 
hot climates natural ventilation is usually used during the summer months to remove 
the excess heat from the building. In  this case the ambient air is usually warm 
enough to be introduced without pre-heating it and ‘displacement ventilation’ is an 
appropriate mode of ventilation. If the outside air is too cold, it can be mixed with 
the air in the building by introducing it through high level inputs using the ‘mixing 
ventilation ’ mode. 
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FIGURE 16. Mixing flow in a box initially containing dense fluid. The box was filled with dense fluid 
and placed in the large reservoir. The experiment was started by removing four large plugs from 
the bottom of the box. Note the intense mixing in the box and that the flow is largely in one 
direction through each opening, with flow in opposite directions through the left and right 
openings. The direction alternated over a period of about 5 s (compare a and b ) .  
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FIGURE 17. Emptying box by mixing flow : g’/g; us. t / r ,  where g; is the value of g‘ at t = 0 and T 

is defined in (3 .3b ) .  Measurements were taken at mid-depth within the box. The solid line is the 
prediction of (3.3 a). 

FIGURE 18. Steady mixing flow with an internal source. The source is a point source and one large 
plug was removed from the bottom of the  box. Note t h a t  there is no interaction between the 
ascending and descending plumes within the box. Kote also the sharp interface at approximately 
4H. There is little difference in the darkness of the fluid above and below the interface, showing that  
there is little change in the density. The measuring t ip  of the conductivity probe is at about i H .  
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FIGURE 19. Mixing flow with a point source, g ’ / G H  21s. a, /H2,  where Gk = G ( x  = H ,  B)  (see ( 2 . 9 ~ ) )  
and a, is the area of the openings in the bottom. The samples were taken from the lower half of the 
tank. The solid line is the prediction of (3.5) for the value of g’ a t  the level of the openings. 

In  practice, most natural ventilation systems are a combination of the two modes. 
For example, the traditional sash-cord window when partially opened a t  the top and 
bottom allows inflow of cool air in the lower part and outflow of warm air through 
the upper part of the window. Typically, the upper part of the window is above head 
height and so this represents a displacement mode. However, the lower part of the 
window is usually 1 m or so above the floor, and cooler air which enters mixes to some 
degree with the air in the lower part of the room. On hot days it is most efficient to 
open both parts of the window, while if ventilation is required on cold days it is more 
comfortable to open only the top of the window to warm the incoming air by mixing. 
We see then that this traditional type of window is a versatile and efficient 
ventilation system. 

In order to apply the results obtained in this paper to practical problems, it is 
necessary to scale the sources of buoyancy so that they correspond to the natural 
situation. The calculations and the experiments that we have made have been 
restricted to  a very simple geometry and some idealized sources of buoyancy. 
Buildings have much more complicated shapes, with multiple zones and levels, and 
may be connected to the exterior by a number of different openings a t  different 
heights. The flows within these buildings are, in general, time-dependent and 
complex, and yet they are of crucial importance to  the correct functioning of the 
building. In  addition, in order to calculate heat losses and temperatures within the 
building the architect and the ventilation engineer need to have a knowledge of the 
internal flow patterns and the air movement. 

The experiments we have described here provide a means of determining air 
movement and flow characteristics in complex buildings. A scaled model of the 
building is constructed and immersed in a tank of water. Dense salt solution is added 
to the model either to represent the initial temperature difference between the 
interior and the exterior air, or added continuously to represent inputs of heat, or a 
combination of both. If the air within the building is colder than the exterior air, the 
model represents the full-scale flow. If the air within the building is warmer than 
that outside, the model must first be inverted. When observed using an inverted 
camera, the correct view of the flow is obtained. An example of this technique is 



332 P. F .  Linden, G .  F .  Lane-Serff and D.  A .  Smeed 

FIGURE 20. Displacement flow in a scale model of a building. The model is a 1 :30 scale model of 
a courtroom. which has a raised roof over the central part of the court. Several vents near the floor, 
a window near the ceiling and a skylight are open. 

given in figure 20. The photograph shows a 1 : 30 scale model of a proposed building 
for a Crown Court. Experiments have also been conducted with a 1 : 100 scale model 
of a section of the atrium of the proposed Westminster and Chelsea Hospital in 
London. 

The flows are driven by buoyancy forces, which for a temperature difference AT 
are characterized by g’=gAT/T,  where T is the absolute temperature. As the 
dimensions of g’ are ltP, we have 

-- (Jt-2)mociel gkodel - 
dul l sca le  (lt-2)full scale ’ 

Since t h e  ratio of lengthscales is set by the model scaling, different model and real 
times are set by the ratio of g’ between the laboratory and the real case, 

Similarly, the velocities scale as 

For a continuous input of heat, with heat flux, W ,  the buoyancy flux B = gpW/pcp ,  
where is the coefficient, of expansion, p is the density and c p  is the specific heat. For 
a three-dimensional source the dimensions of B are l4 tP3,  and so equivalent scalings 
can be introduced for t,he laboratory scale. 
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There are two main advantages of modelling air flow ventilation using small-scale 
models in water. The first is that flow visualization is very straightforward, and 
complex flow patterns can be easily determined. The second advantage is that it is 
possible to use large values of g’ (much larger values than is possible in air models) 
so that realistic Reynolds numbers and PBclet numbers may be realized (Linden & 
Simpson 1985 ; Lane-Serff 1989). Thus dynamic similarity is achieved. I n  addition, 
i t  is possible to make quantitative measurements of velocities and ‘temperature ’ 
(salt concentration) distributions. 

Another application of this work is to the flushing of gas out of a building after a 
gas leak. If displacement ventilation is used, there is no reduction in the maximum 
gas concentration during the flushing process, while mixing ventilation gives a 
spatially uniform reduction which will eventually bring the concentration below the 
flammable limit. The ratio of the timescales for the two modes of ventilation, given 
by (2.8) and (3 .3b ) ,  is tE/7 x k(d/H)i .  Typically the size d of an opening is 
significantly less than the height of the building H ,  and, since k = 0.25 (vertical 
window) or k = 0.05 (horizontal vent), t ,  < T. This suggests that the displacement 
mode is the most rapid means of removing the hazard. 

Winds produce additional pressure differences and these may have quite different 
effects on the windward and leeward sides of buildings. A detailed discussion of these 
effects is beyond the scope of this paper, and we simply note here that for a building 
5 m  high with a difference in temperature of 10°C between the interior and the 
exterior the resulting pressure difference is equivalent to a difference in velocity of 
approximately 1.3 m s-l. Except on very calm days, wind speeds often exceed this 
value and so the effects of winds are likely to be important in most practical 
applications. 

7. Conclusions 
The fluid dynamics of natural ventilation have been investigated using simple 

mathematical models and laboratory experiments. We have restricted our attention 
to  the case where the flows are driven by the hydrostatic pressure differences caused 
by density differences between the exterior and the interior fluid. Two ventilation 
modes have been identified : displacement ventilation where inflows occur a t  low 
levels and outflows occur a t  high levels, and mixing ventilation where the inflow of 
dense fluid occurs at high levels and mixes with the fluid in the interior. In 
displacement ventilation the interior is stably stratified, and vertical motions and 
mixing are small. 

If the interior of the space is initially a t  a different density from the exterior and 
some vents are opened, the exchange flow replaces the interior fluid with exterior 
fluid. I n  the displacement case, the space empties in a time t ,  = (2X/A*) (Nlg’); .  For 
a given geometry and initial density difference, the emptying time is controlled by 
the effective area A* of the openyigs. From (2.4b) we see that A* is dependent mainly 
on the smaller of the upper or lower level openings, and so control of the flushing rate 
is determined by the vents with the smaller total area. The implications of this for 
the removal of gas from an enclosure following a gas leak are discussed in $6. In the 
mixing ventilation mode the density of the fluid within the space approaches that of 
the exterior with a timescale which is inversely proportional to the area of the 
openings and k, the orifice coefficient (see (3.1) and (3.3b)). The value of k has been 
determined for vertical and horizontal vents, the latter being about 5 times less 
efficient than the former. However, the evaluation of k for horizontal vents has been 
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restricted to circular and square openings, and values for other shapes are not 
available. 

With internal sources of buoyancy steady states are possible. In  the displacement 
mode, sources at one level lead to  a two-layer stratification. The height of the 
interface between the layers is determined solely by the area of the openings, the 
height of the space and the entrainment into the plume, and is independent of the 
buoyancy flux from the source. For a point source, an effective area of openings of 
1/100 of H2 produces an interface a t  half-height, and a further increase by a factor 
of 10 is required to raise the interface to 0.9H (see (2.10) and figure 12). The densities 
of both layers are uniform, and the density difference across the interface is given by 
the density of the plume a t  the interface level (see (2.11 b ) ) .  If the buoyancy flux from 
the source is doubled, the density difference increases by a factor of 2; x 1.6. Above 
the interface the plume becomes a pure momentum jet. Thus the connections with 
the exterior radically alter the filling box mechanism, and produce a very different 
internal stratification. 

When the sources are distributed vertically, a more complicated stratification 
develops. Our theoretical calculations show that a layered density structure is 
established. The laboratory experiments show some indication of layers, but the 
observed scales are different from the predictions of $2.3. This discrepancy appears 
to result from the fact that the laboratory plumes are not as uniform across their 
cross-section as is assumed in the analysis. In  addition the stratification is smoother 
than predicted; this is the result of mixing exterior to the plume. At  full scale we 
expect the plume generated by, for example, solar heating of a wall to be more 
turbulent and that layered density stratification will develop. 

In the mixing mode, the distribution of sources is less important in determining the 
steady state. However, if the ascending and falling plumes which are produced by the 
sources and the exchange flows, do not interact, a two-layer stratification develops. 
But, unlike the displacement flows, g’ is non-zero in both layers and the stratification 
is weak. The precise conditions for the establishment of this stratification have not 
been determined. 

The object of this paper has been to elucidate some aspects of the fluid mechanics 
of natural ventilation. A major result of our work is that the steady-state form of the 
stratification that develops in the space is determined solely by the distribution and 
sizes of the openings and the distribution and nature of the sources. This result holds 
for both displacement and mixing flows. If the strengths of the sources are increased 
then the magnitudes of the stratification and of the induced velocities are also 
increased, being proportional to  the two-thirds power and one-third power of the 
buoyancy flux, respectively; but the flow patterns and the shape of the density 
profile remain unchanged. 

In practice, ventilation flows are turbulent, unsteady and three-dimensional, and 
it is not possible to make accurate theoretical or numerical calculations of these 
flows. The limitations of fully three-dimensional calculations are even more severe 
when the geometry of the ventilated space is complex. The approach we have 
adopted is in the spirit of ‘zone models’ where the elements of the flow are 
parameterized in some way. We have considered the effects of sources of buoyancy, 
which we have modelled as producing turbulent plumes, and have parameterized the 
turbulent processes using the entrainment assumption of Morton et al. (1956). The 
main limitation on the applicability of our results is then determined by the accuracy 
of treating buoyancy inputs in this way. The agreement between the calculations and 
the laboratory experiments provides confidence that this parameterization is an 
accurate one. 
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The main remaining question concerns the approximation of real inputs of 
buoyancy as plumes arising from point, line or area sources. The conditions under 
which a group of individuals in a room can be considered as independent sources or 
as a distributed area source are not known. Solar heating of a wall produces a 
turbulent boundary layer, and the effects of the detailed structure of this flow need 
further study. 

This work has evolved from collaboration with Dr F. Penz at  the Martin Centre for 
Architectural and Urban Studies, University of Cambridge, with whom we have 
enjoyed many illuminating discussions on the architectural problems of ventilation. 
P.F.L.’s original interest in the fluid mechanics of ventilation was sparked by George 
Batchelor several years ago when he suggested I attend some discussions with the 
Departments of Architecture and Engineering on questions of energy use and 
conservation in buildings. We have been inspired by George’s early work on 
similarity theories of plumes, and on the fluid mechanics of double-glazed windows, 
and would like to think that this paper continues the spirit of that work. 

Our work in ventilation has been funded in part by British Gas PLC and we 
acknowledge the support of Dr R. Hitchin and Dr M. Marshall. G.F.L.-S. is 
supported by a British Gas Research Scholarship. The work on the Crown Court 
design and the Westminster and Chelsea Hospital was funded by the Property 
Services Agency and Sheppard Robson Ltd, respectively. 

The models were designed and built by D. Cheesely, D. Lipman, E. Maclagan and 
P. O’Reilly. 
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