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Abstract 

In this paper a simple mathematical model is used to describe the curved, turbulent plume 
formed by injecting a constant flux of buoyant fluid into a stationary, unstratified ambient at 
an angle to the vertical. The main assumptions are the entrainment assumption: the entrain- 
ment into the turbulent plume is at a rate proportional to the local mean along-plume 
velocity, and the Boussinesq approximation: the density difference between the plume and 
the ambient is relatively small. A unified theory is presented which allows practical predic- 
tions to be made of plume trajectories and concentrations without recourse to complex 
turbulent modelling. It is found that all such plumes can be traced back to a virtual origin, 
and that the shape of the plume depends only on the angle of the plume to the vertical at the 
virtual origin. Various properties of the plume such as mean velocity, radius and density are 
predicted as functions of distance along the plume. Angled plumes made in laboratory 
experiments are described and compared with the theoretical predictions. The applications 
and limitations of the theoretical model are discussed. 

1. Introduction 

Forced, angled plumes occur in a variety of situations, wherever relatively 
dense or light fluid is injected at an angle into a large body of fluid. Thus this flow 
occurs both naturally and due to the action of man; for example in magma 
chambers, flows into lakes and seas (especially where the outflow is below the 
surface), sewage outfalls, ventilation systems, accidental leaks of gases and other 
hazardous materials and vehicle exhausts. In such flows the plume of relatively 
light (or dense) fluid will be turbulent and ambient fluid will be mixed into the 
plume by turbulent eddies. This paper describes a simple theoretical model of 
these forced, angled plumes which shows how all such plumes can be traced back 
to a virtual origin. Furthermore, the model shows that the shape of the plume 
depends only on the angle of the plume to the vertical at the virtual origin. 
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The nature of plumes rising from sources of buoyancy and momentum has 
been discussed and described by many authors. Morton et al. [l] set out an 
analysis of a source of buoyancy, and Morton [2, 31 extended this to allow for 
a source of buoyancy, mass and momentum. Morton only considered the case 
where momentum is in the vertical direction and of the same sign as the 
buoyancy forces: the so called “forced plume”. Germeles [4] considered the case 
of momentum at an angle to the vertical but his analysis breaks down for 
horizontal plumes. Numerical schemes for evaluating forced, angled plumes 
from a given set of initial conditions have been described by Schatzmann [5] 
and Hofer and Hutter [6]. This paper sets out a more general, though simple, 
analysis of maintained, forced, angled plumes in an unstratified and stationary 
ambient fluid, with the results given in a form of practical use. 

In order to describe this process a simple “entrainment assumption” is made, 
first proposed by Taylor [‘7]. The analysis in this paper is based on this 
assumption and the development of it by Morton et al. [l] and Morton [2, 31. If 
the flow is fully turbulent (i.e. independent of Reynolds number) then the flow 
of ambient fluid into the plume may be described in terms of the relative 
velocity of the plume to the ambient fluid. The entrainment assumption states 
that the rate of transfer of ambient fluid into the plume, characterised by an 
inflow speed of ambient fluid perpendicular to the plume axis, is proportional to 
the mean centre-line speed of the plume (see Fig. 1). The (constant) ratio of 
inflow speed to plume speed will be denoted by a. 

It is known that, for a vertical plume, properties such as time-averaged 
velocity and density difference follow a Gaussian distribution across the plume 
(see List [8], for a review), but it is adequate to assume a “top-hat” profile for 
such quantities, i.e. a uniform value across the plume and zero outside the 
plume. In fact, provided it is assumed that the profiles are similar at all positions 
along the plume, the analysis is not substantially altered by this assumption [2, 
33. The length-scale over which the density difference profile spreads is known to 
be larger than that over which the velocity profile spreads. We will use A to 
denote the ratio of transverse length scales of density and velocity, and take it to 
be 1.1 based on the results of the experiments mentioned above. 

In vertical plumes in unstratified surroundings the entrainment assumption 
is equivalent to assuming that the plumes are self-similar [9]. We will take 
cc=O.l from the results obtained by many experimenters [lo-121. The nature of 
the entrainment, and thus the value of g, may vary between different parts of 
the flow depending on the relative importance of buoyancy and momentum, but 
we will ignore such variations since the dominant effect in this problem is the 
change in entrainment due to the variations in the plume speed at different 
points on the plume. Thus we are using a somewhat approximate, representat- 
ive value of a. We will discuss variations in o! in more detail in the concluding 
section. We will also assume that fluxes due to variations from the mean flow 
(“turbulent transports”) are insignificant compared with the mean fluxes. 

We will assume, further, that the density difference between the plume and 
the ambient fluid is relatively small (the Boussinesq approximation) and that 
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Fig. 1. Idealised view of a vertical plume, with mean centre-line speed W and radius R. The 
plume entrains ambient fluid characterised by a mean entrainment velocity proportional to 
the centre-line speed. 

the fluid is incompressible. The Boussinesq approximation is not a serious 
restriction in practice since many of the applications involve relatively small 
density differences. Also the density difference decreases rapidly away from the 
source, due to entrainment, and so even when this approximation is not valid 
near the source it will be valid some distance (usually small) from the source. 

The case of forced vertical plumes is re-analysed in Section 2. We develop 
a new classification and show that vertical plumes fall into three classes 
depending on the direction of the momentum flux at the virtual origin. The 
model for angled, forced plumes is given in Section 3 and solutions of the 
equations for a comprehensive range of source conditions is given in Section 4. 
These solutions are discussed in Section 5. Experiments on laboratory plumes 
are described and compared with the model in Sections 6 and 7, and the 
conclusions of the work are given in Section 8. 

2. Vertical forced plumes 

We begin with the case of vertical forced plumes in uniform surroundings. 
Although this has been discussed before (see, for example, Ref. 191, chapter 6) 
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the results will be presented in a new way which clarifies the division of 
vertical plumes into three basic categories, namely buoyant jets, mass-sources 
and pure plumes. This analysis also leads more naturally into the case of 
plumes directed at other angles, which will be discussed in the later sections. 
Under the assumptions detailed above, and taking top-hat profiles, the equa- 
tions of conservation of momentum, mass and buoyancy are, respectively, 

d(W2R2)/dZ=g’(E,R)2, 

d(WR2)/dZ=2RorVV, (1) 

d(g’ WR’)/dZ= 0. 

Here W is the plume speed, R the plume radius, 2 the vertical position and 
g’ =gAp/p is the reduced gravitational acceleration. We will take g’ to be positive 
and 2 to increase along the direction of the buoyancy force, so that 2 increases 
upward for buoyant plumes and downward for negatively buoyant plumes. 

It is useful to define 

F=g’ WR2, 

K= WR*, 

P= W2R2. 

(2) 

The quantities F, K and P are proportional to the fluxes of buoyancy, mass and 
momentum, respectively. It can be seen immediately from eq. (1) that the 
buoyancy flux is conserved along the plume and thus 

F= Fs, constant, (3) 

and Fs is taken here to be positive. 
Equations (1) will be non-dimensionalised by the following transformations 

(using lower-case to denote non-dimensional quantities): 

P= PIP,, 

k=(,I/(2a)1’2)F;‘2P<5’4K 7 
(4) 

z = ((2cx) 11*;1)~;/*P;V& 

r = (z/Z) R, 

where FS and Ps are the values of F and P at the source (the subscript S will 
refer to conditions at the source throughout this analysis). Substitution of (4) 
into (1) and (3) leads to 

PP’ = k, 

k’=/pll’2, 
@a) 

where the primes indicate differentiation with respect to z (except for g’). The 
initial conditions are 

>=l and k=ks=(h/(2~)f’2)F,1’2P~5’4Ks. (5b) 
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Integration of (5a) and applying the initial conditions (5b) gives 

WlP15’2 -l)=k’-kk,Z. (6) 

Curves of p against k are plotted in Fig. 2. At the source p = 1, and from (la) it 
can be seen that the momentum flux increases with distance from the source 
and this is represented on Fig. 2 by the region p> 1. In the region p-c 1 the 
solution has been integrated back to a “virtual origin” where the mass flux, k, 
and hence the plume radius are both zero. The momentum flux, p, is not, in 
general, zero at the virtual origin and the sign of p at k =O determines the 
nature of the plume. From (6) it can be seen that the momentum flux at k = 0 is 
positive (negative) when the mass flux ks at the source is less (greater) than the 
critical value kc = 2/,/5. 

For small values of the mass flux ks -c kc, the momentum and buoyancy fluxes 
at the virtual origin are in the same direction, and we will refer to this case as 
the buoyant jet. The virtual origin lies behind the source and the initial spread 
from the source is large. At large distances from the source the solution (for 
k tending to infinity) asymptotes to that of a pure plume. A sketch of this case is 
shown in Fig. 3a. 

When ks = kc, the mass and momentum fluxes at the virtual origin are zero and 
the flow is that of a pure plume. In this case the properties of the plume can be 
derived directly from (5a) with the initial condition p = 0 at k = 0. The solution is 
well known; for the purposes of this analysis it is sufficient to note that the plume 
is conical with the half-angle at the vertex being tan- ’ (6a/5) as shown in Fig. 3b. 

k 

Fig. 2. Momentum and mass fluxes for vertical plumes (non-dimensionalised with respect to 
the buoyancy and momentum fluxes at the source). The source initial conditions are p = 1 and 
K = 12,; the solutions have been integrated back to the ‘virtual origin’ where K = 0 (and thus 
the radius equals zero). 
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For larger values of ks, so that ks > kc, p -=c 0 at the virtual origin. In this case 
the momentum flux at the virtual origin has the opposite sign to the buoyancy 
flux, and the virtual origin may be in front of the source. At these high values 
of the source mass flux the plume behaves as though it initially flows backward 
from the virtual origin, spreading with the same angle as for a jet, its mo- 
mentum being decelerated by the buoyancy forces until it stops at some point 
behind the source. It is then accelerated forwards through the source with the 
required mass and momentum fluxes. This situation is sketched in Fig. 3~ and 
we shall refer to this flow as a muss source. It should be emphasised that the 

Fig. 3. The shapes of the different plumes 
types: (a) buoyant jet, (b) pure plume, (c) mass 
source. The lengths have been non-dimen- 
sionalised with respect to the buoyancy and 
momentum fluxes at the virtual origin. Note 
that the horizontal scale is enlarged compared 
with the vertical scale. 
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region p c 0 in Fig. 2 is unphysical. We have not considered the case where the 
momentum and buoyancy fluxes at the source have opposite signs. This model 
does not allow for the plume overlapping itself, nor does it allow for the 
entrainment of other than ambient fluid. The real source may be anywhere on 
the upward flowing part of the shape in Fig. 3c, in particular the flow may 
contract above the source before widening again. Note that the source diameter 
is never much less than 0.4, in non-dimensional units, and so the plume shape is 
very close to a buoyant plume only a few diameters from the source. For this 
reason the mass-source type flow is generally regarded as an unimportant case 
for vertical plumes, but we include it for completeness and for comparison with 
downward pointing angled plumes for which the downward flowing part is 
a physical solution since the plume would then entrain ambient fluid. 

It is convenient to non-dimensionalise the equations of motion with respect to 
the momentum flux at the virtual origin, PO, rather than that at the source. We 
will denote this new set of non-dimensional quantities by the subscript 1, i.e. 

k1 =(~.l(2a)1’2)F~‘2P~5!4K, 

21 =((2cY)"*il)F;'2P;3'4Z, 
(7) 

rl=(zl/Z)R, and so k,,=(~1(2a)1’2)F~i2P~5’4Ks. 

With this non-dimensionalisation the curves in Fig. 2 are reduced to the three 
curves shown in Fig. 4. Instead of the source conditions being represented by 
the point where p = 1 and k = ks on Fig. 2, they are represented on Fig. 4 by the 
point where p1 =pls= PsjPO and k, = kls. This will be on the curve marked 
“buoyant jet” if ks < k C: all curves above the pure plume curve are mapped onto 
the jet-curve. Whereas it will be on the curve marked “mass-source” if ks > kc: 
all curves below the pure plume curve are mapped onto the mass-source curve 
(see Fig. 5). The shape of the plume thus depends only on whether ks is greater 
or less than kc. The size of the plume is determined by the length scale 

L,=(11(2a)1'2~)Fs1;2p~'4, (8) 

where PO = 11 - 2 k,Z 1”’ Ps (with KS defined in eq. 5b). 
Note that as ks approaches k,-, from either direction, the length scale tends to 

zero, and hence the extent of the region where the plume shape differs signific- 
antly from that of the pure plume also tends to zero and the non-dimensional 
distance of the actual source from the virtual origin tends to infinity. In Fig. 6, 
pi and k, are plotted against z 1, and thus the position of the actual source in Fig. 3 
can be found as the value of z1 for which kl = kls. The part of the mass-source 
curves where z1 is decreasing as p1 and kl increase is not physical, it represents 
a downward flowing plume entraining ambient fluid. 
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Fig. 4. Momentum and mass fluxes non-dimensionalised with respect to the buoyancy and 
momentum fluxes at the virtual origin. The family of solutions in Fig. 2 is reduced to just 
three here. 

Fig. 5. The non-dimensionalisation fromp= 1, k=k,, top, =pls, k, =k,,. All solutions in the 
‘jet region’ are mapped to the buoyant jet curve, whilst those in the ‘mass source region’ are 
mapped to the mass source curve. 

For the case of a pure plume, the distance 2, from the source to the virtual 
origin is related to the source radius, Rs, by 
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Fig. 6. Momentum and mass fluxes as functions of height for the three plume types. (All 
quantities non-dimensionalised with respect to the buoyancy and momentum fluxes at the 
virtual origin.) 

since, as mentioned above, the pure plume is straight sided. Consequently R is 
given by 

R=(Z+Z,)R,/Z,. 

Recall that 2 is the distance above the actual source, and thus the results 
familiar from similarity solutions of buoyant axisymmetric plumes are re- 
covered, 

W= w,(Rs/R) 1’3 = w,(z”/(z+2,))“3, 
(9) 

Ap=pg’lg=Aps(RslR)5’3=A~S(Z~I(Z+Z~))5’3. 

For the other plume types such quantities can be calculated from the values of 
p1 and kl given in Fig. 6, 

In order to understand the nature of the changing length scales and shapes, 
consider a source of buoyant fluid with a fixed total flow rate but a variable exit 
size. This fixes buoyancy and mass fluxes, but if the exit radius is reduced the 
efflux velocity and thus the momentum flux must increase. Starting with 
a large exit radius, Ps will be small and ks will be large. On changing scales to 
p1 and k, it can be seen that pls is small and kIs is greater than kc. The source 
will have the shape shown in Fig. 3 for a “mass source”, with a large length 
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scale (Lv = (5 3'10/2)(Kg/4h2Cr4Fs) , li5 from eq. 8) and with the source position 
close to z1 =O. In practice the entrainment assumption is likely to be inaccur- 
ate near such a source as the plume will not be fully turbulent there. This will 
result in a more pinched shape than that shown in Fig. 3c. 

As the exit radius is reduced so Ps increases. The shape of the plume will 
remain the same but the length scale Lv will decrease, and so the plume will 
tend to the straight-sided buoyant plume shape closer to the source. Also 
zls will increase, so the actual position of the source will be higher on the mass 
source shape (Fig. 3~). As the radius is reduced further, ks approaches kc, and 
PH, kls adz 1s tend to infinity, the length scale Lv tends to zero and the shape 
will be that of a straight-sided pure plume (Fig. 3b). Reducing the radius still 
further, ks becomes less than k,-, and pls, k,, and zls are still large and the 
shape is still close to that of the buoyant plume. Now, however, the plume 
follows the “buoyant jet” shape (Fig. 3a) with the plume spreading at an angle 
which decreases with height rather than increases as for the mass source shape 
(compare Figs. 3a and 3~). As the exit radius is further reduced ks tends to zero, 
PO tends to Ps, the length scale, Lv, behaves like Pz’4, k,, tends to ks and 
zls tends to zero (to the apex of the jet shape) giving an initial spreading angle 
of tan- ’ (2~). 

3. The model for forced, angled plumes 

Now consider forced plumes where the initial momentum flux is not purely 
vertical but is at an angle to the vertical. Again the entrainment assumption is 
applied by stating that the inflow speed into the plume is proportional to the 
speed along the centre-line of the plume. Ignoring the curvature of the plume 
the “top-hat” equations become (for flow in an unstratifiep medium) 

Momentum 
vertical d(WVR2)/dS=g’(ilR)‘, 

horizontal d(UVR2)/dS=0, (11) 

Mass d(VR’)/dS=ZRo!V, 

Density d(g’VR’)/dS=O. 

In this case U and W are the horizontal and vertical components of the 
centre-line velocity, V= ( Uz + W ’ ) ‘I2 R is the radius of the plume and S is the 
distance along the plume centre-lin;? (see Fig. 7). As before g’=gAp/p is the 
reduced gravity. The inclination of the plume to the horizontal, 8, is given (for 
any point on the plume centre-line) by tan 8= W/U_ 

It is useful to define 

F=g’VP, Q= VR2, M= V2R2 , H= lJVR2, (1% 

which are proportional to the total buoyancy, mass and momentum fluxes and 
the horizontal momentum flux, respectively (compare with eq. 2). 
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Fig. 7. An idealised view of an angled plume. Compare this with Fig. 1. 

From (11) it can immediately be seen that the horizontal momentum flux, H,, , 
and the buoyancy flux, F,, are conserved along the plume, 

FO =g’VR’, constant, 
(13) 

Ho = UVR2, constant. 

These conserved quantities are used to define non-dimensional variables (in 
this case there is no need to integrate back to the virtual origin to find 
a meaningful scale for the momentum flux, unlike the vertical plume described 
above) 

m=M/H,, q=(lu/(2a)“2)H;s’4F;‘2Q , 
(14) 

s=S/L,, r= R/LA, X=X/LA, Z=Z/LA, 

where the length-scale is given by LA = (A,/or)-’ Hsj4 F, lf2. The remaining 
plume equations (11) then reduce to the pair of equations 

m((m2-l)‘/2)‘=q, 

(15) 
q’ = (m)l12 I 

where the primes now represent differentiation with respect to s, i.e. along the 
plume axis (except again for g’). 

This form of the equations breaks down as 13 tends to + n/2. In this limit, m b 1 
and the equations become 

mm’ = q, 

q’ = (m)l/’ , 

which are the equations for a vertical plume given in eq. (5a) above. 

(16) 
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Otherwise, however, by substituting 2 = (m2 - 1)1’2 = tan 13, the equations can 
be written 

t’=q/(?+ 1)1’2, 

Q’ = (P + l)l’4, 
(17a) 

This is the final form of the equations used in this model. The initial conditions 
are 

ts= tan &, qs=(A/(2a)“2)F,$‘2H;5’4QS, (17b) 

where the dimensionless mass flux is obtained from (14). 

4. Solutions for forced, angled plumes 

Equations (17a) were integrated numerically, using various initial values of 
the inclination 8 and setting 4 initially to zero. All plumes can be traced back 
to a virtual origin where Q, the mass flux, is zero. Hereafter the subscript 0 will 
refer to conditions at the virtual origin, the subscript S to those at the actual 
source of a plume. (Note that F,=Fs and H,, = Hs since these quantities are 
conserved throughout the plume.) 

The trajectory of the plume centre-line can be determined from 

x’=cos 8 and 2’ = sin 8. 

All other plume properties can be recovered from q and 8: 

(16) 

AP = &lg = Aps qs Jq, 

M= H,/cos 8, 

R = R,(q/q,)(cos e/cos &y2, 

v= V,(qs/q) (cos e,/cos e). 

Figure 8 shows the values of q and (3 along plumes for various values of 8,, at 
q =O. For any given real plume, qs can be calculated from (17b), which, 
rearranged, gives 

~,=(~~/(2~)1’2)(gR~v)l;2(c0s es)-? (20) 

The centre-lines of plumes with different angles at the virtual origin are 
plotted in Fig. 9. The values of plume length s measured from the virtual origin 
are given on both Fig. 8 and 9 to facilitate identification between them. The 
position on Fig. 9 is determined by the value of s and virtual origin angle, Bo, 
found from Fig. 8. For example: if, for a given real plume, qs = 2.5 and es = 10” at 
the source then it can be seen (from Fig. 8) that this is equivalent to a position 
part way along a plume whose initial conditions were q = 0 and t9= -6O”, at 
a distance 2.0 (measured along the plume axis) from the source. This is at 
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Fig. 8. Non-dimensionalised mass flux as a function of plume angle for various values of the 
plume angle at the virtual origin. The solutions have been marked at points corresponding to 
regular intervals measured along the plume centre-line to ease identification between this 
figure and the next. 

Fig. 9. Shapes of the centre-lines of angled plumes with the same range of initial angles as for 
Fig. 8. The marks on each solution are at regular intervals measured along the plume centre-line. 

x = 1.3, z= - 1.4 on Fig. 9, the centre-line of the real plume is then given by 
following the curve through (1.3, -1.4) for higher values of s. The shape of 
a plume depends only on its angle at its virtual origin, though its overall size 
varies, depending on the length scale defined in (14). 
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The shape of the boundaries of plumes with various values of & are shown in 
Fig. 10, though note the warnings given below in interpreting these figures. It 
is sometimes useful to know the lowest point reached by a buoyant plume 
which has a downward component of momentum flux at the source. This can be 
estimated by dimensional analysis: see, for example, Fischer et al. [ll]. 
A length-scale can be made from the buoyancy flux and the vertical component 
of the momentum flux, (&&sin 13,) 3’4Fa i”, and it has been proposed that this 
length-scale multiplied by a universal constant will give the lowest point of the 
plume. Figure 11 shows the relationship between the lowest point, EM, mea- 
sured from the virtual origin, and the value of BO. Since this distance is 
measured from the virtual origin this figure is most useful where the actual 
source is close to the virtual origin, i.e. when qs is small. Note that in Fig. 11 
the lengths are non-dimensionalised with respect to the buoyancy flux and the 
total momentum flux at the virtual origin, rather than the horizontd 
momentum flux, so Fig. 11 gives the relationship between the lowest point and 
& for a given total momentum flux at the virtual origin. The total momentum 
flux at the virtual origin, proportional to M,,, is related to the (constant) 
horizontal momentum flux and thence the total momentum flux at the 
source by 

M,cos e,=H~=H,=Mscos 0s. (21) 

It can be seen that the relationship between eM and o0 given in Fig. 11 is 
a nearly linear one and it is significantly different from a curve of the form 
(sin 00)314 given by the dimensional analysis described above. Also plotted on 
Fig. 11 are the results of laboratory experiments, described below. The larger 
error bars at larger angles to the horizontal are due to features of the flow: 
large eddies develop and though the boundary (of interest) of the plume is well 
defined at any instant its position is subject to large fluctuations. 

For such plumes it is also useful to know where the plume returns to its 
original level (its “range”) and its concentration there. In general it is neces- 
sary to evaluate the behaviour of the plume from its initial conditions using 
Figs. 8 and 9 and eq. (19). If qs is small, however, the actual source is close to 
the virtual origin and Bs is close to BO, Thus the range is (approximately) the 
value of x where the plume returns to z = 0. Again, to make clear the depend- 
ence on f30, we will non-dimensionalise the mass flux and lengths with respect 
to the total momentum flux, MO, so that 

Qi =(n/(2cx)“‘)M,5’4F~‘2Q1 

and the new length-scale is given by L1 = ( JLJ’,>- ‘A#4 Kc ‘P. 

(22) 

Figure 12 shows the range, both to the nearest point on the plume at z =0, 
denoted by x 1 B, and the distance to the centre-line at z = 0, denoted by x 1 c, as it 
depends on 13~. Figure 13 shows l/q1 at these positions, which is proportional to 
concentration (see eq. 19), though note that the model assumes a top-hat form 
of the concentration profile and this needs to be considered when evaluating 
the value at the near boundary, xlB_ 
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Fig. 10. Shapes of angled plumes showing the 
centre-lines and upper and lower boundaries 
of the plumes for various initial angles. 
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Fig. 11. Theoretical and experimental results showing the maximum depth that the lower 
boundary of a downward angled plume reaches. The lengths have been non-dimensionalised 
with respect to the total momentum flux (rather than the horizontal momentum flux) at the 
virtual origin. The error bars reflect the uncertainties in the maximum depth due to 
fluctuations of the turbulent plume. 

I Xl 

80 

Fig. 12. The distance from the virtual origin to the point on a downward angled plume where 
it returns to its initial height, with xIB the distance to the upper boundary, and xIc the 
distance to the centre-line. 
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-60.00 -40.00 -20.88 0.00 

Fig. 13. The value of l/q, at the point where a downward angled plume returns to its initial 
height. This is a measure of the concentration at that point (see text). 

5. Discussion of the theoretical results 

Figure 14 shows the radius and speed of the plume as a function of position 
along the plume centre-line for Q0 = + 45”, O”, - 45”. The results for o0 = + 45” 
are similar to those for a vertical plume with, initially, a momentum jet 
behaviour tending to a buoyant plume shape as in Fig. 3, but with the centre- 
line following a curved trajectory. For & = 0” (a horizontal jet) the results are 
again similar but here the transition from momentum jet, with spreading angle 
tan- ’ (Zcw), to buoyant plume, with angle tan - 1 (6cr/5), is somewhat sharper. 

For negative 13~) however, a different phenomenon is apparent. The vertical 
component of the velocity is initially negative and increases through zero as 
the plume turns. Thus the total plume speed is decelerated more than in the 
previous cases and the plume radius increases more than for a momentum jet. 
The plume is then accelerated (the speed of the plume has a minimum in this 
case as distinct from the previous cases where the plume speed decreases 
monotonically) and the plume radius increases more slowly than for the 
buoyant plume. In fact, for sufficiently steep negative angles the plume radius 
actually decreases. The shape is similar to the “mass source” in Fig. 3. On 
physical grounds the momentum jet-like behaviour can only be exhibited 
where the plume momentum flux has a (positive) component in the direction of 
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Fig. 15. Shape of plume when the initial angle is -80” showing the upper and lower 
boundaries and the centre line. Notice that the upward flowing part of the plume overlaps the 
downward flowing part, thus only that part of the shape beyond the overlap will be realisable 
in practice. 

the initial momentum flux. Thus once the plume turns and begins to rise it is 
(essentially) equivalent to a source of mass and buoyancy and a relatively 
small amount of horizontal momentum, placed at (approximately) the position 
where the plume turns. 

Figure 15 shows the predicted plume shape for Go = -80” and here the theo- 
retical result has the plume overlapping a previous position. It is important to 
note that the model is invalid in such regions since it does not allow for 
re-entrainment of plume fluid. Thus for o0 = - 80” the model is only valid for 
s> 2.5, where the predicted shape is not overlapped by a previous part of the 
flow. There is some overlap for o0 steeper than approximately -75”. 

It should also be noted that the top edge of the plume is unstable in that there 
is light fluid below heavy fluid. Thus some fluid formerly in the plume will be 
detrained and rise into the region above the plume. Thus the stable, lower 
edges of the plume shapes shown in Fig. 10 will be sharply defined in practice, 
whereas the upper, unstable edges will be poorly defined. See, for comparison, 
the photograph of a real plume in Fig. 16, described below. 

Fig. 14. The radius and along-axis speed of angled plumes as a function of distance along the 
plume centre-line. Notice that there is a minimum in the speed for the initially downward 
pointing plume. 
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Fig. 16. Shadowgraph of an angled plume. Here the injected fluid is denser than ambient so 
the buoyancy forces act downward. 

6. Experiments 

Forced plumes were produced by pumping salt water through a circular pipe 
(1.95 mm diameter) into a tank containing fresh water. Note that since the 
injected fluid is relatively dense, the buoyancy forces on the plume act down- 
wards, rather than upwards as was the case for the theory above. The tank 
dimensions were 4 m long by 0.3 m wide and it was filled to a depth of about 0.5 m. 
These dimensions are large compared with typical length scales of the flow and so 
this configuration approximates an infinite, unstratified environment at rest. The 
flow rate nQo was monitored with a flow meter and the buoyancy flux nFo and the 
momentum flux Z&I, were determined from 

Fo =g'Qo, 
Mo=jQ8ap2, 

where a is the pipe radius. 

(23) 

Typical pipe nozzle Reynolds numbers were in the range 1000 to 2500 and the 
expression for MO is obtained assuming laminar Poiseuille flow in the pipe. The 
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pipe was set at fixed orientations f&, to the horizontal and the angles were 
measured to an accuracy of 0.5”. 

The visualisation was carried out using a shadowgraph and estimates of the 
maximum height were made from still photographs. A conductivity probe was 
placed at a set of fixed positions in the flow and the salt concentration was 
measured to obtain information about the structure and mixing in the plume. 

7. Experimental results 

An example of the flow with 13~ = 60” is shown in Fig. 16. Close to the source 
the plume is symmetrical but a pronounced asymmetry develops downstream. 
The upper side of the plume remains sharp and well defined while the lower 
side is diffuse and has no distinct edge even in an instantaneous picture as 
shown in the shadowgraph. This asymmetry results from the opposite effects of 
the buoyancy force on the two sides of the plume. On the upper side, buoyancy 
forces create a stabilizing stratification which tends to inhibit entrainment of 
the environmental fluid. On the lower side the buoyancy forces produce a con- 
vectively unstable configuration and there is enhanced mixing between the 
plume and the environment. Detrainment of plume fluid is observed on the 
lower side, a feature which is not observed in vertical plumes. 

Measurements of the structure of the plume were made for an initial inclina- 
tion of 45” using a conductivity probe. Figure 17 shows the density contours in 
a plane normal to the plume axis positioned at the point of maximum plume 
height. The asymmetry between the upper and lower parts of the plume can be 
clearly seen. Near the top of the plume there is a strong, stable density 
gradient. Below the plume axis the dense fluid is mixing much more vigorously 
with the surrounding fluid as a result of the gravitational instability. Density 
profiles in a vertical plane containing the plume axis are shown in Fig. 18a. 

20cm-r 

Fig. 17. Experimentally observed, time-averaged, measurements of concentration in a plane 
perpendicular to the plume axis, at the highest point on the plume. The injected fluid was 
denser than ambient, and injected at an angle of 45” above the horizontal. Notice the 
detrainment of fluid from the lower, unstable edge of the plume. 
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The asymmetry between the upper and lower parts of the plume is seen to 
increase with distance downstream. The estimated plume axis (line of max- 
imum density excess) is shown in Fig. Mb, as is the theoretically predicted 
plume axis. The discrepancy is due partly to experimental errors, in particular 
in measuring the source radius accurately and in measuring the relatively 
weak concentrations far from the source, and partly due to using a fixed value 
of a that is certainly too large for the jet part of the flow, and may be too large 
for the mass-source part of the flow. The mean value of the density difference 
on the plume centre-line is plotted on Fig. 19, as is the theoretical prediction. 
Note that the observed density difference is generally larger than the predic- 
tion, suggesting less entrainment than predicted (smaller a), which would lead 
to greater vertical acceleration_ 

The maximum height to which the upper plume boundary rose, zMI, was 
measured from photographs, and non-dimensionalised with respect to the 
length-scale L1 (see eq. 22). These results are shown on Fig. 11, where each 
point represents the average over several experiments with different values of 
the flow rate. The comparison with the theoretical results was discussed in 
Section 4, Some experiments were performed with the tube set vertically, so 

Fig. 18. (a) Vertical, time-averaged concentration profiles measured at various points along 
the plume centre-line. The injected fluid is denser than the surrounding fluid and was 
injected at 45”. (b) Position of the plume centre-line estimated from the experimental results 
shown in (a) (peak in density profile), with the expected centre-line for comparison. (Non- 
dimensional scales.) 
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- 
Fig. 19. Density difference between the plume fluid and the ambient fluid from the experi- 
ment shown in Figs. 16 to 18 (time-averaged on the plume centre-line), with the theoretical 
result shown for comparison. (Non-dimensional scales.) 

that the rising part of the plume entrains fluid that is falling back down. This 
height cannot be predicted by the theory above, since it assumes that only 
ambient fluid is entrained. These experiments gave a value of the maximum 
height of zM(900) = 0.83 _tO.O2, in agreement with the value found by Turner [12]. 
Note that this is much smaller than the value of approximately 1.8 predicted by 
the model, which does not include re-entrainment of the plume fluid. Thus the 
re-entrainment of plume fluid has a substantial effect on the plume. 

8. Conclusions 

The equations for a forced, angled plume can be simplified by non-dimen- 
sionalisation with respect to two conserved quantities, namely the buoyancy flux 
and the horizontal component of the momentum flux. All such plumes can be 
traced back to a virtual origin, and the shape of the plume depends only on the 
angle of the plume to the horizontal at this virtual origin. Vertical plumes can be 
included in this scheme, with virtual origin angle f 90”. All angled plume shapes 
can be grouped into three categories, first introduced to describe vertical plumes: 

(i) If the momentum flux at the virtual origin is zero then no angle can be 
defined and we have the special case of the vertical, straight-sided, pure 
plume, half-angle tan- ’ (6~15). 
(ii) If the momentum flux at the virtual origin is upward (or horizontal) then 
the plume spreads initially at a half-angle of tan- ’ (2a). We have referred to 
this category as the buoyant jet. The plume centre-line curves towards the 
vertical and the spreading angle tends (downward) to that of the pure plume. 
The change from the jet spreading angle to the plume angle occurs more 
sharply for plumes directed further from the vertical. 
(iii) If the momentum flux at the virtual origin is downward then the initial 
spread is as for a jet. In this case the fluid is decelerated by the buoyancy 
force and the spreading angle increases. As the plume centre-line curves 



98 G.F. Lane-Serff et al./J. Hazardous Mater. 33 (1993) 75-99 

upward the fluid is accelerated and the spreading angle decreases, for plumes 
with virtual origin angle less than approximately -60” the radius actually 
decreases. As the plume centre-line curves upward the spreading angle tends 
(upward) to that of the pure plume. This category we have referred to as the 
mass-source. In this case the mean along-plume velocity has a minimum and 
a maximum (see Fig. 14), whereas the velocity decreases monotonically for 
cases (i) and (ii). Note also that part of the solution near the virtual origin 
will be unphysical for sufficiently steep values of eO, due to the model not 
allowing for r-e-entrainment of plume fluid. In particular, for Q0 = -90” the 
solution is unphysical until the flow is upward. 
The overall size depends on the length scale LA defined above. For the 

vertical plumes it is, however, necessary to trace the solution back to the 
virtual origin to find a useful scale for the momentum flux, which can be used 
to define a length-scale, Lv. Because of this last feature we regard vertical 
plumes as a very special case of the generality of angled plumes. This is in 
contrast to the usual approach which is to consider plumes with a horizontal 
component of momentum flux as merely a minor departure from the vertical 
case, as is, for example, implicit in the dimensional analysis approach to 
predicting maximum depth of a downward angled buoyant plume, or explicit in 
the approach used by Germeles [4]. 

The virtual origin angle, and thus the shape of the plume, can be deter- 
mined from the source angle and the non-dimensionalised source mass flux. 
While the variations of the velocities and densities from the mean and the 
details of the eddies and entrainment is beyond the scope of this approach, we 
have shown that the theory predicts some of the mean properties and the basic 
shape of such plumes reasonably accurately_ En fact the entrainment assump- 
tion describes the flow surprisingly accurately, given that the observed velo- 
city and density distributions are neither symmetric nor self-similar. We con- 
clude that the average entrainment into the plume is described adequately by 
an average entrainment velocity proportional to the mean velocity in the 
plume. 

In this model we have kept CL constant, though there is evidence that 
the nature of the entrainment, and thus the value of cc, varies for different 
types of plume flow (see, for example, Turner [12]). Altering the value of CI 
alters the local length-scale and the spreading angle of the plume, and the 
experimental evidence is that this reduces the difference in spreading angle 
between jet and plume flows predicted by theories such as the one given 
here. One may regard different spreading angles predicted by our theory 
as pointing out changes in the nature of the flow, and thus the entrainment, 
at different points on the plume. It would be possible to recalculate the results 
with a allowed to vary according to the local nature of the flow. It is important 
to note that this would not affect the result that the plume shape is entirely 
determined by the virtual origin angle, since different plumes with the same 
virtual origin angle would have changes, e.g. from jet to plume behaviour, 
at equivalent points on the plume. 
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This model does not allow for stratification in the ambient fluid. In many 
cases the stratification will not be important until the plume is rising almost 
vertically, where previous models (e.g. [2, 31) can be used. Stratification will 
not be important in the neighbourhood of the source provided that the density 
changes in the ambient fluid over the length scale of the plume are small 
compared with the density difference between the plume and the ambient fluid. 
This criterion requires 

N@FOI&, (24) 

where the ambient stratification has buoyancy frequency N= (-g(8P/az)/P)l”. 
When stratification is important this can be taken into account by modifying 

equation (11) (the buoyancy flux is no longer constant) so that the right hand 
side of the density difference equation becomes N2 VR'. However, this is not 
entirely satisfactory since under such strong stratification the plume cross- 
section becomes elliptical, with greater spread in the horizontal direction and 
reduced spread in the vertical direction because vertical motions are impeded 
by the stratification. The reader is recommended to see Hofer and Hutter [6] for 
a more detailed analysis. 
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