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We present a theory for the decay of the relative motion of a homogenous fluid with 
a free surface in a rotating cylindrical tank with a flat bottom, induced by an abrupt 
change in the angular velocity. We then describe a set of laboratory experiments 
designed to test the predictions of the theory. 

At low rates of rotation the dynamics of the adjustment is well understood and 
measurements have verified the established theoretical results that the motion 
decays exponentially, with a timescale proportional to the rotation period divided by 
the square root of the Ekman number, and that the relative vorticity remains 
independent of radius. A t  higher rotation rates, however, the curvature and motion 
of the free surface complicate the dynamics, and have hindered the development of 
a more general theory. 

Both the theoretical predictions and the experiments show that at high rotation 
rates the decay of the relative vorticity is independent of radius and exponential in 
time, but with a decay timescale, re, that increases linearly with the rotational 
Froude number F, i.e. 7, = 1 +&F. An analysis of the vorticity dynamics during spin- 
up indicates that, near the centre of the tank, this simple behaviour is the result of 
vigorous competition between the rate of vortex line stretching by Ekman-layer 
pumping and surface deformation. Near the boundary, these mechanisms cooperate, 
but are partially offset by the stretching produced by the secondary radial 
circulation. 

1. Introduction 
The search for a theoretical description of the fluid motion in a rotating cylinder 
caused by an abrupt change in the rotation rate has stimulated a considerable 
amount of research. The problem is of fundamental interest to geophysical fluid 
dynamicists because it is a simple and controllable analogue of some of the features 
of the large-scale circulation of the ocean and atmosphere (Holton 1965). It also has 
direct application to the behaviour of liquid fuel in spin-stabilized projectiles and 
satellites (Goller & Ranov 1968). 

Three parameters determine the mechanism and rate of spin-up in fluids of 
uniform density: the Rossby number, E = AQ/Q, the ratio of the change in angular 
velocity of the tank to the final angular velocity; the Froude number, F = 
4Q2R2/gH, where R is the radius of the cylinder, H is the depth of the fluid and g is 
the acceleration due to gravity; and the Ekman number, E = v/QH2, where v is the 
kinematic viscosity of the liquid. Greenspan & Howard (1963) and Greenspan (1964, 
1965) made a comprehensive theoretical study of the spin-up of a homogeneous fluid 
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completely filling a closed cylinder for small e and E and obtained results that have 
shown good agreement with experiments. These studies are summarized by 
Greenspan (1968) and it is now well known that the secondary radial circulation 
induced by the frictional boundary layers at rigid surfaces, the ‘Ekman layers’, 
causes the azimuthal velocity scaled by AQ, denoted here by u,, to decay 
exponentially with a decay timescale 7 = l/SZE+. Outside these boundary layers 

(1) 
where r is the radial coordinate scaled by the radius of the container. 

This result must be modified when the upper boundary of the fluid is a (parabolic) 
free surface since then vortex lines may be ‘stretched’ or ‘squashed’ as they move 
radially. Greenspan & Howard (1963, hereinafter referred to as GH63) developed a 
more general theory for small F which, in the special case of a fluid contained in a 
right circular cylinder with a flat bottom, predicts that the azimuthal velocity 
evolves as, 

u, = er exp ( - t /? ) ,  

u,(r,t) = er[~+$:]exp(;). 

The additional factor in ( 2 )  shows that the effect of the free surface is to delay spin- 
up by an amount proportional to F ,  and that the radial dependence of u, remains 
linear so the liquid spins up as a solid body. Measurements of velocity in an 
experiment with F = 0.75 showed close agreement with this theoretical prediction. 

More recently, Cederlof (1988) has further investigated the role of the free surface 
in the spin-up problem. He developed a theory for the decay of the relative motion 
of homogeneous fluid in a cylindrical container with a parabolic bottom shape chosen 
to be identical to the surface parabola. The advantage of this geometry is that i t  
retains the influence of the vertical movement of the free surface, but eliminates the 
mechanism of vortex stretching by the radial secondary flow and the associated 
mathematical difficulty that restricted the GH63 result to small F .  Both Cederlof s 
model and laboratory experiments demonstrated that only the outer region of the 
cylinder, of order RF-; from the wall, spins up with a timescale 7 ,  while the interior 
of the fluid spins up in the much longer timescale F7. This delay in the spin-up was 
attributed to  the motion of. the free surface. 

In  the next section of this paper we present a quasi-geostrophic theory for the spin- 
up of the motion of a fluid with a free surface in a flat-bottomed, cylindrical tank. 
In $3 we describe a set of experiments to test the predictions of the theory and 
present the results in $4. In  the concluding section we discuss the vorticity dynamics 
of the spin-up process and summarize the conclusions of this work. 

2. Theory 

hydrostatic, axisymmetric flow with small Ekman number, E ,  are 
The horizontal momentum equations in a frame of reference rotating a t  Q, for a 

and 

au, au au u; a 
at ar r -+ u , I +  w 2 - -- 2au = - g r  (7 + N )  +Q2r,  

au, au, au uBu, 
-+ur-++~+++2au, = 0, at ar r 

(3) 

(4) 

where N(r)  is the surface deformation in the absence of relative motion and 7(r ,  t )  is 
that  due solely to  the motion. It is well established that when E << 1 the only influence 
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of bottom friction on the interior motion is to force a vertical velocity at  the top of 
the bottom Ekman layer; see, for example, GTeenspan (1968). After integration in z 
from the bottom, z = -h(r ) ,  to the surface, x = q(r ,  t )+N(r ) ,  the continuity equation 
for an incompressible fluid is 

--{ru,[N(r)+h(r) l a  +*(r, t ) ] } + - - - -  37 BE aru, - - 0, 
r ar at 2r ar 

where 6, = (v /Q) i ,  the bottom Ekman-layer thickness, sets the magnitude of the 
vertical velocity a t  the bottom. 

These equations may be made dimensionless by defining the new variables : 

ut9 . - ur . u, = __ .ii, = - 

, - h  N 

, r , z -  t r = - *  2 = - - ’  t = - -  
R ’  H ’  E-i Q-1 ’ EQR ’ &RE)’ 

. h = -  w = -  w . -  7 . N =  
&HE;’ “I = 2Q2R2g-’s’ 2Q2R2g-’ ’ H’ 

so that substitution in (3), (4) and ( 5 )  gives 

and 

where F = 4G2R2/gH and the variables have been written without the tildes for 
clarity of presentation. Note, however, that all variables are henceforth dimen- 
sionless. It has been demonstrated by Greenspan (1968) that the appropriate 
boundary condition a t  r = 1 requires that the interior radial flux balances that in the 
Ekman layer, thus 

{ p N (  1 )  +@q( 1, t )  + h(l)}u,(  1, t )  -&( 1 ,  t )  = 0. ( 9 )  

In the absence of relative motion, ( 6 )  and the volume conservation constraint 
rN(r) dr = 0 implies that the free surface is parabolic with 

N(r )  = a(r2-+): (10) 

The dimensional thickness of the fluid layer at the centre of a flat-bottomed tank is 
then H (  1 -&F ), and zero for F 2 16. In this paper we consider only cases where the 
layer depth is non-zero everywhere, i.e. 0 < F < 16, and seek solutions for 1 9 EF > E 

by expanding the variables in power series as 

7 = 70+E71+s272+ ...,, 
ug = ugo + EUOl + €2UO2 + . . . , 
u, = Uro + eurl + €2Ur2 + . . . 

(11) 
. 

To lowest order in e, (6 )  and ( 7 )  yield the familiar geostrophic balance relations 
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and -- aUeo - -2Ur0. 
at 

The corresponding integrated continuity equation, (S), is then 

and the boundary condition at r = 1 is 

(PN+h) ur0lr-l = h O 0 l r - l  (15) 

Substitution of (12) and (13) in (14) enables the elimination of the velocities in favour 
of the surface deformation and the problem may then be concisely restated as 

with the boundary condition 

Note, if we now select h(r)  such that h+l$N= 1 then (16) and (17) are identical 
to equations (2.12) and (2.14) of Cederlof (1988). The two unnumbered equations 
following (2.14) in Cederlofs paper have a slight error however, and should be the 
same as (16) and (17). 

Substitution of (10) and h = 1 in (17), followed by an integration, yields the 
boundary condition 

If we now require that the initial surface deformation be in geostrophic balance with 
a velocity uoo(r,t = 0) = r ,  the initial condition applicable to  the spin-up problem, 
then 

yo( r , t  = 0) = +(r2-$) .  (19) 

This problem may then be solved for smooth-bottom geometries by the method of 
integral transforms or numerical techniques, but for h(r)  = 1 it  is easily verified that 

qo(r , t )  = +(r2-+)exp - 
11 &I 

satisfies (16), (18) and (19), and is therefore a valid solution. The corresponding 
azimuthal velocity field evolves as 

uoo(r, t )  = rexp ~ { 1 L A F }  

which, as can be demonstrated by a Taylor series expansion for small F ,  is a 
generalization of (2), the GH63 result. The theory predicts then that the fluid motion 
will spin-up as a solid body, as did earlier work, but with a decay timescale that 
increases with F .  
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Tank - ' _(I \ 
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I I , Diffusion screen 

- Light 

FIQIJRE 1.  A schematic of experimental equipment. 

3. Experiments 
To test the predictions of this theory, we performed 11 experiments on a highly 

stable and precisely controlled rotating table. With the apparatus sketched in figure 
1 assembled on the table, measurements of the rotation rate showed variations of less 
than 0.001 rad/s about the selected value. Experiments were conducted with 
distilled water contained in a 0.5 kO.001 m steel cylinder with a glass bottom and a 
removable glass lid. The tank was supported over a diffuse fluorescent light source 
by an anodized aluminium frame and an image of the fluid motion was recorded by 
a high-resolution, solid-state video camera connected to a video cassette recorder 
through slip rings. The tank was filled to the required depth, and the table was set to 
the selected rotation rate SZ. After the initial relative motion had decayed, the lid was 
temporarily removed while between 20 and 40 small circular pieces of black paper 
were scattered randomly on the surface of the water visualize the motion. This 
procedure generally resulted in some wave motion which decayed quite quickly. 
Subsequently, the experiments was initiated by abruptly changing the rotation rate 
to Q+AQ. Parameter values and measured variables for all the experiments 
discussed are presented in table 1. 

Velocity estimates were obtained by measuring the displacement of particles over 
a known time interval. This simple procedure was automated by playing the 
recording of the experiments to a video digitizer and microcomputer which located 
and stored the positions of the centre of each particle in a chosen frame. The net 
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Experiment 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  

F 

0.379 
0.545 
1.515 
2.181 
2.657 
6.199 

1 1.480 
15.306 
0.095 
4.500 
8.62 

52 

1 .000 
1.200 
2.000 
2.440 
2.300 

2.700 
2.700 
0.500 
2.700 
2.400 

( r a w )  

3.000 - 

depth 
8 (mm) 

0.167 97 
0.167 97 
0.167 97 
0.153 97 
0.080 60 

-0.111 30 
0.100 20 
0.100 15 
0.167 97 
0.091 50 
0.077 20 

TABLE 1 : A summary of the experiments 

d 
x 103 

9.41 
8.59 
6.65 
6.07 

10.5 
20.3 
28.9 
38.5 
13.3 
11.6 
31.0 

7, 

1.09 
1.01 
1.16 
1.23 
1.17 
1.36 
1.80 
1.97 
1.15 
1.27 
1.58 

angular and radial movement of each particle between successive frames was then 
calculated. Since the radial component of velocity during spin-up is much smaller, 
O ( E ) ,  than the azimuthal component, and since the uncertainty associated with these 
estimates is limited by the ratio of the net displacement to the radius of the particles, 
particle positions at two times separated by 0(aG1) enables the estimation of only u, 
with acceptable uncertainty. Near the centre of the tank however, particle 
displacements are always small and uncertainties large. Therefore, measurements in 
the interval 0 < r < 0.1 were ignored. 

In  the following discussion of the analysis of results, the evolution of the angular 
velocity of the fluid, w = u,/rAS2, is employed since it is expected to  be independent 
of r and is more convenient to display. 

When a velocity decay is exponential, the use of ( O ( t , ) - O ( t , ) ) / ( t , - t , )  as an 
estimate of the angular velocity introduces a systematic error ; the velocity is always 
overestimated. This is a only minor problem when the t,-t, is small compared to 
decay timescale but, when the velocity is small, a longer time is required to achieve 
a suitably large O ( t , ) - O ( t , ) ,  and the error can be important. A simple correction is 
possible, however, which exploits information about the decay rate obtained from all 
the velocity measurements in an experiment and thus was applied to all observations. 
The derivation is outlined, and a brief discussion of the consequences of the 
correction are presented in the Appendix. 

4. Results 
I n  figure 2 we present the evolution of the angular velocity, observed in 

experiment 1, in which F = 0.38, to demonstrate that the experimental method 
reliably replicates the well-established theory of GH63 for small F .  The data values 
shown are the average of at least five measurements of the angular velocity in the 
interval r = 0.1-0.9 and are plotted with error bars showing the standard deviation 
of the measurements. Additionally, the theoretical behaviour for spin-up in a closed 
cylinder, equation ( l ) ,  is indicated by the dashes and the GH63 correction for small 
F ,  equation (2), is shown by the solid line and is in good agreement with the data a t  
this low value of F .  

In  figure 3 the radial distributions of the angular velocity obtained in three 
experiments with F = 2.657,6.199 and 15.306 are shown. The error bars indicate the 
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Time 

FIQURE 2. A plot of the observed angular velocity evolution in experiment 1 in which F = 0.379. 
Variables are dimensionless and each point represents the radial average of data in the interval 
0.1 < T < 0.9 and the error bars indicate the standard deviation of the mean. The dashed line 
shows exp(-t) and the solid line, the Greenspan t Howard (1963) theory for small F. Linear 
regression through the data yields the line indicated by the dots. 

uncertainty in the velocity estimates, due primarily to uncertainty in the 
measurements in particle positions, and the horizontal lines show the velocities 
predicted using (21) at the times indicated on the right of the figures. The data are 
consistent with the theoretical prediction that the angular velocity is uniform and 
are also close to the predicted magnitude. There appears to be more scatter in the 
data than can be explained by the uncertainty associated with the measurements but 
since most of the scatter occurs early in the experiment when observing intervals 
were short, the large variance may be the result of the aliasing of near inertial 
frequency motions, although an intrinsic flow instability cannot be ruled out. 

The consistency of the observed and predicted temporal behaviour is evident in 
figure 4, which displays the evolution of the angular velocity, averaged radially from 

15-2 
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FIGURE 3 (u, b).  For caption see facing page. 
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FIGURE 3. Plots of the radial distribution of the angular velocities observed in (a) experiment 5, 
( b )  6, and (c) 8, in which F = 2.657, 6.199, and 15.306, respectively. Observations and theoretical 
predictions are shown at three dimensionless times for each experiment. The crosses are associated 
with the smallest time, the asterisks with the intermediate time, and the circles with the largest 
time. Error bars indicate the estimated uncertainty in the measurements. The horizontal lines are 
the predictions of (21). 

r = 0.1 to 0.9, in experiments with F = 2.657, 11.480 and 15.306. Here the error bars 
indicate the standard deviation of the mean and, as in figure 2, the behaviour 
predicted by equations ( 1 )  and (2) is indicated by the dashed and the solid lines. The 
predictions of the theory presented in $2 (equation (21)) are shown by the dotted 
lines. It is clear in figure 4(a) that the spin-up rate differs significantly from the 
simple theory, ( l ) ,  at F = 2.657 and that the GH63 theory, (2), satisfactorily 
describes the observations. Figures 4(b) and 4 ( c )  show that spin-up is delayed at  
higher Froude numbers and that the simple theories appear to be inadequate. The 
data show good agreement with the predictions of the new theory, supporting its 
validity. 

The results of the experiments can be summarized by a comparison of the 
predicted and observed dependence of spin-up rates on the Froude number as is 
displayed in figure 5. The decay scales in each experiment were obtained by 
regression of the radially averaged angular velocity data with elapsed time. The 
lower line in the figure shows 1 +&F, the theoretical spin-up time, and the upper line 
shows the best fit to the observed spin-up times. Though there is a slight offset, the 
lines are almost parallel and indicate that the theory is a good description of the 
dynamics. The observed decay timescale at  F = 6.199 (experiment 6) in the one 
experiment with spindown is anomalously high however, and we are currently 
investigating the nonlinear generalization of the theory to seek an explanation of this 
result. 
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FIGURE 4. Plots of the observed angular velocity evolution for (a )  experiment 5 ( b )  6, and (c) 8, in 
which F = 2.657, 11.480, and 15.306, respectively. Each point represents the radial average of data 
in the interval 0.1 < r < 0.9 and the error bars indicate the standard deviation of the mean. The 
dashed line indicates exp ( - t )  and the solid line, the Greenspan & Howard (1963) theory for small 
F .  The dotted line shows the prediction of the present theory. 

5. Discussion and conclusions 
Why is there such simple behaviour'l Although the presence of the free surface 

introduces several new mechanisms to the vorticity dynamics of spin-up, the simple 
results of Greenspan & Howard (1963), that the vorticity remains spatially uniform 
as it decays exponentially, remain valid at high Froude numbers. 

Cederlof (1988) demonstrated that, for small F ,  the effects of mechanisms that 
introduce non-uniformities cancel a t  lowest order but when the influence of the 
surface curvature is eliminated by choosing a parallel bottom, significant radial 
structure develops with rapid spin-up in the outer region and delayed spin-up in the 
interior. We must conclude therefore that it is the vertical motion of the surface that 
is responsible for the delay of spin-up and, in a flat-bottomed tank, the geometric 
effects combine to inhibit spin-up near the tank walls and to enhance spin-up in the 
centre of the tank. We now briefly examine this rather delicate and interesting 
competition. 

The influences of the free surface are most clear in the potential vorticity form of 
equation (16) which, for the special case of a flat-bottomed cylinder ( h  = l) ,  is 
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1.0 /' , I I I I I I I  I 1 1 1 1  I 1  

0 2 4 6 8 10 12 14 16 

Froude number 

FIQURE 5. Plot of the decay constant 7, obtained by regression for all experiments, as a function 
of Froude number. The upper line indicates the best fit to the data and the lower line the theoretical 
beh aviour . 

where 

is the relative vorticity. The term on the left-hand side of (22)  is the rate of change 
of the quasi-geostrophic potential vorticity which, for small Rossby numbers, E ,  is 
determined by rate of the stretching of planetary vortex lines by Ekman-layer 
pumping and the motion of the free surface (the first and second terms on the right- 
hand side) and by vortex line stretching by the motion in the direction of the 
background potential vorticity gradient. 

The free surface in a rotating tank of fluid a t  high rotation rates modifies spin-up 
by (i) causing the bottom Ekman-layer pumping to  be spatially variable, (ii) allowing 
stretching by the free-surface motion, (iii) introducing stretching by the radial 
circulation, and (iv) controlling the magnitude of the interior radial velocity through 
the outer boundary condition, equation (15). Note, however, that as Cederlof (1988) 
has pointed out, only Fayo/a t  is a free surface effect since the others would be 
unchanged if a frictionless, rigid parabolic lid enclosed the fluid. 

Since a solution has been obtained in which 5 is uniform even though the vorticity 
modification processes represented on the right of ( 2 2 )  are functions of radius, the 
relative importance of each of the mechanisms must be independent of time and sum 
to a constant at all r .  This can be demonstrated by a simple manipulation of (22 ) ,  
using (20) to yield 

Fr2 } (23) 
l+&F + F(r2-4)  

at l+@'(r2-i)  4 ( i + ~ ( r 2 - 4 ) ) - 8 ( 1  +@'(r2- ; ) )  ' 

where the terms in the curly brackets, i.e. the vortex stretching by Ekman-layer 
pumping, surface deformation and the radial circulation, sum to unity. 
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FIQURE 6. The relative importance of the mechanisms of vorticity modification as a function of 
radius for (a) F = 10 and ( b )  F = 15. 

We can conclude immediately from (23) that, since the first and third terms on the 
right are of opposite sign, vortex stretching by the secondary radial circulation must 
always compete with the Ekman pumping to delay spin-up, and that, since the 
second term changes sign at  r = 2-%, vortex stretching by the motion of the surface 
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cooperates with the Ekman pumping in the outer region of the tank, but hinders 
spin-up in the centre. Figure 6 displays this behaviour quantitatively, showing the 
magnitude of each of the three terms in the bracket on the right-hand side of (23) as 
a function of r for F = 10 figure (6a )  and 15 (figure 6 b ) .  In  both cases it is clear that 
it is the geometric effect of vortex stretching by the radial motion that counteracts 
the tendency of the surface motion to enhance spin-up in the outer part of the tank. 
Indeed, a t  the outer boundary, advective stretching exactly offsets that caused by 
the surface motion. In the centre of the tank, vortex stretching by the Ekman-layer 
pumping is enhanced by the shallowness of the layer but this is offset to a large 
extent by the movement of the surface. As F approaches 16, the equilibrium 
thickness of the layer at the centre of the tank tends to zero and the rate of change 
of vorticity during spin-up is the result of the small imbalance between two large 
competing processes. 

In  summary, we have presented a theory that- explains the observed spin-up of a 
homogeneous fluid with a free surface contained in a rotating cylinder with a flat 
bottom for the full range of Froude numbers up to the value a t  which the free surface 
touches the bottom a t  the centre of the tank. Comparison of the predictions of the 
theory to the results of experiments in which we observed the evolution of the 
angular velocity show excellent agreement. Both the theory and observations agree 
that the angular velocity of the free-surface flow spins-up uniformly but more slowly 
than that in a closed cylinder. The timescale of the exponential decay increases with 
the rotational Froude number F as 1 +&F. 
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Appendix 
Since the angular velocity w is a decaying exponential function of t / A ,  the estimate 

of angular velocity G = ( O 2 - 8 , ) / ( t 2 - t 1 ) ,  where 8, = O(t  = ti) is the angular position of 
a particle, contains a systematic error of order ( ( t , - t , ) / A ) 2 .  This is made evident, and 
the correction can be derived, by eonsidcring 

8,-8, = r2 w ( t )  dt, 
t=t, 

and since w ( t )  = e-t/A, where A is a constant, 

). (A 2 )  e2 - 0 - A (e-tilA - e-tdA 
1 -  

A simple Taylor series expansion of the exponential functions yields the order of the 
error. Assume for the moment that, we know A ; we may then seek thc value t ,  for 
which G most closely approximates w(t , ) ,  i.e. 
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This formula then enables the correction of the time of the estimate rather than the 
value of the angular velocity. 

The value of A must be detcrmined from data however, and in the analysis of the 
experiments discussed in this paper, we used the fact that A is close to 1 and 
employed (A 3) to make initial correction to all the measurements and then made a 
second correction using a value of A obtained by regression. A second regression was 
then performed to obtain the values of 7, reported in table 1. In  most experiments 
the difference between the values of 7, obtained with and without the correction were 
of order 0.02. In  experiments 6, 8, and 11 the differences were of order 0.1. 
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